1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 13:33:37 +02:00
llvm-mirror/lib/LTO/ThinLTOCodeGenerator.cpp
Teresa Johnson 5cc2580600 [ThinLTO] Change ODR resolution and internalization to be index-based
Summary:
This patch changes the ODR resolution and internalization to be based on
updates to the Index, which are consumed by the backend portion of the
transformations.

It will be followed by an NFC change to move these out of libLTO's
ThinLTOCodeGenerator so that it can be used by other linkers
(gold and lld) and by ThinLTO distributed backends.

The global summary-based portions use callbacks so that the client can
determine the prevailing copy and other information in a client-specific
way. Eventually, with the API being developed in D20268, these may be
modified to use information such as symbol resolutions, supplied by the
clients to the API.

Reviewers: joker-eph

Subscribers: joker.eph, pcc, llvm-commits

Differential Revision: http://reviews.llvm.org/D20290

llvm-svn: 270584
2016-05-24 17:24:25 +00:00

1022 lines
40 KiB
C++

//===-ThinLTOCodeGenerator.cpp - LLVM Link Time Optimizer -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Thin Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//
#include "llvm/LTO/ThinLTOCodeGenerator.h"
#ifdef HAVE_LLVM_REVISION
#include "LLVMLTORevision.h"
#endif
#include "UpdateCompilerUsed.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/ExecutionEngine/ObjectMemoryBuffer.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ModuleSummaryIndexObjectFile.h"
#include "llvm/Support/CachePruning.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "thinlto"
namespace llvm {
// Flags -discard-value-names, defined in LTOCodeGenerator.cpp
extern cl::opt<bool> LTODiscardValueNames;
}
namespace {
static cl::opt<int> ThreadCount("threads",
cl::init(std::thread::hardware_concurrency()));
static void diagnosticHandler(const DiagnosticInfo &DI) {
DiagnosticPrinterRawOStream DP(errs());
DI.print(DP);
errs() << '\n';
}
// Simple helper to save temporary files for debug.
static void saveTempBitcode(const Module &TheModule, StringRef TempDir,
unsigned count, StringRef Suffix) {
if (TempDir.empty())
return;
// User asked to save temps, let dump the bitcode file after import.
auto SaveTempPath = TempDir + llvm::utostr(count) + Suffix;
std::error_code EC;
raw_fd_ostream OS(SaveTempPath.str(), EC, sys::fs::F_None);
if (EC)
report_fatal_error(Twine("Failed to open ") + SaveTempPath +
" to save optimized bitcode\n");
WriteBitcodeToFile(&TheModule, OS, /* ShouldPreserveUseListOrder */ true);
}
static const GlobalValueSummary *
getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
// If there is any strong definition anywhere, get it.
auto StrongDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
!GlobalValue::isWeakForLinker(Linkage);
});
if (StrongDefForLinker != GVSummaryList.end())
return StrongDefForLinker->get();
// Get the first *linker visible* definition for this global in the summary
// list.
auto FirstDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage);
});
// Extern templates can be emitted as available_externally.
if (FirstDefForLinker == GVSummaryList.end())
return nullptr;
return FirstDefForLinker->get();
}
// Populate map of GUID to the prevailing copy for any multiply defined
// symbols. Currently assume first copy is prevailing, or any strong
// definition. Can be refined with Linker information in the future.
static void computePrevailingCopies(
const ModuleSummaryIndex &Index,
DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy) {
auto HasMultipleCopies = [&](const GlobalValueSummaryList &GVSummaryList) {
return GVSummaryList.size() > 1;
};
for (auto &I : Index) {
if (HasMultipleCopies(I.second))
PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second);
}
}
static void thinLTOResolveWeakForLinkerGUID(
GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID,
DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
std::function<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
std::function<bool(StringRef, GlobalValue::GUID)> isExported,
std::function<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
recordNewLinkage) {
auto HasMultipleCopies = GVSummaryList.size() > 1;
for (auto &S : GVSummaryList) {
if (GlobalInvolvedWithAlias.count(S.get()))
continue;
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
if (!GlobalValue::isWeakForLinker(OriginalLinkage))
continue;
// We need to emit only one of these, the first module will keep it,
// but turned into a weak, while the others will drop it when possible.
if (!HasMultipleCopies) {
// Exported Linkonce needs to be promoted to not be discarded.
