1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/include/llvm/ADT/APInt.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

2218 lines
71 KiB
C++

//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a class to represent arbitrary precision
/// integral constant values and operations on them.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APINT_H
#define LLVM_ADT_APINT_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>
namespace llvm {
class FoldingSetNodeID;
class StringRef;
class hash_code;
class raw_ostream;
template <typename T> class SmallVectorImpl;
template <typename T> class ArrayRef;
template <typename T> class Optional;
class APInt;
inline APInt operator-(APInt);
//===----------------------------------------------------------------------===//
// APInt Class
//===----------------------------------------------------------------------===//
/// Class for arbitrary precision integers.
///
/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
/// * All bit, byte, and word positions are zero-based.
/// * Once the bit width is set, it doesn't change except by the Truncate,
/// SignExtend, or ZeroExtend operations.
/// * All binary operators must be on APInt instances of the same bit width.
/// Attempting to use these operators on instances with different bit
/// widths will yield an assertion.
/// * The value is stored canonically as an unsigned value. For operations
/// where it makes a difference, there are both signed and unsigned variants
/// of the operation. For example, sdiv and udiv. However, because the bit
/// widths must be the same, operations such as Mul and Add produce the same
/// results regardless of whether the values are interpreted as signed or
/// not.
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
class LLVM_NODISCARD APInt {
public:
typedef uint64_t WordType;
/// This enum is used to hold the constants we needed for APInt.
enum : unsigned {
/// Byte size of a word.
APINT_WORD_SIZE = sizeof(WordType),
/// Bits in a word.
APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
};
enum class Rounding {
DOWN,
TOWARD_ZERO,
UP,
};
static const WordType WORDTYPE_MAX = ~WordType(0);
private:
/// This union is used to store the integer value. When the
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
} U;
unsigned BitWidth; ///< The number of bits in this APInt.
friend struct DenseMapAPIntKeyInfo;
friend class APSInt;
/// Fast internal constructor
///
/// This constructor is used only internally for speed of construction of
/// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
U.pVal = val;
}
/// Determine if this APInt just has one word to store value.
///
/// \returns true if the number of bits <= 64, false otherwise.
bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
/// Determine which word a bit is in.
///
/// \returns the word position for the specified bit position.
static unsigned whichWord(unsigned bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
/// Determine which bit in a word a bit is in.
///
/// \returns the bit position in a word for the specified bit position
/// in the APInt.
static unsigned whichBit(unsigned bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
/// Get a single bit mask.
///
/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
/// This method generates and returns a uint64_t (word) mask for a single
/// bit at a specific bit position. This is used to mask the bit in the
/// corresponding word.
static uint64_t maskBit(unsigned bitPosition) {
return 1ULL << whichBit(bitPosition);
}
/// Clear unused high order bits
///
/// This method is used internally to clear the top "N" bits in the high order
/// word that are not used by the APInt. This is needed after the most
/// significant word is assigned a value to ensure that those bits are
/// zero'd out.
APInt &clearUnusedBits() {
// Compute how many bits are used in the final word
unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
// Mask out the high bits.
uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
if (isSingleWord())
U.VAL &= mask;
else
U.pVal[getNumWords() - 1] &= mask;
return *this;
}
/// Get the word corresponding to a bit position
/// \returns the corresponding word for the specified bit position.
uint64_t getWord(unsigned bitPosition) const {
return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
}
/// Utility method to change the bit width of this APInt to new bit width,
/// allocating and/or deallocating as necessary. There is no guarantee on the
/// value of any bits upon return. Caller should populate the bits after.
void reallocate(unsigned NewBitWidth);
/// Convert a char array into an APInt
///
/// \param radix 2, 8, 10, 16, or 36
/// Converts a string into a number. The string must be non-empty
/// and well-formed as a number of the given base. The bit-width
/// must be sufficient to hold the result.
///
/// This is used by the constructors that take string arguments.
///
/// StringRef::getAsInteger is superficially similar but (1) does
/// not assume that the string is well-formed and (2) grows the
/// result to hold the input.
void fromString(unsigned numBits, StringRef str, uint8_t radix);
/// An internal division function for dividing APInts.
///
/// This is used by the toString method to divide by the radix. It simply
/// provides a more convenient form of divide for internal use since KnuthDiv
/// has specific constraints on its inputs. If those constraints are not met
/// then it provides a simpler form of divide.
static void divide(const WordType *LHS, unsigned lhsWords,
const WordType *RHS, unsigned rhsWords, WordType *Quotient,
WordType *Remainder);
/// out-of-line slow case for inline constructor
void initSlowCase(uint64_t val, bool isSigned);
/// shared code between two array constructors
void initFromArray(ArrayRef<uint64_t> array);
/// out-of-line slow case for inline copy constructor
void initSlowCase(const APInt &that);
/// out-of-line slow case for shl
void shlSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for lshr.
void lshrSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for ashr.
void ashrSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for operator=
void AssignSlowCase(const APInt &RHS);
/// out-of-line slow case for operator==
bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for countLeadingZeros
unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countLeadingOnes.
unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countTrailingZeros.
unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countTrailingOnes
unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countPopulation
unsigned countPopulationSlowCase() const LLVM_READONLY;
/// out-of-line slow case for intersects.
bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for isSubsetOf.
bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for setBits.
void setBitsSlowCase(unsigned loBit, unsigned hiBit);
/// out-of-line slow case for flipAllBits.
void flipAllBitsSlowCase();
/// out-of-line slow case for operator&=.
void AndAssignSlowCase(const APInt& RHS);
/// out-of-line slow case for operator|=.
void OrAssignSlowCase(const APInt& RHS);
/// out-of-line slow case for operator^=.
void XorAssignSlowCase(const APInt& RHS);
/// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
/// to, or greater than RHS.
int compare(const APInt &RHS) const LLVM_READONLY;
/// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
/// to, or greater than RHS.
int compareSigned(const APInt &RHS) const LLVM_READONLY;
public:
/// \name Constructors
/// @{
/// Create a new APInt of numBits width, initialized as val.
///
/// If isSigned is true then val is treated as if it were a signed value
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
/// the range of val are zero filled).
