1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Transforms/Vectorize/SLPVectorizer.cpp
Alexey Bataev 37023003ea [SLP]Fix costs calculations.
Need to fix several cost-related problems. The final type may be defined
incorrectly because of to early definition (we may end up with the wider
type), the CommonCost should not be redefined in ExtractElements
cost related calculations and the shuffle of the final insertelements
vectors should be calculated as a cost of single vector permutations
+ costs of two vector permutations for other n-1 incoming vectors.

Differential Revision: https://reviews.llvm.org/D106578
2021-07-26 07:14:03 -07:00

8856 lines
340 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
using namespace slpvectorizer;
#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
cl::desc("Run the SLP vectorization passes"));
static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
cl::desc("Attempt to vectorize horizontal reductions"));
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
"slp-vectorize-hor-store", cl::init(false), cl::Hidden,
cl::desc(
"Attempt to vectorize horizontal reductions feeding into a store"));
static cl::opt<int>
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
cl::desc("Attempt to vectorize for this register size in bits"));
static cl::opt<unsigned>
MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
static cl::opt<int>
MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
cl::desc("Maximum depth of the lookup for consecutive stores."));
/// Limits the size of scheduling regions in a block.
/// It avoid long compile times for _very_ large blocks where vector
/// instructions are spread over a wide range.
/// This limit is way higher than needed by real-world functions.
static cl::opt<int>
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
cl::desc("Limit the size of the SLP scheduling region per block"));
static cl::opt<int> MinVectorRegSizeOption(
"slp-min-reg-size", cl::init(128), cl::Hidden,
cl::desc("Attempt to vectorize for this register size in bits"));
static cl::opt<unsigned> RecursionMaxDepth(
"slp-recursion-max-depth", cl::init(12), cl::Hidden,
cl::desc("Limit the recursion depth when building a vectorizable tree"));
static cl::opt<unsigned> MinTreeSize(
"slp-min-tree-size", cl::init(3), cl::Hidden,
cl::desc("Only vectorize small trees if they are fully vectorizable"));
// The maximum depth that the look-ahead score heuristic will explore.
// The higher this value, the higher the compilation time overhead.
static cl::opt<int> LookAheadMaxDepth(
"slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
cl::desc("The maximum look-ahead depth for operand reordering scores"));
// The Look-ahead heuristic goes through the users of the bundle to calculate
// the users cost in getExternalUsesCost(). To avoid compilation time increase
// we limit the number of users visited to this value.
static cl::opt<unsigned> LookAheadUsersBudget(
"slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
cl::desc("The maximum number of users to visit while visiting the "
"predecessors. This prevents compilation time increase."));
static cl::opt<bool>
ViewSLPTree("view-slp-tree", cl::Hidden,
cl::desc("Display the SLP trees with Graphviz"));
// Limit the number of alias checks. The limit is chosen so that
// it has no negative effect on the llvm benchmarks.
static const unsigned AliasedCheckLimit = 10;
// Another limit for the alias checks: The maximum distance between load/store
// instructions where alias checks are done.
// This limit is useful for very large basic blocks.
static const unsigned MaxMemDepDistance = 160;
/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
/// regions to be handled.
static const int MinScheduleRegionSize = 16;
/// Predicate for the element types that the SLP vectorizer supports.
///
/// The most important thing to filter here are types which are invalid in LLVM
/// vectors. We also filter target specific types which have absolutely no
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
/// avoids spending time checking the cost model and realizing that they will
/// be inevitably scalarized.
static bool isValidElementType(Type *Ty) {
return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
!Ty->isPPC_FP128Ty();
}
/// \returns true if all of the instructions in \p VL are in the same block or
/// false otherwise.
static bool allSameBlock(ArrayRef<Value *> VL) {
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
return false;
BasicBlock *BB = I0->getParent();
for (int I = 1, E = VL.size(); I < E; I++) {
auto *II = dyn_cast<Instruction>(VL[I]);
if (!II)
return false;
if (BB != II->getParent())
return false;
}
return true;
}
/// \returns True if the value is a constant (but not globals/constant
/// expressions).
static bool isConstant(Value *V) {
return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
}
/// \returns True if all of the values in \p VL are constants (but not
/// globals/constant expressions).
static bool allConstant(ArrayRef<Value *> VL) {
// Constant expressions and globals can't be vectorized like normal integer/FP
// constants.
return all_of(VL, isConstant);
}
/// \returns True if all of the values in \p VL are identical.
static bool isSplat(ArrayRef<Value *> VL) {
for (unsigned i = 1, e = VL.size(); i < e; ++i)
if (VL[i] != VL[0])
return false;
return true;
}
/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
static bool isCommutative(Instruction *I) {
if (auto *Cmp = dyn_cast<CmpInst>(I))
return Cmp->isCommutative();
if (auto *BO = dyn_cast<BinaryOperator>(I))
return BO->isCommutative();
// TODO: This should check for generic Instruction::isCommutative(), but
// we need to confirm that the caller code correctly handles Intrinsics
// for example (does not have 2 operands).
return false;
}
/// Checks if the vector of instructions can be represented as a shuffle, like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %x0x0 = mul i8 %x0, %x0
/// %x3x3 = mul i8 %x3, %x3
/// %y1y1 = mul i8 %y1, %y1
/// %y2y2 = mul i8 %y2, %y2
/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
/// ret <4 x i8> %ins4
/// can be transformed into:
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
/// i32 6>
/// %2 = mul <4 x i8> %1, %1
/// ret <4 x i8> %2
/// We convert this initially to something like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
/// %5 = mul <4 x i8> %4, %4
/// %6 = extractelement <4 x i8> %5, i32 0
/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
/// %7 = extractelement <4 x i8> %5, i32 1
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
/// %8 = extractelement <4 x i8> %5, i32 2
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
/// %9 = extractelement <4 x i8> %5, i32 3
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
/// ret <4 x i8> %ins4
/// InstCombiner transforms this into a shuffle and vector mul
/// Mask will return the Shuffle Mask equivalent to the extracted elements.