// FIXME: This should handle LinkOnceAny as well, but that should be a
// follow-on to the NFC restructuring:
// if (GlobalValue::isLinkOnceLinkage(OriginalLinkage) &&
// isExported(S->modulePath(), GUID))
// S->setLinkage(GlobalValue::getWeakLinkage(
// GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
if (GlobalValue::isLinkOnceODRLinkage(OriginalLinkage) &&
isExported(S->modulePath(), GUID))
S->setLinkage(GlobalValue::WeakODRLinkage);
} else if (isPrevailing(GUID, S.get())) {
// FIXME: This should handle LinkOnceAny as well, but that should be a
// follow-on to the NFC restructuring:
// if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
// S->setLinkage(GlobalValue::getWeakLinkage(
// GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
if (GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))
S->setLinkage(GlobalValue::WeakODRLinkage);
}
// Alias can't be turned into available_externally.
else if (!isa<AliasSummary>(S.get()) &&
(GlobalValue::isLinkOnceODRLinkage(OriginalLinkage) ||
GlobalValue::isWeakODRLinkage(OriginalLinkage)))
S->setLinkage(GlobalValue::AvailableExternallyLinkage);
if (S->linkage() != OriginalLinkage)
recordNewLinkage(S->modulePath(), GUID, S->linkage());
}
}
// Resolve Weak and LinkOnce values in the \p Index.
//
// We'd like to drop these functions if they are no longer referenced in the
// current module. However there is a chance that another module is still
// referencing them because of the import. We make sure we always emit at least
// one copy.
void thinLTOResolveWeakForLinkerInIndex(
ModuleSummaryIndex &Index,
std::function<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
std::function<bool(StringRef, GlobalValue::GUID)> isExported,
std::function<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
recordNewLinkage) {
if (Index.modulePaths().size() == 1)
// Nothing to do if we don't have multiple modules
return;
// We won't optimize the globals that are referenced by an alias for now
// Ideally we should turn the alias into a global and duplicate the definition
// when needed.
DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
for (auto &I : Index)
for (auto &S : I.second)
if (auto AS = dyn_cast<AliasSummary>(S.get()))
GlobalInvolvedWithAlias.insert(&AS->getAliasee());
for (auto &I : Index)
thinLTOResolveWeakForLinkerGUID(I.second, I.first, GlobalInvolvedWithAlias,
isPrevailing, isExported, recordNewLinkage);
}
/// Fixup WeakForLinker linkages in \p TheModule based on summary analysis.
void thinLTOResolveWeakForLinkerModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals) {
auto updateLinkage = [&](GlobalValue &GV) {
if (!GlobalValue::isWeakForLinker(GV.getLinkage()))
return;
// See if the global summary analysis computed a new resolved linkage.
const auto &GS = DefinedGlobals.find(GV.getGUID());
if (GS == DefinedGlobals.end())
return;
auto NewLinkage = GS->second->linkage();
if (NewLinkage == GV.getLinkage())
return;
DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() << "` from "
<< GV.getLinkage() << " to " << NewLinkage << "\n");
GV.setLinkage(NewLinkage);
};
// Process functions and global now
for (auto &GV : TheModule)
updateLinkage(GV);
for (auto &GV : TheModule.globals())
updateLinkage(GV);
for (auto &GV : TheModule.aliases())
updateLinkage(GV);
}
static StringMap<MemoryBufferRef>
generateModuleMap(const std::vector<MemoryBufferRef> &Modules) {
StringMap<MemoryBufferRef> ModuleMap;
for (auto &ModuleBuffer : Modules) {
assert(ModuleMap.find(ModuleBuffer.getBufferIdentifier()) ==
ModuleMap.end() &&
"Expect unique Buffer Identifier");
ModuleMap[ModuleBuffer.getBufferIdentifier()] = ModuleBuffer;
}
return ModuleMap;
}
static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index) {
if (renameModuleForThinLTO(TheModule, Index))
report_fatal_error("renameModuleForThinLTO failed");
}
static void
crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index,
StringMap<MemoryBufferRef> &ModuleMap,
const FunctionImporter::ImportMapTy &ImportList) {
ModuleLoader Loader(TheModule.getContext(), ModuleMap);
FunctionImporter Importer(Index, Loader);
Importer.importFunctions(TheModule, ImportList);
}
static void optimizeModule(Module &TheModule, TargetMachine &TM) {
// Populate the PassManager
PassManagerBuilder PMB;
PMB.LibraryInfo = new TargetLibraryInfoImpl(TM.getTargetTriple());
PMB.Inliner = createFunctionInliningPass();
// FIXME: should get it from the bitcode?
