1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Analysis/Loads.cpp
Chandler Carruth 4c1f3c24db Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00

223 lines
8.6 KiB
C++

//===- Loads.cpp - Local load analysis ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines simple local analyses for load instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
using namespace llvm;
/// AreEquivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
///
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
// Test if the values come from identical arithmetic instructions.
// Use isIdenticalToWhenDefined instead of isIdenticalTo because
// this function is only used when one address use dominates the
// other, which means that they'll always either have the same
// value or one of them will have an undefined value.
if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
isa<PHINode>(A) || isa<GetElementPtrInst>(A))
if (const Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
return false;
}
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// from this value cannot trap. If it is not obviously safe to load from the
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
unsigned Align, const DataLayout *TD) {
int64_t ByteOffset = 0;
Value *Base = V;
if (TD)
Base = GetPointerBaseWithConstantOffset(V, ByteOffset, *TD);
if (ByteOffset < 0) // out of bounds
return false;
Type *BaseType = 0;
unsigned BaseAlign = 0;
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
// An alloca is safe to load from as load as it is suitably aligned.
BaseType = AI->getAllocatedType();
BaseAlign = AI->getAlignment();
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
// Global variables are safe to load from but their size cannot be
// guaranteed if they are overridden.
if (!GV->mayBeOverridden()) {
BaseType = GV->getType()->getElementType();
BaseAlign = GV->getAlignment();
}
}
if (BaseType && BaseType->isSized()) {
if (TD && BaseAlign == 0)
BaseAlign = TD->getPrefTypeAlignment(BaseType);
if (Align <= BaseAlign) {
if (!TD)
return true; // Loading directly from an alloca or global is OK.
// Check if the load is within the bounds of the underlying object.
PointerType *AddrTy = cast<PointerType>(V->getType());
uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
(Align == 0 || (ByteOffset % Align) == 0))
return true;
}
}
// Otherwise, be a little bit aggressive by scanning the local block where we
// want to check to see if the pointer is already being loaded or stored
// from/to. If so, the previous load or store would have already trapped,
// so there is no harm doing an extra load (also, CSE will later eliminate
// the load entirely).
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
while (BBI != E) {
--BBI;
// If we see a free or a call which may write to memory (i.e. which might do
// a free) the pointer could be marked invalid.
if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
!isa<DbgInfoIntrinsic>(BBI))
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
}
}
return false;
}
/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
/// instruction before ScanFrom) checking to see if we have the value at the
/// memory address *Ptr locally available within a small number of instructions.
/// If the value is available, return it.
///
/// If not, return the iterator for the last validated instruction that the
/// value would be live through. If we scanned the entire block and didn't find
/// something that invalidates *Ptr or provides it, ScanFrom would be left at
/// begin() and this returns null. ScanFrom could also be left
///
/// MaxInstsToScan specifies the maximum instructions to scan in the block. If
/// it is set to 0, it will scan the whole block. You can also optionally
/// specify an alias analysis implementation, which makes this more precise.
///
/// If TBAATag is non-null and a load or store is found, the TBAA tag from the
/// load or store is recorded there. If there is no TBAA tag or if no access
/// is found, it is left unmodified.
Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
BasicBlock::iterator &ScanFrom,
unsigned MaxInstsToScan,
AliasAnalysis *AA,
MDNode **TBAATag) {
if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
// If we're using alias analysis to disambiguate get the size of *Ptr.
uint64_t AccessSize = 0;
if (AA) {
Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
AccessSize = AA->getTypeStoreSize(AccessTy);
}
while (ScanFrom != ScanBB->begin()) {
// We must ignore debug info directives when counting (otherwise they
// would affect codegen).
Instruction *Inst = --ScanFrom;
if (isa<DbgInfoIntrinsic>(Inst))
continue;
// Restore ScanFrom to expected value in case next test succeeds
ScanFrom++;
// Don't scan huge blocks.
if (MaxInstsToScan-- == 0) return 0;
--ScanFrom;
// If this is a load of Ptr, the loaded value is available.
// (This is true even if the load is volatile or atomic, although
// those cases are unlikely.)
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) {
if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
return LI;
}
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If this is a store through Ptr, the value is available!
// (This is true even if the store is volatile or atomic, although
// those cases are unlikely.)
if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) {
if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa);
return SI->getOperand(0);
}
// If Ptr is an alloca and this is a store to a different alloca, ignore
// the store. This is a trivial form of alias analysis that is important
// for reg2mem'd code.
if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
(isa<AllocaInst>(SI->getOperand(1)) ||
isa<GlobalVariable>(SI->getOperand(1))))
continue;
// If we have alias analysis and it says the store won't modify the loaded
// value, ignore the store.
if (AA &&
(AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
continue;
// Otherwise the store that may or may not alias the pointer, bail out.
++ScanFrom;
return 0;
}
// If this is some other instruction that may clobber Ptr, bail out.
if (Inst->mayWriteToMemory()) {
// If alias analysis claims that it really won't modify the load,
// ignore it.
if (AA &&
(AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
continue;
// May modify the pointer, bail out.
++ScanFrom;
return 0;
}
}
// Got to the start of the block, we didn't find it, but are done for this
// block.
return 0;
}