///
/// \param numBits the bit width of the constructed APInt
/// \param val the initial value of the APInt
/// \param isSigned how to treat signedness of val
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
: BitWidth(numBits) {
assert(BitWidth && "bitwidth too small");
if (isSingleWord()) {
U.VAL = val;
clearUnusedBits();
} else {
initSlowCase(val, isSigned);
}
}
/// Construct an APInt of numBits width, initialized as bigVal[].
///
/// Note that bigVal.size() can be smaller or larger than the corresponding
/// bit width but any extraneous bits will be dropped.
///
/// \param numBits the bit width of the constructed APInt
/// \param bigVal a sequence of words to form the initial value of the APInt
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
/// deprecated because this constructor is prone to ambiguity with the
/// APInt(unsigned, uint64_t, bool) constructor.
///
/// If this overload is ever deleted, care should be taken to prevent calls
/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
/// constructor.
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
/// Construct an APInt from a string representation.
///
/// This constructor interprets the string \p str in the given radix. The
/// interpretation stops when the first character that is not suitable for the
/// radix is encountered, or the end of the string. Acceptable radix values
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
/// string to require more bits than numBits.
///
/// \param numBits the bit width of the constructed APInt
/// \param str the string to be interpreted
/// \param radix the radix to use for the conversion
APInt(unsigned numBits, StringRef str, uint8_t radix);
/// Simply makes *this a copy of that.
/// Copy Constructor.
APInt(const APInt &that) : BitWidth(that.BitWidth) {
if (isSingleWord())
U.VAL = that.U.VAL;
else
initSlowCase(that);
}
/// Move Constructor.
APInt(APInt &&that) : BitWidth(that.BitWidth) {
memcpy(&U, &that.U, sizeof(U));
that.BitWidth = 0;
}
/// Destructor.
~APInt() {
if (needsCleanup())
delete[] U.pVal;
}
/// Default constructor that creates an uninteresting APInt
/// representing a 1-bit zero value.
///
/// This is useful for object deserialization (pair this with the static
/// method Read).
explicit APInt() : BitWidth(1) { U.VAL = 0; }
/// Returns whether this instance allocated memory.
bool needsCleanup() const { return !isSingleWord(); }
/// Used to insert APInt objects, or objects that contain APInt objects, into
/// FoldingSets.
void Profile(FoldingSetNodeID &id) const;
/// @}
/// \name Value Tests
/// @{
/// Determine sign of this APInt.
///
/// This tests the high bit of this APInt to determine if it is set.
///
/// \returns true if this APInt is negative, false otherwise
bool isNegative() const { return (*this)[BitWidth - 1]; }
/// Determine if this APInt Value is non-negative (>= 0)
///
/// This tests the high bit of the APInt to determine if it is unset.
bool isNonNegative() const { return !isNegative(); }
/// Determine if sign bit of this APInt is set.
///
/// This tests the high bit of this APInt to determine if it is set.
///
/// \returns true if this APInt has its sign bit set, false otherwise.
bool isSignBitSet() const { return (*this)[BitWidth-1]; }
/// Determine if sign bit of this APInt is clear.
///
/// This tests the high bit of this APInt to determine if it is clear.
///
/// \returns true if this APInt has its sign bit clear, false otherwise.
bool isSignBitClear() const { return !isSignBitSet(); }
/// Determine if this APInt Value is positive.
///
/// This tests if the value of this APInt is positive (> 0). Note
/// that 0 is not a positive value.
///
/// \returns true if this APInt is positive.
bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
/// Determine if all bits are set
///
/// This checks to see if the value has all bits of the APInt are set or not.
bool isAllOnesValue() const {
if (isSingleWord())
return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
return countTrailingOnesSlowCase() == BitWidth;
}
/// Determine if all bits are clear
///
/// This checks to see if the value has all bits of the APInt are clear or
/// not.
bool isNullValue() const { return !*this; }
/// Determine if this is a value of 1.
///
/// This checks to see if the value of this APInt is one.
bool isOneValue() const {
if (isSingleWord())
return U.VAL == 1;
return countLeadingZerosSlowCase() == BitWidth - 1;
}
/// Determine if this is the largest unsigned value.
///
/// This checks to see if the value of this APInt is the maximum unsigned
/// value for the APInt's bit width.
bool isMaxValue() const { return isAllOnesValue(); }
/// Determine if this is the largest signed value.
///
/// This checks to see if the value of this APInt is the maximum signed
/// value for the APInt's bit width.
bool isMaxSignedValue() const {
if (isSingleWord())
return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
}
/// Determine if this is the smallest unsigned value.
///
/// This checks to see if the value of this APInt is the minimum unsigned
/// value for the APInt's bit width.
bool isMinValue() const { return isNullValue(); }
/// Determine if this is the smallest signed value.
///
/// This checks to see if the value of this APInt is the minimum signed
/// value for the APInt's bit width.
bool isMinSignedValue() const {
if (isSingleWord())
return U.VAL == (WordType(1) << (BitWidth - 1));
return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
}
/// Check if this APInt has an N-bits unsigned integer value.
bool isIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getActiveBits() <= N;
}
/// Check if this APInt has an N-bits signed integer value.
bool isSignedIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getMinSignedBits() <= N;
}
/// Check if this APInt's value is a power of two greater than zero.
///
/// \returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const {
if (isSingleWord())
return isPowerOf2_64(U.VAL);
return countPopulationSlowCase() == 1;
}
/// Check if the APInt's value is returned by getSignMask.
///
/// \returns true if this is the value returned by getSignMask.
bool isSignMask() const { return isMinSignedValue(); }
/// Convert APInt to a boolean value.
///
/// This converts the APInt to a boolean value as a test against zero.
bool getBoolValue() const { return !!*this; }
/// If this value is smaller than the specified limit, return it, otherwise
/// return the limit value. This causes the value to saturate to the limit.
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
return ugt(Limit) ? Limit : getZExtValue();
}
/// Check if the APInt consists of a repeated bit pattern.
///
/// e.g. 0x01010101 satisfies isSplat(8).
/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
/// width without remainder.
bool isSplat(unsigned SplatSizeInBits) const;
/// \returns true if this APInt value is a sequence of \param numBits ones
/// starting at the least significant bit with the remainder zero.
bool isMask(unsigned numBits) const {
assert(numBits != 0 && "numBits must be non-zero");
assert(numBits <= BitWidth && "numBits out of range");
if (isSingleWord())
return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
unsigned Ones = countTrailingOnesSlowCase();
return (numBits == Ones) &&
((Ones + countLeadingZerosSlowCase()) == BitWidth);
}
/// \returns true if this APInt is a non-empty sequence of ones starting at
/// the least significant bit with the remainder zero.