PMB.OptLevel = 3;
PMB.LoopVectorize = true;
PMB.SLPVectorize = true;
PMB.VerifyInput = true;
PMB.VerifyOutput = false;
legacy::PassManager PM;
// Add the TTI (required to inform the vectorizer about register size for
// instance)
PM.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis()));
// Add optimizations
PMB.populateThinLTOPassManager(PM);
PM.run(TheModule);
}
static void thinLTOInternalizeAndPromoteGUID(
GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID,
std::function<bool(StringRef, GlobalValue::GUID)> isExported) {
for (auto &S : GVSummaryList) {
if (isExported(S->modulePath(), GUID)) {
if (GlobalValue::isLocalLinkage(S->linkage()))
S->setLinkage(GlobalValue::ExternalLinkage);
} else if (!GlobalValue::isLocalLinkage(S->linkage()))
S->setLinkage(GlobalValue::InternalLinkage);
}
}
// Update the linkages in the given \p Index to mark exported values
// as external and non-exported values as internal.
void thinLTOInternalizeAndPromoteInIndex(
ModuleSummaryIndex &Index,
std::function<bool(StringRef, GlobalValue::GUID)> isExported) {
for (auto &I : Index)
thinLTOInternalizeAndPromoteGUID(I.second, I.first, isExported);
}
// Run internalization on \p TheModule based on symmary analysis.
void thinLTOInternalizeModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals) {
// Parse inline ASM and collect the list of symbols that are not defined in
// the current module.
StringSet<> AsmUndefinedRefs;
object::IRObjectFile::CollectAsmUndefinedRefs(
Triple(TheModule.getTargetTriple()), TheModule.getModuleInlineAsm(),
[&AsmUndefinedRefs](StringRef Name, object::BasicSymbolRef::Flags Flags) {
if (Flags & object::BasicSymbolRef::SF_Undefined)
AsmUndefinedRefs.insert(Name);
});
// Declare a callback for the internalize pass that will ask for every
// candidate GlobalValue if it can be internalized or not.
auto MustPreserveGV = [&](const GlobalValue &GV) -> bool {
// Can't be internalized if referenced in inline asm.
if (AsmUndefinedRefs.count(GV.getName()))
return true;
// Lookup the linkage recorded in the summaries during global analysis.
const auto &GS = DefinedGlobals.find(GV.getGUID());
GlobalValue::LinkageTypes Linkage;
if (GS == DefinedGlobals.end()) {
// Must have been promoted (possibly conservatively). Find original
// name so that we can access the correct summary and see if it can
// be internalized again.
// FIXME: Eventually we should control promotion instead of promoting
// and internalizing again.
StringRef OrigName =
ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName());
std::string OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage,
TheModule.getSourceFileName());
const auto &GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId));
assert(GS != DefinedGlobals.end());
Linkage = GS->second->linkage();
} else
Linkage = GS->second->linkage();
return !GlobalValue::isLocalLinkage(Linkage);
};
// FIXME: See if we can just internalize directly here via linkage changes
// based on the index, rather than invoking internalizeModule.
llvm::internalizeModule(TheModule, MustPreserveGV);
}
// Convert the PreservedSymbols map from "Name" based to "GUID" based.
