1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/IR/IntrinsicInst.cpp
David Sherwood 56b8c35591 [SVE] Make ElementCount members private
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().

Differential Revision: https://reviews.llvm.org/D86065
2020-08-28 14:43:53 +01:00

349 lines
11 KiB
C++

//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*. To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///
Value *DbgVariableIntrinsic::getVariableLocation(bool AllowNullOp) const {
Value *Op = getArgOperand(0);
if (AllowNullOp && !Op)
return nullptr;
auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
return V->getValue();
// When the value goes to null, it gets replaced by an empty MDNode.
assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
return nullptr;
}
Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
if (auto Fragment = getExpression()->getFragmentInfo())
return Fragment->SizeInBits;
return getVariable()->getSizeInBits();
}
int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name) {
assert(Name.startswith("llvm."));
// Do successive binary searches of the dotted name components. For
// "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
// intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
// "llvm.gc.experimental.statepoint", and then we will stop as the range is
// size 1. During the search, we can skip the prefix that we already know is
// identical. By using strncmp we consider names with differing suffixes to
// be part of the equal range.
size_t CmpEnd = 4; // Skip the "llvm" component.
const char *const *Low = NameTable.begin();
const char *const *High = NameTable.end();
const char *const *LastLow = Low;
while (CmpEnd < Name.size() && High - Low > 0) {
size_t CmpStart = CmpEnd;
CmpEnd = Name.find('.', CmpStart + 1);
CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
};
LastLow = Low;
std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
}
if (High - Low > 0)
LastLow = Low;
if (LastLow == NameTable.end())
return -1;
StringRef NameFound = *LastLow;
if (Name == NameFound ||
(Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
return LastLow - NameTable.begin();
return -1;
}
Value *InstrProfIncrementInst::getStep() const {
if (InstrProfIncrementInstStep::classof(this)) {
return const_cast<Value *>(getArgOperand(4));
}
const Module *M = getModule();
LLVMContext &Context = M->getContext();
return ConstantInt::get(Type::getInt64Ty(Context), 1);
}
Optional<RoundingMode> ConstrainedFPIntrinsic::getRoundingMode() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToRoundingMode(cast<MDString>(MD)->getString());
}
Optional<fp::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}
FCmpInst::Predicate ConstrainedFPCmpIntrinsic::getPredicate() const {
Metadata *MD = cast<MetadataAsValue>(getArgOperand(2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return FCmpInst::BAD_FCMP_PREDICATE;
return StringSwitch<FCmpInst::Predicate>(cast<MDString>(MD)->getString())
.Case("oeq", FCmpInst::FCMP_OEQ)
.Case("ogt", FCmpInst::FCMP_OGT)
.Case("oge", FCmpInst::FCMP_OGE)
.Case("olt", FCmpInst::FCMP_OLT)
.Case("ole", FCmpInst::FCMP_OLE)
.Case("one", FCmpInst::FCMP_ONE)
.Case("ord", FCmpInst::FCMP_ORD)
.Case("uno", FCmpInst::FCMP_UNO)
.Case("ueq", FCmpInst::FCMP_UEQ)
.Case("ugt", FCmpInst::FCMP_UGT)
.Case("uge", FCmpInst::FCMP_UGE)
.Case("ult", FCmpInst::FCMP_ULT)
.Case("ule", FCmpInst::FCMP_ULE)
.Case("une", FCmpInst::FCMP_UNE)
.Default(FCmpInst::BAD_FCMP_PREDICATE);
}
bool ConstrainedFPIntrinsic::isUnaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 1;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::isTernaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 3;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
return true;
default:
return false;
}
}
ElementCount VPIntrinsic::getStaticVectorLength() const {
auto GetVectorLengthOfType = [](const Type *T) -> ElementCount {
auto VT = cast<VectorType>(T);
auto ElemCount = VT->getElementCount();
return ElemCount;
};
auto VPMask = getMaskParam();
return GetVectorLengthOfType(VPMask->getType());
}
Value *VPIntrinsic::getMaskParam() const {
auto maskPos = GetMaskParamPos(getIntrinsicID());
if (maskPos)
return getArgOperand(maskPos.getValue());
return nullptr;
}
Value *VPIntrinsic::getVectorLengthParam() const {
auto vlenPos = GetVectorLengthParamPos(getIntrinsicID());
if (vlenPos)
return getArgOperand(vlenPos.getValue());
return nullptr;
}
Optional<int> VPIntrinsic::GetMaskParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return MASKPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
Optional<int> VPIntrinsic::GetVectorLengthParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return VLENPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::IsVPIntrinsic(Intrinsic::ID ID) {
switch (ID) {
default:
return false;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
break;
#include "llvm/IR/VPIntrinsics.def"
}
return true;
}
// Equivalent non-predicated opcode
unsigned VPIntrinsic::GetFunctionalOpcodeForVP(Intrinsic::ID ID) {
switch (ID) {
default:
return Instruction::Call;
#define HANDLE_VP_TO_OC(VPID, OC) \
case Intrinsic::VPID: \
return Instruction::OC;
#include "llvm/IR/VPIntrinsics.def"
}
}
Intrinsic::ID VPIntrinsic::GetForOpcode(unsigned OC) {
switch (OC) {
default:
return Intrinsic::not_intrinsic;
#define HANDLE_VP_TO_OC(VPID, OC) \
case Instruction::OC: \
return Intrinsic::VPID;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::canIgnoreVectorLengthParam() const {
using namespace PatternMatch;
ElementCount EC = getStaticVectorLength();
// No vlen param - no lanes masked-off by it.
auto *VLParam = getVectorLengthParam();
if (!VLParam)
return true;
// Note that the VP intrinsic causes undefined behavior if the Explicit Vector
// Length parameter is strictly greater-than the number of vector elements of
// the operation. This function returns true when this is detected statically
// in the IR.
// Check whether "W == vscale * EC.getKnownMinValue()"
if (EC.isScalable()) {
// Undig the DL
auto ParMod = this->getModule();
if (!ParMod)
return false;
const auto &DL = ParMod->getDataLayout();
// Compare vscale patterns
uint64_t VScaleFactor;
if (match(VLParam, m_c_Mul(m_ConstantInt(VScaleFactor), m_VScale(DL))))
return VScaleFactor >= EC.getKnownMinValue();
return (EC.getKnownMinValue() == 1) && match(VLParam, m_VScale(DL));
}
// standard SIMD operation
auto VLConst = dyn_cast<ConstantInt>(VLParam);
if (!VLConst)
return false;
uint64_t VLNum = VLConst->getZExtValue();
if (VLNum >= EC.getKnownMinValue())
return true;
return false;
}
Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
switch (getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
return Instruction::Add;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return Instruction::Sub;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
return Instruction::Mul;
default:
llvm_unreachable("Invalid intrinsic");
}
}
bool BinaryOpIntrinsic::isSigned() const {
switch (getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
unsigned BinaryOpIntrinsic::getNoWrapKind() const {
if (isSigned())
return OverflowingBinaryOperator::NoSignedWrap;
else
return OverflowingBinaryOperator::NoUnsignedWrap;
}