/// Ex. isMask(0x0000FFFFU) == true.
bool isMask() const {
if (isSingleWord())
return isMask_64(U.VAL);
unsigned Ones = countTrailingOnesSlowCase();
return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
}
/// Return true if this APInt value contains a sequence of ones with
/// the remainder zero.
bool isShiftedMask() const {
if (isSingleWord())
return isShiftedMask_64(U.VAL);
unsigned Ones = countPopulationSlowCase();
unsigned LeadZ = countLeadingZerosSlowCase();
return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
}
/// @}
/// \name Value Generators
/// @{
/// Gets maximum unsigned value of APInt for specific bit width.
static APInt getMaxValue(unsigned numBits) {
return getAllOnesValue(numBits);
}
/// Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMaxValue(unsigned numBits) {
APInt API = getAllOnesValue(numBits);
API.clearBit(numBits - 1);
return API;
}
/// Gets minimum unsigned value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
/// Gets minimum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits) {
APInt API(numBits, 0);
API.setBit(numBits - 1);
return API;
}
/// Get the SignMask for a specific bit width.
///
/// This is just a wrapper function of getSignedMinValue(), and it helps code
/// readability when we want to get a SignMask.
static APInt getSignMask(unsigned BitWidth) {
return getSignedMinValue(BitWidth);
}
/// Get the all-ones value.
///
/// \returns the all-ones value for an APInt of the specified bit-width.
static APInt getAllOnesValue(unsigned numBits) {
return APInt(numBits, WORDTYPE_MAX, true);
}
/// Get the '0' value.
///
/// \returns the '0' value for an APInt of the specified bit-width.
static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
/// Compute an APInt containing numBits highbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
///
/// \returns the high "numBits" bits of this APInt.
APInt getHiBits(unsigned numBits) const;
/// Compute an APInt containing numBits lowbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
///
/// \returns the low "numBits" bits of this APInt.
APInt getLoBits(unsigned numBits) const;
/// Return an APInt with exactly one bit set in the result.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
APInt Res(numBits, 0);
Res.setBit(BitNo);
return Res;
}
/// Get a value with a block of bits set.
///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
///
/// \param numBits the intended bit width of the result
/// \param loBit the index of the lowest bit set.
/// \param hiBit the index of the highest bit set.
///
/// \returns An APInt value with the requested bits set.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
APInt Res(numBits, 0);
Res.setBits(loBit, hiBit);
return Res;
}
/// Get a value with upper bits starting at loBit set.
///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 12) you would get
/// 0xFFFFF000.
///
/// \param numBits the intended bit width of the result
/// \param loBit the index of the lowest bit to set.
///
/// \returns An APInt value with the requested bits set.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
APInt Res(numBits, 0);
Res.setBitsFrom(loBit);
return Res;
}
/// Get a value with high bits set
///
/// Constructs an APInt value that has the top hiBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param hiBitsSet the number of high-order bits set in the result.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
APInt Res(numBits, 0);
Res.setHighBits(hiBitsSet);
return Res;
}
/// Get a value with low bits set
///
/// Constructs an APInt value that has the bottom loBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param loBitsSet the number of low-order bits set in the result.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
APInt Res(numBits, 0);
Res.setLowBits(loBitsSet);
return Res;
}
/// Return a value containing V broadcasted over NewLen bits.
static APInt getSplat(unsigned NewLen, const APInt &V);
/// Determine if two APInts have the same value, after zero-extending
/// one of them (if needed!) to ensure that the bit-widths match.
static bool isSameValue(const APInt &I1, const APInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == I2.zext(I1.getBitWidth());
return I1.zext(I2.getBitWidth()) == I2;
}
/// Overload to compute a hash_code for an APInt value.
friend hash_code hash_value(const APInt &Arg);
/// This function returns a pointer to the internal storage of the APInt.
/// This is useful for writing out the APInt in binary form without any
/// conversions.
const uint64_t *getRawData() const {
if (isSingleWord())
return &U.VAL;
return &U.pVal[0];
}
/// @}
/// \name Unary Operators
/// @{
/// Postfix increment operator.
///
/// Increments *this by 1.
///
/// \returns a new APInt value representing the original value of *this.
const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
/// Prefix increment operator.
///
/// \returns *this incremented by one
APInt &operator++();
/// Postfix decrement operator.
///
/// Decrements *this by 1.
///
/// \returns a new APInt value representing the original value of *this.
const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
/// Prefix decrement operator.
///
/// \returns *this decremented by one.
APInt &operator--();
/// Logical negation operator.
///
/// Performs logical negation operation on this APInt.
///
/// \returns true if *this is zero, false otherwise.
bool operator!() const {
if (isSingleWord())
return U.VAL == 0;
return countLeadingZerosSlowCase() == BitWidth;
}
/// @}
/// \name Assignment Operators
/// @{
/// Copy assignment operator.
///
/// \returns *this after assignment of RHS.
APInt &operator=(const APInt &RHS) {
// If the bitwidths are the same, we can avoid mucking with memory
if (isSingleWord() && RHS.isSingleWord()) {
U.VAL = RHS.U.VAL;
BitWidth = RHS.BitWidth;
return clearUnusedBits();
}
AssignSlowCase(RHS);
return *this;
}
/// Move assignment operator.
APInt &operator=(APInt &&that) {
#ifdef _MSC_VER
// The MSVC std::shuffle implementation still does self-assignment.
if (this == &that)
return *this;
#endif
assert(this != &that && "Self-move not supported");
if (!isSingleWord())
delete[] U.pVal;
// Use memcpy so that type based alias analysis sees both VAL and pVal
// as modified.
memcpy(&U, &that.U, sizeof(U));
BitWidth = that.BitWidth;
that.BitWidth = 0;
return *this;
}
/// Assignment operator.
///
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
/// the bit width, the excess bits are truncated. If the bit width is larger
/// than 64, the value is zero filled in the unspecified high order bits.
///
/// \returns *this after assignment of RHS value.