static DenseSet<GlobalValue::GUID>
computeGUIDPreservedSymbols(const StringSet<> &PreservedSymbols,
const Triple &TheTriple) {
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols(PreservedSymbols.size());
for (auto &Entry : PreservedSymbols) {
StringRef Name = Entry.first();
if (TheTriple.isOSBinFormatMachO() && Name.size() > 0 && Name[0] == '_')
Name = Name.drop_front();
GUIDPreservedSymbols.insert(GlobalValue::getGUID(Name));
}
return GUIDPreservedSymbols;
}
std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule,
TargetMachine &TM) {
SmallVector<char, 128> OutputBuffer;
// CodeGen
{
raw_svector_ostream OS(OutputBuffer);
legacy::PassManager PM;
// If the bitcode files contain ARC code and were compiled with optimization,
// the ObjCARCContractPass must be run, so do it unconditionally here.
PM.add(createObjCARCContractPass());
// Setup the codegen now.
if (TM.addPassesToEmitFile(PM, OS, TargetMachine::CGFT_ObjectFile,
/* DisableVerify */ true))
report_fatal_error("Failed to setup codegen");
// Run codegen now. resulting binary is in OutputBuffer.
PM.run(TheModule);
}
return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer));
}
/// Manage caching for a single Module.
class ModuleCacheEntry {
SmallString<128> EntryPath;
public:
// Create a cache entry. This compute a unique hash for the Module considering
// the current list of export/import, and offer an interface to query to
// access the content in the cache.
ModuleCacheEntry(
StringRef CachePath, const ModuleSummaryIndex &Index, StringRef ModuleID,
const FunctionImporter::ImportMapTy &ImportList,
const FunctionImporter::ExportSetTy &ExportList,
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
const GVSummaryMapTy &DefinedFunctions,
const DenseSet<GlobalValue::GUID> &PreservedSymbols) {
if (CachePath.empty())
return;
// Compute the unique hash for this entry
// This is based on the current compiler version, the module itself, the
// export list, the hash for every single module in the import list, the
// list of ResolvedODR for the module, and the list of preserved symbols.
SHA1 Hasher;
// Start with the compiler revision
Hasher.update(LLVM_VERSION_STRING);
#ifdef HAVE_LLVM_REVISION
Hasher.update(LLVM_REVISION);
#endif
// Include the hash for the current module
auto ModHash = Index.getModuleHash(ModuleID);
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
for (auto F : ExportList)
// The export list can impact the internalization, be conservative here
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F)));
// Include the hash for every module we import functions from
for (auto &Entry : ImportList) {
auto ModHash = Index.getModuleHash(Entry.first());
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
}
// Include the hash for the resolved ODR.
for (auto &Entry : ResolvedODR) {
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
sizeof(GlobalValue::GUID)));
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
sizeof(GlobalValue::LinkageTypes)));
}
// Include the hash for the preserved symbols.
for (auto &Entry : PreservedSymbols) {
if (DefinedFunctions.count(Entry))
Hasher.update(
ArrayRef<uint8_t>((const uint8_t *)&Entry, sizeof(GlobalValue::GUID)));
}
sys::path::append(EntryPath, CachePath, toHex(Hasher.result()));
}
// Access the path to this entry in the cache.
StringRef getEntryPath() { return EntryPath; }
// Try loading the buffer for this cache entry.