APInt &operator=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL = RHS;
clearUnusedBits();
} else {
U.pVal[0] = RHS;
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
}
return *this;
}
/// Bitwise AND assignment operator.
///
/// Performs a bitwise AND operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after ANDing with RHS.
APInt &operator&=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL &= RHS.U.VAL;
else
AndAssignSlowCase(RHS);
return *this;
}
/// Bitwise AND assignment operator.
///
/// Performs a bitwise AND operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator&=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL &= RHS;
return *this;
}
U.pVal[0] &= RHS;
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
return *this;
}
/// Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. The result is
/// assigned *this;
///
/// \returns *this after ORing with RHS.
APInt &operator|=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL |= RHS.U.VAL;
else
OrAssignSlowCase(RHS);
return *this;
}
/// Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator|=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL |= RHS;
clearUnusedBits();
} else {
U.pVal[0] |= RHS;
}
return *this;
}
/// Bitwise XOR assignment operator.
///
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after XORing with RHS.
APInt &operator^=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL ^= RHS.U.VAL;
else
XorAssignSlowCase(RHS);
return *this;
}
/// Bitwise XOR assignment operator.
///
/// Performs a bitwise XOR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator^=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL ^= RHS;
clearUnusedBits();
} else {
U.pVal[0] ^= RHS;
}
return *this;
}
/// Multiplication assignment operator.
///
/// Multiplies this APInt by RHS and assigns the result to *this.
///
/// \returns *this
APInt &operator*=(const APInt &RHS);
APInt &operator*=(uint64_t RHS);
/// Addition assignment operator.
///
/// Adds RHS to *this and assigns the result to *this.
///
/// \returns *this
APInt &operator+=(const APInt &RHS);
APInt &operator+=(uint64_t RHS);
/// Subtraction assignment operator.
///
/// Subtracts RHS from *this and assigns the result to *this.
///
/// \returns *this
APInt &operator-=(const APInt &RHS);
APInt &operator-=(uint64_t RHS);
/// Left-shift assignment function.
///
/// Shifts *this left by shiftAmt and assigns the result to *this.
///
/// \returns *this after shifting left by ShiftAmt
APInt &operator<<=(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (ShiftAmt == BitWidth)
U.VAL = 0;
else
U.VAL <<= ShiftAmt;
return clearUnusedBits();
}
shlSlowCase(ShiftAmt);
return *this;
}
/// Left-shift assignment function.
///
/// Shifts *this left by shiftAmt and assigns the result to *this.
///
/// \returns *this after shifting left by ShiftAmt
APInt &operator<<=(const APInt &ShiftAmt);
/// @}
/// \name Binary Operators
/// @{
/// Multiplication operator.
///
/// Multiplies this APInt by RHS and returns the result.
APInt operator*(const APInt &RHS) const;
/// Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(unsigned Bits) const { return shl(Bits); }
/// Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(const APInt &Bits) const { return shl(Bits); }
/// Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt ashr(unsigned ShiftAmt) const {
APInt R(*this);
R.ashrInPlace(ShiftAmt);
return R;
}
/// Arithmetic right-shift this APInt by ShiftAmt in place.
void ashrInPlace(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
if (ShiftAmt == BitWidth)
U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
else
U.VAL = SExtVAL >> ShiftAmt;
clearUnusedBits();
return;
}
ashrSlowCase(ShiftAmt);
}
/// Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt lshr(unsigned shiftAmt) const {
APInt R(*this);
R.lshrInPlace(shiftAmt);
return R;
}
/// Logical right-shift this APInt by ShiftAmt in place.
void lshrInPlace(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (ShiftAmt == BitWidth)
U.VAL = 0;
else
U.VAL >>= ShiftAmt;
return;
}
lshrSlowCase(ShiftAmt);
}
/// Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt shl(unsigned shiftAmt) const {
APInt R(*this);
R <<= shiftAmt;
return R;
}
/// Rotate left by rotateAmt.
APInt rotl(unsigned rotateAmt) const;
/// Rotate right by rotateAmt.
APInt rotr(unsigned rotateAmt) const;
/// Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt ashr(const APInt &ShiftAmt) const {
APInt R(*this);
R.ashrInPlace(ShiftAmt);
return R;
}
/// Arithmetic right-shift this APInt by shiftAmt in place.
void ashrInPlace(const APInt &shiftAmt);
/// Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt lshr(const APInt &ShiftAmt) const {
APInt R(*this);
R.lshrInPlace(ShiftAmt);
return R;
}
/// Logical right-shift this APInt by ShiftAmt in place.
void lshrInPlace(const APInt &ShiftAmt);
/// Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt shl(const APInt &ShiftAmt) const {
APInt R(*this);
R <<= ShiftAmt;
return R;
}
/// Rotate left by rotateAmt.
APInt rotl(const APInt &rotateAmt) const;
/// Rotate right by rotateAmt.
APInt rotr(const APInt &rotateAmt) const;
/// Unsigned division operation.
///
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
/// RHS are treated as unsigned quantities for purposes of this division.
///
/// \returns a new APInt value containing the division result, rounded towards
/// zero.
APInt udiv(const APInt &RHS) const;
APInt udiv(uint64_t RHS) const;
/// Signed division function for APInt.
///
/// Signed divide this APInt by APInt RHS.
///
/// The result is rounded towards zero.
APInt sdiv(const APInt &RHS) const;
APInt sdiv(int64_t RHS) const;
/// Unsigned remainder operation.
///
/// Perform an unsigned remainder operation on this APInt with RHS being the
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
/// of this operation. Note that this is a true remainder operation and not a
/// modulo operation because the sign follows the sign of the dividend which
/// is *this.
///
/// \returns a new APInt value containing the remainder result
APInt urem(const APInt &RHS) const;
uint64_t urem(uint64_t RHS) const;
/// Function for signed remainder operation.
///
/// Signed remainder operation on APInt.
APInt srem(const APInt &RHS) const;
int64_t srem(int64_t RHS) const;
/// Dual division/remainder interface.
///
/// Sometimes it is convenient to divide two APInt values and obtain both the
/// quotient and remainder. This function does both operations in the same
/// computation making it a little more efficient. The pair of input arguments
/// may overlap with the pair of output arguments. It is safe to call
/// udivrem(X, Y, X, Y), for example.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
uint64_t &Remainder);
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
int64_t &Remainder);
// Operations that return overflow indicators.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
APInt usub_ov(const APInt &RHS, bool &Overflow) const;
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
APInt smul_ov(const APInt &RHS, bool &Overflow) const;
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
// Operations that saturate
APInt sadd_sat(const APInt &RHS) const;
APInt uadd_sat(const APInt &RHS) const;
APInt ssub_sat(const APInt &RHS) const;
APInt usub_sat(const APInt &RHS) const;
/// Array-indexing support.