ErrorOr<std::unique_ptr<MemoryBuffer>> tryLoadingBuffer() {
if (EntryPath.empty())
return std::error_code();
return MemoryBuffer::getFile(EntryPath);
}
// Cache the Produced object file
std::unique_ptr<MemoryBuffer>
write(std::unique_ptr<MemoryBuffer> OutputBuffer) {
if (EntryPath.empty())
return OutputBuffer;
// Write to a temporary to avoid race condition
SmallString<128> TempFilename;
int TempFD;
std::error_code EC =
sys::fs::createTemporaryFile("Thin", "tmp.o", TempFD, TempFilename);
if (EC) {
errs() << "Error: " << EC.message() << "\n";
report_fatal_error("ThinLTO: Can't get a temporary file");
}
{
raw_fd_ostream OS(TempFD, /* ShouldClose */ true);
OS << OutputBuffer->getBuffer();
}
// Rename to final destination (hopefully race condition won't matter here)
EC = sys::fs::rename(TempFilename, EntryPath);
if (EC) {
sys::fs::remove(TempFilename);
raw_fd_ostream OS(EntryPath, EC, sys::fs::F_None);
if (EC)
report_fatal_error(Twine("Failed to open ") + EntryPath +
" to save cached entry\n");
OS << OutputBuffer->getBuffer();
}
auto ReloadedBufferOrErr = MemoryBuffer::getFile(EntryPath);
if (auto EC = ReloadedBufferOrErr.getError()) {
// FIXME diagnose
errs() << "error: can't reload cached file '" << EntryPath
<< "': " << EC.message() << "\n";
return OutputBuffer;
}
return std::move(*ReloadedBufferOrErr);
}
};
static std::unique_ptr<MemoryBuffer>
ProcessThinLTOModule(Module &TheModule, ModuleSummaryIndex &Index,
StringMap<MemoryBufferRef> &ModuleMap, TargetMachine &TM,
const FunctionImporter::ImportMapTy &ImportList,
const FunctionImporter::ExportSetTy &ExportList,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
const GVSummaryMapTy &DefinedGlobals,
ThinLTOCodeGenerator::CachingOptions CacheOptions,
bool DisableCodeGen, StringRef SaveTempsDir,
unsigned count) {
// "Benchmark"-like optimization: single-source case
bool SingleModule = (ModuleMap.size() == 1);
if (!SingleModule) {
promoteModule(TheModule, Index);
// Apply summary-based LinkOnce/Weak resolution decisions.
thinLTOResolveWeakForLinkerModule(TheModule, DefinedGlobals);
// Save temps: after promotion.
saveTempBitcode(TheModule, SaveTempsDir, count, ".1.promoted.bc");
}
// Be friendly and don't nuke totally the module when the client didn't
// supply anything to preserve.
if (!ExportList.empty() || !GUIDPreservedSymbols.empty()) {
// Apply summary-based internalization decisions.
thinLTOInternalizeModule(TheModule, DefinedGlobals);
}
// Save internalized bitcode
saveTempBitcode(TheModule, SaveTempsDir, count, ".2.internalized.bc");
if (!SingleModule) {
crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);
// Save temps: after cross-module import.
saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc");
}
optimizeModule(TheModule, TM);
saveTempBitcode(TheModule, SaveTempsDir, count, ".4.opt.bc");
if (DisableCodeGen) {
// Configured to stop before CodeGen, serialize the bitcode and return.
SmallVector<char, 128> OutputBuffer;
{
raw_svector_ostream OS(OutputBuffer);
ModuleSummaryIndexBuilder IndexBuilder(&TheModule);
WriteBitcodeToFile(&TheModule, OS, true, &IndexBuilder.getIndex());
}
return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer));
}
return codegenModule(TheModule, TM);
}
/// Resolve LinkOnce/Weak symbols. Record resolutions in the \p ResolvedODR map
/// for caching, and in the \p Index for application during the ThinLTO
/// backends. This is needed for correctness for exported symbols (ensure
/// at least one copy kept) and a compile-time optimization (to drop duplicate
/// copies when possible).
static void resolveWeakForLinkerInIndex(
ModuleSummaryIndex &Index,
const StringMap<FunctionImporter::ExportSetTy> &ExportLists,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>>
&ResolvedODR) {
DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
computePrevailingCopies(Index, PrevailingCopy);
auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
const auto &Prevailing = PrevailingCopy.find(GUID);
// Not in map means that there was only one copy, which must be prevailing.
if (Prevailing == PrevailingCopy.end())
return true;
return Prevailing->second == S;
};
auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
const auto &ExportList = ExportLists.find(ModuleIdentifier);
assert(ExportList != ExportLists.end() && "Missing export list for module");
return ExportList->second.count(GUID) || GUIDPreservedSymbols.count(GUID);
};
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
GlobalValue::GUID GUID,
GlobalValue::LinkageTypes NewLinkage) {
ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
};
thinLTOResolveWeakForLinkerInIndex(Index, isPrevailing, isExported,
recordNewLinkage);
}
// Initialize the TargetMachine builder for a given Triple
static void initTMBuilder(TargetMachineBuilder &TMBuilder,
const Triple &TheTriple) {
// Set a default CPU for Darwin triples (copied from LTOCodeGenerator).