///
/// \returns the bit value at bitPosition
bool operator[](unsigned bitPosition) const {
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
}
/// @}
/// \name Comparison Operators
/// @{
/// Equality operator.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
bool operator==(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
if (isSingleWord())
return U.VAL == RHS.U.VAL;
return EqualSlowCase(RHS);
}
/// Equality operator.
///
/// Compares this APInt with a uint64_t for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool operator==(uint64_t Val) const {
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
}
/// Equality comparison.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool eq(const APInt &RHS) const { return (*this) == RHS; }
/// Inequality operator.
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
/// Inequality operator.
///
/// Compares this APInt with a uint64_t for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(uint64_t Val) const { return !((*this) == Val); }
/// Inequality comparison
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool ne(const APInt &RHS) const { return !((*this) == RHS); }
/// Unsigned less than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered unsigned.
bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
/// Unsigned less than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered unsigned.
bool ult(uint64_t RHS) const {
// Only need to check active bits if not a single word.
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
}
/// Signed less than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered signed.
bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
/// Signed less than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered signed.
bool slt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
: getSExtValue() < RHS;
}
/// Unsigned less or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered unsigned.
bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
/// Unsigned less or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered unsigned.
bool ule(uint64_t RHS) const { return !ugt(RHS); }
/// Signed less or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered signed.
bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
/// Signed less or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for the
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered signed.
bool sle(uint64_t RHS) const { return !sgt(RHS); }
/// Unsigned greather than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered unsigned.
bool ugt(const APInt &RHS) const { return !ule(RHS); }
/// Unsigned greater than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered unsigned.
bool ugt(uint64_t RHS) const {
// Only need to check active bits if not a single word.
return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
}
/// Signed greather than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for the
/// validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered signed.
bool sgt(const APInt &RHS) const { return !sle(RHS); }
/// Signed greater than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered signed.
bool sgt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
: getSExtValue() > RHS;
}
/// Unsigned greater or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered unsigned.
bool uge(const APInt &RHS) const { return !ult(RHS); }
/// Unsigned greater or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered unsigned.
bool uge(uint64_t RHS) const { return !ult(RHS); }
/// Signed greater or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered signed.
bool sge(const APInt &RHS) const { return !slt(RHS); }
/// Signed greater or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered signed.
bool sge(int64_t RHS) const { return !slt(RHS); }
/// This operation tests if there are any pairs of corresponding bits
/// between this APInt and RHS that are both set.
bool intersects(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return (U.VAL & RHS.U.VAL) != 0;
return intersectsSlowCase(RHS);
}
/// This operation checks that all bits set in this APInt are also set in RHS.
bool isSubsetOf(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return (U.VAL & ~RHS.U.VAL) == 0;
return isSubsetOfSlowCase(RHS);
}
/// @}
/// \name Resizing Operators
/// @{
/// Truncate to new width.
///
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
APInt trunc(unsigned width) const;
/// Sign extend to a new width.
///
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
APInt sext(unsigned width) const;
/// Zero extend to a new width.
///
/// This operation zero extends the APInt to a new width. The high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
APInt zext(unsigned width) const;
/// Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, truncated, or left alone to make it that width.
APInt sextOrTrunc(unsigned width) const;
/// Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, truncated, or left alone to make it that width.
APInt zextOrTrunc(unsigned width) const;
/// Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, or left alone to make it that width.
APInt sextOrSelf(unsigned width) const;
/// Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, or left alone to make it that width.
APInt zextOrSelf(unsigned width) const;
/// @}
/// \name Bit Manipulation Operators
/// @{
/// Set every bit to 1.
void setAllBits() {
if (isSingleWord())
U.VAL = WORDTYPE_MAX;
else
// Set all the bits in all the words.
memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
// Clear the unused ones
clearUnusedBits();
}
/// Set a given bit to 1.
///
/// Set the given bit to 1 whose position is given as "bitPosition".
void setBit(unsigned BitPosition) {
assert(BitPosition < BitWidth && "BitPosition out of range");
WordType Mask = maskBit(BitPosition);
if (isSingleWord())
U.VAL |= Mask;
else
U.pVal[whichWord(BitPosition)] |= Mask;
}
/// Set the sign bit to 1.
void setSignBit() {
setBit(BitWidth - 1);
}
/// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
void setBits(unsigned loBit, unsigned hiBit) {
assert(hiBit <= BitWidth && "hiBit out of range");
assert(loBit <= BitWidth && "loBit out of range");
assert(loBit <= hiBit && "loBit greater than hiBit");
if (loBit == hiBit)
return;
if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
mask <<= loBit;
if (isSingleWord())
U.VAL |= mask;
else
U.pVal[0] |= mask;
} else {
setBitsSlowCase(loBit, hiBit);
}
}
/// Set the top bits starting from loBit.
void setBitsFrom(unsigned loBit) {
return setBits(loBit, BitWidth);
}
/// Set the bottom loBits bits.
void setLowBits(unsigned loBits) {
return setBits(0, loBits);
}
/// Set the top hiBits bits.
void setHighBits(unsigned hiBits) {
return setBits(BitWidth - hiBits, BitWidth);
}
/// Set every bit to 0.
void clearAllBits() {
if (isSingleWord())
U.VAL = 0;
else
memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
}
/// Set a given bit to 0.
///
/// Set the given bit to 0 whose position is given as "bitPosition".
void clearBit(unsigned BitPosition) {
assert(BitPosition < BitWidth && "BitPosition out of range");
WordType Mask = ~maskBit(BitPosition);
if (isSingleWord())
U.VAL &= Mask;
else
U.pVal[whichWord(BitPosition)] &= Mask;
}
/// Set the sign bit to 0.
void clearSignBit() {
clearBit(BitWidth - 1);
}
/// Toggle every bit to its opposite value.
void flipAllBits() {
if (isSingleWord()) {
U.VAL ^= WORDTYPE_MAX;
clearUnusedBits();
} else {
flipAllBitsSlowCase();
}
}
/// Toggles a given bit to its opposite value.