// FIXME this looks pretty terrible...
if (TMBuilder.MCpu.empty() && TheTriple.isOSDarwin()) {
if (TheTriple.getArch() == llvm::Triple::x86_64)
TMBuilder.MCpu = "core2";
else if (TheTriple.getArch() == llvm::Triple::x86)
TMBuilder.MCpu = "yonah";
else if (TheTriple.getArch() == llvm::Triple::aarch64)
TMBuilder.MCpu = "cyclone";
}
TMBuilder.TheTriple = std::move(TheTriple);
}
} // end anonymous namespace
void ThinLTOCodeGenerator::addModule(StringRef Identifier, StringRef Data) {
MemoryBufferRef Buffer(Data, Identifier);
if (Modules.empty()) {
// First module added, so initialize the triple and some options
LLVMContext Context;
Triple TheTriple(getBitcodeTargetTriple(Buffer, Context));
initTMBuilder(TMBuilder, Triple(TheTriple));
}
#ifndef NDEBUG
else {
LLVMContext Context;
assert(TMBuilder.TheTriple.str() ==
getBitcodeTargetTriple(Buffer, Context) &&
"ThinLTO modules with different triple not supported");
}
#endif
Modules.push_back(Buffer);
}
void ThinLTOCodeGenerator::preserveSymbol(StringRef Name) {
PreservedSymbols.insert(Name);
}
void ThinLTOCodeGenerator::crossReferenceSymbol(StringRef Name) {
// FIXME: At the moment, we don't take advantage of this extra information,
// we're conservatively considering cross-references as preserved.
// CrossReferencedSymbols.insert(Name);
PreservedSymbols.insert(Name);
}
// TargetMachine factory
std::unique_ptr<TargetMachine> TargetMachineBuilder::create() const {
std::string ErrMsg;
const Target *TheTarget =
TargetRegistry::lookupTarget(TheTriple.str(), ErrMsg);
if (!TheTarget) {
report_fatal_error("Can't load target for this Triple: " + ErrMsg);
}
// Use MAttr as the default set of features.
SubtargetFeatures Features(MAttr);
Features.getDefaultSubtargetFeatures(TheTriple);
std::string FeatureStr = Features.getString();
return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
TheTriple.str(), MCpu, FeatureStr, Options, RelocModel,
CodeModel::Default, CGOptLevel));
}
/**
* Produce the combined summary index from all the bitcode files:
* "thin-link".
*/
std::unique_ptr<ModuleSummaryIndex> ThinLTOCodeGenerator::linkCombinedIndex() {
std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
uint64_t NextModuleId = 0;
for (auto &ModuleBuffer : Modules) {
ErrorOr<std::unique_ptr<object::ModuleSummaryIndexObjectFile>> ObjOrErr =
object::ModuleSummaryIndexObjectFile::create(ModuleBuffer,
diagnosticHandler);
if (std::error_code EC = ObjOrErr.getError()) {
// FIXME diagnose
errs() << "error: can't create ModuleSummaryIndexObjectFile for buffer: "
<< EC.message() << "\n";
return nullptr;
}
auto Index = (*ObjOrErr)->takeIndex();
if (CombinedIndex) {
CombinedIndex->mergeFrom(std::move(Index), ++NextModuleId);
} else {
CombinedIndex = std::move(Index);
}
}
return CombinedIndex;
}
/**
* Perform promotion and renaming of exported internal functions.
* Index is updated to reflect linkage changes from weak resolution.
*/
void ThinLTOCodeGenerator::promote(Module &TheModule,
ModuleSummaryIndex &Index) {
auto ModuleCount = Index.modulePaths().size();
auto ModuleIdentifier = TheModule.getModuleIdentifier();
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries;
Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Generate import/export list
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
// Convert the preserved symbols set from string to GUID
auto GUIDPreservedSymbols =
computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);
// Resolve LinkOnce/Weak symbols.
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
resolveWeakForLinkerInIndex(Index, ExportLists, GUIDPreservedSymbols,
ResolvedODR);
thinLTOResolveWeakForLinkerModule(
TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]);
promoteModule(TheModule, Index);
}
/**
* Perform cross-module importing for the module identified by ModuleIdentifier.
*/
void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule,
ModuleSummaryIndex &Index) {
auto ModuleMap = generateModuleMap(Modules);
auto ModuleCount = Index.modulePaths().size();
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Generate import/export list
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
auto &ImportList = ImportLists[TheModule.getModuleIdentifier()];
crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);
}
/**
* Compute the list of summaries needed for importing into module.
*/
void ThinLTOCodeGenerator::gatherImportedSummariesForModule(
StringRef ModulePath, ModuleSummaryIndex &Index,
std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) {
auto ModuleCount = Index.modulePaths().size();
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Generate import/export list
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
llvm::gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
ImportLists,
ModuleToSummariesForIndex);
}
/**
* Emit the list of files needed for importing into module.
*/
void ThinLTOCodeGenerator::emitImports(StringRef ModulePath,
StringRef OutputName,
ModuleSummaryIndex &Index) {
auto ModuleCount = Index.modulePaths().size();
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Generate import/export list
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
std::error_code EC;
if ((EC = EmitImportsFiles(ModulePath, OutputName, ImportLists)))
report_fatal_error(Twine("Failed to open ") + OutputName +
" to save imports lists\n");
}
/**
* Perform internalization. Index is updated to reflect linkage changes.
*/
void ThinLTOCodeGenerator::internalize(Module &TheModule,
ModuleSummaryIndex &Index) {
initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
auto ModuleCount = Index.modulePaths().size();
auto ModuleIdentifier = TheModule.getModuleIdentifier();
// Convert the preserved symbols set from string to GUID
auto GUIDPreservedSymbols =
computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Generate import/export list
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
auto &ExportList = ExportLists[ModuleIdentifier];
// Be friendly and don't nuke totally the module when the client didn't
// supply anything to preserve.
if (ExportList.empty() && GUIDPreservedSymbols.empty())
return;
// Internalization
auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
const auto &ExportList = ExportLists.find(ModuleIdentifier);
assert(ExportList != ExportLists.end() && "Missing export list for module");
return ExportList->second.count(GUID) || GUIDPreservedSymbols.count(GUID);
};
thinLTOInternalizeAndPromoteInIndex(Index, isExported);
thinLTOInternalizeModule(TheModule,
ModuleToDefinedGVSummaries[ModuleIdentifier]);
}
/**
* Perform post-importing ThinLTO optimizations.
*/
void ThinLTOCodeGenerator::optimize(Module &TheModule) {
initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
// Optimize now
optimizeModule(TheModule, *TMBuilder.create());
}
/**
* Perform ThinLTO CodeGen.
*/
std::unique_ptr<MemoryBuffer> ThinLTOCodeGenerator::codegen(Module &TheModule) {
initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
return codegenModule(TheModule, *TMBuilder.create());
}
// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
if (CodeGenOnly) {
// Perform only parallel codegen and return.
ThreadPool Pool;
assert(ProducedBinaries.empty() && "The generator should not be reused");
ProducedBinaries.resize(Modules.size());
int count = 0;
for (auto &ModuleBuffer : Modules) {
Pool.async([&](int count) {
LLVMContext Context;
Context.setDiscardValueNames(LTODiscardValueNames);
// Parse module now
auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);
// CodeGen
ProducedBinaries[count] = codegen(*TheModule);
}, count++);
}
return;
}
// Sequential linking phase
auto Index = linkCombinedIndex();
// Save temps: index.
if (!SaveTempsDir.empty()) {
auto SaveTempPath = SaveTempsDir + "index.bc";
std::error_code EC;
raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None);
if (EC)
report_fatal_error(Twine("Failed to open ") + SaveTempPath +
" to save optimized bitcode\n");
WriteIndexToFile(*Index, OS);
}
// Prepare the resulting object vector
assert(ProducedBinaries.empty() && "The generator should not be reused");
ProducedBinaries.resize(Modules.size());
// Prepare the module map.
auto ModuleMap = generateModuleMap(Modules);
auto ModuleCount = Modules.size();
// Collect for each module the list of function it defines (GUID -> Summary).