///
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
void flipBit(unsigned bitPosition);
/// Negate this APInt in place.
void negate() {
flipAllBits();
++(*this);
}
/// Insert the bits from a smaller APInt starting at bitPosition.
void insertBits(const APInt &SubBits, unsigned bitPosition);
/// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
APInt extractBits(unsigned numBits, unsigned bitPosition) const;
/// @}
/// \name Value Characterization Functions
/// @{
/// Return the number of bits in the APInt.
unsigned getBitWidth() const { return BitWidth; }
/// Get the number of words.
///
/// Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value of this APInt.
unsigned getNumWords() const { return getNumWords(BitWidth); }
/// Get the number of words.
///
/// *NOTE* Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value with a given bit
/// width.
static unsigned getNumWords(unsigned BitWidth) {
return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
/// Compute the number of active bits in the value
///
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
/// Compute the number of active words in the value of this APInt.
///
/// This is used in conjunction with getActiveData to extract the raw value of
/// the APInt.
unsigned getActiveWords() const {
unsigned numActiveBits = getActiveBits();
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
}
/// Get the minimum bit size for this signed APInt
///
/// Computes the minimum bit width for this APInt while considering it to be a
/// signed (and probably negative) value. If the value is not negative, this
/// function returns the same value as getActiveBits()+1. Otherwise, it
/// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1.
unsigned getMinSignedBits() const {
if (isNegative())
return BitWidth - countLeadingOnes() + 1;
return getActiveBits() + 1;
}
/// Get zero extended value
///
/// This method attempts to return the value of this APInt as a zero extended
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
/// uint64_t. Otherwise an assertion will result.
uint64_t getZExtValue() const {
if (isSingleWord())
return U.VAL;
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
return U.pVal[0];
}
/// Get sign extended value
///
/// This method attempts to return the value of this APInt as a sign extended
/// int64_t. The bit width must be <= 64 or the value must fit within an
/// int64_t. Otherwise an assertion will result.
int64_t getSExtValue() const {
if (isSingleWord())
return SignExtend64(U.VAL, BitWidth);
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
return int64_t(U.pVal[0]);
}
/// Get bits required for string value.
///
/// This method determines how many bits are required to hold the APInt
/// equivalent of the string given by \p str.
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
/// The APInt version of the countLeadingZeros functions in
/// MathExtras.h.
///
/// It counts the number of zeros from the most significant bit to the first
/// one bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the most significant bit to the first one bits.
unsigned countLeadingZeros() const {
if (isSingleWord()) {
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
return llvm::countLeadingZeros(U.VAL) - unusedBits;
}
return countLeadingZerosSlowCase();
}
/// Count the number of leading one bits.
///
/// This function is an APInt version of the countLeadingOnes
/// functions in MathExtras.h. It counts the number of ones from the most
/// significant bit to the first zero bit.
///
/// \returns 0 if the high order bit is not set, otherwise returns the number
/// of 1 bits from the most significant to the least
unsigned countLeadingOnes() const {
if (isSingleWord())
return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
return countLeadingOnesSlowCase();
}
/// Computes the number of leading bits of this APInt that are equal to its
/// sign bit.
unsigned getNumSignBits() const {
return isNegative() ? countLeadingOnes() : countLeadingZeros();
}
/// Count the number of trailing zero bits.
///
/// This function is an APInt version of the countTrailingZeros
/// functions in MathExtras.h. It counts the number of zeros from the least
/// significant bit to the first set bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the least significant bit to the first one bit.
unsigned countTrailingZeros() const {
if (isSingleWord())
return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
return countTrailingZerosSlowCase();
}
/// Count the number of trailing one bits.
///
/// This function is an APInt version of the countTrailingOnes
/// functions in MathExtras.h. It counts the number of ones from the least
/// significant bit to the first zero bit.
///
/// \returns BitWidth if the value is all ones, otherwise returns the number
/// of ones from the least significant bit to the first zero bit.
unsigned countTrailingOnes() const {
if (isSingleWord())
return llvm::countTrailingOnes(U.VAL);
return countTrailingOnesSlowCase();
}
/// Count the number of bits set.
///
/// This function is an APInt version of the countPopulation functions
/// in MathExtras.h. It counts the number of 1 bits in the APInt value.
///
/// \returns 0 if the value is zero, otherwise returns the number of set bits.
unsigned countPopulation() const {
if (isSingleWord())
return llvm::countPopulation(U.VAL);
return countPopulationSlowCase();
}
/// @}
/// \name Conversion Functions
/// @{
void print(raw_ostream &OS, bool isSigned) const;
/// Converts an APInt to a string and append it to Str. Str is commonly a
/// SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
bool formatAsCLiteral = false) const;
/// Considers the APInt to be unsigned and converts it into a string in the
/// radix given. The radix can be 2, 8, 10 16, or 36.
void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, false, false);
}
/// Considers the APInt to be signed and converts it into a string in the
/// radix given. The radix can be 2, 8, 10, 16, or 36.
void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, true, false);
}
/// Return the APInt as a std::string.
///
/// Note that this is an inefficient method. It is better to pass in a
/// SmallVector/SmallString to the methods above to avoid thrashing the heap
/// for the string.
std::string toString(unsigned Radix, bool Signed) const;
/// \returns a byte-swapped representation of this APInt Value.
APInt byteSwap() const;
/// \returns the value with the bit representation reversed of this APInt
/// Value.
APInt reverseBits() const;
/// Converts this APInt to a double value.
double roundToDouble(bool isSigned) const;
/// Converts this unsigned APInt to a double value.
double roundToDouble() const { return roundToDouble(false); }
/// Converts this signed APInt to a double value.
double signedRoundToDouble() const { return roundToDouble(true); }
/// Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to double, it just
/// re-interprets the bits as a double. Note that it is valid to do this on
/// any bit width. Exactly 64 bits will be translated.
double bitsToDouble() const {
return BitsToDouble(getWord(0));
}
/// Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to float, it just
/// re-interprets the bits as a float. Note that it is valid to do this on
/// any bit width. Exactly 32 bits will be translated.
float bitsToFloat() const {
return BitsToFloat(getWord(0));
}
/// Converts a double to APInt bits.
///
/// The conversion does not do a translation from double to integer, it just
/// re-interprets the bits of the double.
static APInt doubleToBits(double V) {
return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
}
/// Converts a float to APInt bits.
///
/// The conversion does not do a translation from float to integer, it just
/// re-interprets the bits of the float.
static APInt floatToBits(float V) {
return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
}
/// @}
/// \name Mathematics Operations
/// @{
/// \returns the floor log base 2 of this APInt.
unsigned logBase2() const { return getActiveBits() - 1; }
/// \returns the ceil log base 2 of this APInt.
unsigned ceilLogBase2() const {
APInt temp(*this);
--temp;
return temp.getActiveBits();
}
/// \returns the nearest log base 2 of this APInt. Ties round up.
///
/// NOTE: When we have a BitWidth of 1, we define:
///
/// log2(0) = UINT32_MAX
/// log2(1) = 0
///
/// to get around any mathematical concerns resulting from
/// referencing 2 in a space where 2 does no exist.
unsigned nearestLogBase2() const {
// Special case when we have a bitwidth of 1. If VAL is 1, then we
// get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
// UINT32_MAX.
if (BitWidth == 1)
return U.VAL - 1;
// Handle the zero case.
if (isNullValue())
return UINT32_MAX;
// The non-zero case is handled by computing:
//
// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
//
// where x[i] is referring to the value of the ith bit of x.
unsigned lg = logBase2();
return lg + unsigned((*this)[lg - 1]);
}
/// \returns the log base 2 of this APInt if its an exact power of two, -1
/// otherwise
int32_t exactLogBase2() const {
if (!isPowerOf2())
return -1;
return logBase2();
}
/// Compute the square root
APInt sqrt() const;
/// Get the absolute value;
///
/// If *this is < 0 then return -(*this), otherwise *this;
APInt abs() const {
if (isNegative())
return -(*this);
return *this;
}
/// \returns the multiplicative inverse for a given modulo.
APInt multiplicativeInverse(const APInt &modulo) const;
/// @}
/// \name Support for division by constant
/// @{
/// Calculate the magic number for signed division by a constant.
struct ms;
ms magic() const;
/// Calculate the magic number for unsigned division by a constant.
struct mu;
mu magicu(unsigned LeadingZeros = 0) const;
/// @}
/// \name Building-block Operations for APInt and APFloat
/// @{
// These building block operations operate on a representation of arbitrary
// precision, two's-complement, bignum integer values. They should be
// sufficient to implement APInt and APFloat bignum requirements. Inputs are
// generally a pointer to the base of an array of integer parts, representing
// an unsigned bignum, and a count of how many parts there are.
/// Sets the least significant part of a bignum to the input value, and zeroes
/// out higher parts.
static void tcSet(WordType *, WordType, unsigned);
/// Assign one bignum to another.
static void tcAssign(WordType *, const WordType *, unsigned);
/// Returns true if a bignum is zero, false otherwise.
static bool tcIsZero(const WordType *, unsigned);
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
static int tcExtractBit(const WordType *, unsigned bit);
/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
/// significant bit of DST. All high bits above srcBITS in DST are
/// zero-filled.
static void tcExtract(WordType *, unsigned dstCount,
const WordType *, unsigned srcBits,
unsigned srcLSB);
/// Set the given bit of a bignum. Zero-based.
static void tcSetBit(WordType *, unsigned bit);
/// Clear the given bit of a bignum. Zero-based.
static void tcClearBit(WordType *, unsigned bit);
/// Returns the bit number of the least or most significant set bit of a
/// number. If the input number has no bits set -1U is returned.
static unsigned tcLSB(const WordType *, unsigned n);
static unsigned tcMSB(const WordType *parts, unsigned n);
/// Negate a bignum in-place.
static void tcNegate(WordType *, unsigned);
/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static WordType tcAdd(WordType *, const WordType *,
WordType carry, unsigned);
/// DST += RHS. Returns the carry flag.
static WordType tcAddPart(WordType *, WordType, unsigned);
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static WordType tcSubtract(WordType *, const WordType *,
WordType carry, unsigned);
/// DST -= RHS. Returns the carry flag.
static WordType tcSubtractPart(WordType *, WordType, unsigned);
/// DST += SRC * MULTIPLIER + PART if add is true
/// DST = SRC * MULTIPLIER + PART if add is false
///
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
/// start at the same point, i.e. DST == SRC.
///
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
/// Otherwise DST is filled with the least significant DSTPARTS parts of the
/// result, and if all of the omitted higher parts were zero return zero,
/// otherwise overflow occurred and return one.
static int tcMultiplyPart(WordType *dst, const WordType *src,
WordType multiplier, WordType carry,
unsigned srcParts, unsigned dstParts,
bool add);
/// DST = LHS * RHS, where DST has the same width as the operands and is
/// filled with the least significant parts of the result. Returns one if
/// overflow occurred, otherwise zero. DST must be disjoint from both
/// operands.
static int tcMultiply(WordType *, const WordType *, const WordType *,
unsigned);
/// DST = LHS * RHS, where DST has width the sum of the widths of the
/// operands. No overflow occurs. DST must be disjoint from both operands.
static void tcFullMultiply(WordType *, const WordType *,
const WordType *, unsigned, unsigned);
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
/// REMAINDER to the remainder, return zero. i.e.
///
/// OLD_LHS = RHS * LHS + REMAINDER
///
/// SCRATCH is a bignum of the same size as the operands and result for use by
/// the routine; its contents need not be initialized and are destroyed. LHS,
/// REMAINDER and SCRATCH must be distinct.
static int tcDivide(WordType *lhs, const WordType *rhs,
WordType *remainder, WordType *scratch,
unsigned parts);
/// Shift a bignum left Count bits. Shifted in bits are zero. There are no
/// restrictions on Count.
static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
/// Shift a bignum right Count bits. Shifted in bits are zero. There are no
/// restrictions on Count.
static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
/// The obvious AND, OR and XOR and complement operations.
static void tcAnd(WordType *, const WordType *, unsigned);
static void tcOr(WordType *, const WordType *, unsigned);
static void tcXor(WordType *, const WordType *, unsigned);
static void tcComplement(WordType *, unsigned);
/// Comparison (unsigned) of two bignums.
static int tcCompare(const WordType *, const WordType *, unsigned);
/// Increment a bignum in-place. Return the carry flag.
static WordType tcIncrement(WordType *dst, unsigned parts) {
return tcAddPart(dst, 1, parts);
}
/// Decrement a bignum in-place. Return the borrow flag.
static WordType tcDecrement(WordType *dst, unsigned parts) {
return tcSubtractPart(dst, 1, parts);
}
/// Set the least significant BITS and clear the rest.
static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
/// debug method
void dump() const;
/// @}
};
/// Magic data for optimising signed division by a constant.
struct APInt::ms {
APInt m; ///< magic number
unsigned s; ///< shift amount
};
/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
APInt m; ///< magic number
bool a; ///< add indicator
unsigned s; ///< shift amount
};
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
/// Unary bitwise complement operator.