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
// Collect the import/export lists for all modules from the call-graph in the
// combined index.
StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists,
ExportLists);
// Convert the preserved symbols set from string to GUID, this is needed for
// computing the caching hash and the internalization.
auto GUIDPreservedSymbols =
computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);
// We use a std::map here to be able to have a defined ordering when
// producing a hash for the cache entry.
// FIXME: we should be able to compute the caching hash for the entry based
// on the index, and nuke this map.
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
// Resolve LinkOnce/Weak symbols, this has to be computed early because it
// impacts the caching.
resolveWeakForLinkerInIndex(*Index, ExportLists, GUIDPreservedSymbols,
ResolvedODR);
auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
const auto &ExportList = ExportLists.find(ModuleIdentifier);
assert(ExportList != ExportLists.end() && "Missing export list for module");
return ExportList->second.count(GUID) || GUIDPreservedSymbols.count(GUID);
};
// Use global summary-based analysis to identify symbols that can be
// internalized (because they aren't exported or preserved as per callback).
// Changes are made in the index, consumed in the ThinLTO backends.
thinLTOInternalizeAndPromoteInIndex(*Index, isExported);
// Make sure that every module has an entry in the ExportLists to enable
// threaded access to this map below
for (auto &DefinedGVSummaries : ModuleToDefinedGVSummaries)
ExportLists[DefinedGVSummaries.first()];
// Compute the ordering we will process the inputs: the rough heuristic here
// is to sort them per size so that the largest module get schedule as soon as
// possible. This is purely a compile-time optimization.
std::vector<int> ModulesOrdering;
ModulesOrdering.resize(Modules.size());
std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
std::sort(ModulesOrdering.begin(), ModulesOrdering.end(),
[&](int LeftIndex, int RightIndex) {
auto LSize = Modules[LeftIndex].getBufferSize();
auto RSize = Modules[RightIndex].getBufferSize();
return LSize > RSize;
});
// Parallel optimizer + codegen
{
ThreadPool Pool(ThreadCount);
for (auto IndexCount : ModulesOrdering) {
auto &ModuleBuffer = Modules[IndexCount];
Pool.async([&](int count) {
auto ModuleIdentifier = ModuleBuffer.getBufferIdentifier();
auto &ExportList = ExportLists[ModuleIdentifier];
auto &DefinedFunctions = ModuleToDefinedGVSummaries[ModuleIdentifier];
// The module may be cached, this helps handling it.
ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier,
ImportLists[ModuleIdentifier], ExportList,
ResolvedODR[ModuleIdentifier],
DefinedFunctions, GUIDPreservedSymbols);
{
auto ErrOrBuffer = CacheEntry.tryLoadingBuffer();
DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss") << " '"
<< CacheEntry.getEntryPath() << "' for buffer " << count
<< " " << ModuleIdentifier << "\n");
if (ErrOrBuffer) {
// Cache Hit!
ProducedBinaries[count] = std::move(ErrOrBuffer.get());
return;
}
}
LLVMContext Context;
Context.setDiscardValueNames(LTODiscardValueNames);
Context.enableDebugTypeODRUniquing();
// Parse module now
auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);
// Save temps: original file.
saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");
auto &ImportList = ImportLists[ModuleIdentifier];
// Run the main process now, and generates a binary
auto OutputBuffer = ProcessThinLTOModule(
*TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
ExportList, GUIDPreservedSymbols,
ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions,
DisableCodeGen, SaveTempsDir, count);
OutputBuffer = CacheEntry.write(std::move(OutputBuffer));
ProducedBinaries[count] = std::move(OutputBuffer);
}, IndexCount);
}
}
CachePruning(CacheOptions.Path)
.setPruningInterval(CacheOptions.PruningInterval)
.setEntryExpiration(CacheOptions.Expiration)
.setMaxSize(CacheOptions.MaxPercentageOfAvailableSpace)
.prune();
// If statistics were requested, print them out now.
if (llvm::AreStatisticsEnabled())
llvm::PrintStatistics();
}