///
/// \returns an APInt that is the bitwise complement of \p v.
inline APInt operator~(APInt v) {
v.flipAllBits();
return v;
}
inline APInt operator&(APInt a, const APInt &b) {
a &= b;
return a;
}
inline APInt operator&(const APInt &a, APInt &&b) {
b &= a;
return std::move(b);
}
inline APInt operator&(APInt a, uint64_t RHS) {
a &= RHS;
return a;
}
inline APInt operator&(uint64_t LHS, APInt b) {
b &= LHS;
return b;
}
inline APInt operator|(APInt a, const APInt &b) {
a |= b;
return a;
}
inline APInt operator|(const APInt &a, APInt &&b) {
b |= a;
return std::move(b);
}
inline APInt operator|(APInt a, uint64_t RHS) {
a |= RHS;
return a;
}
inline APInt operator|(uint64_t LHS, APInt b) {
b |= LHS;
return b;
}
inline APInt operator^(APInt a, const APInt &b) {
a ^= b;
return a;
}
inline APInt operator^(const APInt &a, APInt &&b) {
b ^= a;
return std::move(b);
}
inline APInt operator^(APInt a, uint64_t RHS) {
a ^= RHS;
return a;
}
inline APInt operator^(uint64_t LHS, APInt b) {
b ^= LHS;
return b;
}
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
I.print(OS, true);
return OS;
}
inline APInt operator-(APInt v) {
v.negate();
return v;
}
inline APInt operator+(APInt a, const APInt &b) {
a += b;
return a;
}
inline APInt operator+(const APInt &a, APInt &&b) {
b += a;
return std::move(b);
}
inline APInt operator+(APInt a, uint64_t RHS) {
a += RHS;
return a;
}
inline APInt operator+(uint64_t LHS, APInt b) {
b += LHS;
return b;
}
inline APInt operator-(APInt a, const APInt &b) {
a -= b;
return a;
}
inline APInt operator-(const APInt &a, APInt &&b) {
b.negate();
b += a;
return std::move(b);
}
inline APInt operator-(APInt a, uint64_t RHS) {
a -= RHS;
return a;
}
inline APInt operator-(uint64_t LHS, APInt b) {
b.negate();
b += LHS;
return b;
}
inline APInt operator*(APInt a, uint64_t RHS) {
a *= RHS;
return a;
}
inline APInt operator*(uint64_t LHS, APInt b) {
b *= LHS;
return b;
}
namespace APIntOps {
/// Determine the smaller of two APInts considered to be signed.
inline const APInt &smin(const APInt &A, const APInt &B) {
return A.slt(B) ? A : B;
}
/// Determine the larger of two APInts considered to be signed.
inline const APInt &smax(const APInt &A, const APInt &B) {
return A.sgt(B) ? A : B;
}
/// Determine the smaller of two APInts considered to be signed.
inline const APInt &umin(const APInt &A, const APInt &B) {
return A.ult(B) ? A : B;
}
/// Determine the larger of two APInts considered to be unsigned.
inline const APInt &umax(const APInt &A, const APInt &B) {
return A.ugt(B) ? A : B;
}
/// Compute GCD of two unsigned APInt values.
///
/// This function returns the greatest common divisor of the two APInt values
/// using Stein's algorithm.
///
/// \returns the greatest common divisor of A and B.
APInt GreatestCommonDivisor(APInt A, APInt B);
/// Converts the given APInt to a double value.
///
/// Treats the APInt as an unsigned value for conversion purposes.
inline double RoundAPIntToDouble(const APInt &APIVal) {
return APIVal.roundToDouble();
}
/// Converts the given APInt to a double value.
///
/// Treats the APInt as a signed value for conversion purposes.
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
return APIVal.signedRoundToDouble();
}
/// Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt &APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
/// Converts the given APInt to a float value.
///
/// Treast the APInt as a signed value for conversion purposes.
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
return float(APIVal.signedRoundToDouble());
}
/// Converts the given double value into a APInt.
///
/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);
/// Converts a float value into a APInt.
///
/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
return RoundDoubleToAPInt(double(Float), width);
}
/// Return A unsign-divided by B, rounded by the given rounding mode.
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
/// Return A sign-divided by B, rounded by the given rounding mode.
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
/// (e.g. 32 for i32).
/// This function finds the smallest number n, such that
/// (a) n >= 0 and q(n) = 0, or
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
/// integers, belong to two different intervals [Rk, Rk+R),
/// where R = 2^BW, and k is an integer.
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
/// subtraction (treated as addition of negated numbers) would always
/// count as an overflow, but here we want to allow values to decrease
/// and increase as long as they are within the same interval.
/// Specifically, adding of two negative numbers should not cause an
/// overflow (as long as the magnitude does not exceed the bith width).
/// On the other hand, given a positive number, adding a negative
/// number to it can give a negative result, which would cause the
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
/// treated as a special case of an overflow.
///
/// This function returns None if after finding k that minimizes the
/// positive solution to q(n) = kR, both solutions are contained between
/// two consecutive integers.
///
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
/// virtue of *signed* overflow. This function will *not* find such an n,
/// however it may find a value of n satisfying the inequalities due to
/// an *unsigned* overflow (if the values are treated as unsigned).
/// To find a solution for a signed overflow, treat it as a problem of
/// finding an unsigned overflow with a range with of BW-1.
///
/// The returned value may have a different bit width from the input
/// coefficients.
Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
unsigned RangeWidth);
} // End of APIntOps namespace
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APInt &Arg);
} // End of llvm namespace
#endif