/// TODO: Can we split off and reuse the shuffle mask detection from
/// TargetTransformInfo::getInstructionThroughput?
static Optional<TargetTransformInfo::ShuffleKind>
isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
auto *EI0 = cast<ExtractElementInst>(VL[0]);
unsigned Size =
cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
Value *Vec1 = nullptr;
Value *Vec2 = nullptr;
enum ShuffleMode { Unknown, Select, Permute };
ShuffleMode CommonShuffleMode = Unknown;
for (unsigned I = 0, E = VL.size(); I < E; ++I) {
auto *EI = cast<ExtractElementInst>(VL[I]);
auto *Vec = EI->getVectorOperand();
// All vector operands must have the same number of vector elements.
if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
return None;
auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
if (!Idx)
return None;
// Undefined behavior if Idx is negative or >= Size.
if (Idx->getValue().uge(Size)) {
Mask.push_back(UndefMaskElem);
continue;
}
unsigned IntIdx = Idx->getValue().getZExtValue();
Mask.push_back(IntIdx);
// We can extractelement from undef or poison vector.
if (isa<UndefValue>(Vec))
continue;
// For correct shuffling we have to have at most 2 different vector operands
// in all extractelement instructions.
if (!Vec1 || Vec1 == Vec)
Vec1 = Vec;
else if (!Vec2 || Vec2 == Vec)
Vec2 = Vec;
else
return None;
if (CommonShuffleMode == Permute)
continue;
// If the extract index is not the same as the operation number, it is a
// permutation.
if (IntIdx != I) {
CommonShuffleMode = Permute;
continue;
}
CommonShuffleMode = Select;
}
// If we're not crossing lanes in different vectors, consider it as blending.
if (CommonShuffleMode == Select && Vec2)
return TargetTransformInfo::SK_Select;
// If Vec2 was never used, we have a permutation of a single vector, otherwise
// we have permutation of 2 vectors.
return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
: TargetTransformInfo::SK_PermuteSingleSrc;
}
namespace {
/// Main data required for vectorization of instructions.
struct InstructionsState {
/// The very first instruction in the list with the main opcode.
Value *OpValue = nullptr;
/// The main/alternate instruction.
Instruction *MainOp = nullptr;
Instruction *AltOp = nullptr;
/// The main/alternate opcodes for the list of instructions.
unsigned getOpcode() const {
return MainOp ? MainOp->getOpcode() : 0;
}
unsigned getAltOpcode() const {
return AltOp ? AltOp->getOpcode() : 0;
}
/// Some of the instructions in the list have alternate opcodes.
bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
bool isOpcodeOrAlt(Instruction *I) const {
unsigned CheckedOpcode = I->getOpcode();
return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
}
InstructionsState() = delete;
InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
: OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
};
} // end anonymous namespace
/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
/// OpValue.
static Value *isOneOf(const InstructionsState &S, Value *Op) {
auto *I = dyn_cast<Instruction>(Op);
if (I && S.isOpcodeOrAlt(I))
return Op;
return S.OpValue;
}
/// \returns true if \p Opcode is allowed as part of of the main/alternate
/// instruction for SLP vectorization.
///
/// Example of unsupported opcode is SDIV that can potentially cause UB if the
/// "shuffled out" lane would result in division by zero.
static bool isValidForAlternation(unsigned Opcode) {
if (Instruction::isIntDivRem(Opcode))
return false;
return true;
}
/// \returns analysis of the Instructions in \p VL described in
/// InstructionsState, the Opcode that we suppose the whole list
/// could be vectorized even if its structure is diverse.
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
unsigned BaseIndex = 0) {
// Make sure these are all Instructions.
if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
unsigned AltOpcode = Opcode;
unsigned AltIndex = BaseIndex;
// Check for one alternate opcode from another BinaryOperator.
// TODO - generalize to support all operators (types, calls etc.).
for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
isValidForAlternation(Opcode)) {
AltOpcode = InstOpcode;
AltIndex = Cnt;
continue;
}
} else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
if (Ty0 == Ty1) {
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
if (Opcode == AltOpcode) {
assert(isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) &&
"Cast isn't safe for alternation, logic needs to be updated!");
AltOpcode = InstOpcode;
AltIndex = Cnt;
continue;
}
}
} else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
}
return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
cast<Instruction>(VL[AltIndex]));
}
/// \returns true if all of the values in \p VL have the same type or false
/// otherwise.
static bool allSameType(ArrayRef<Value *> VL) {
Type *Ty = VL[0]->getType();
for (int i = 1, e = VL.size(); i < e; i++)
if (VL[i]->getType() != Ty)
return false;
return true;
}
/// \returns True if Extract{Value,Element} instruction extracts element Idx.
static Optional<unsigned> getExtractIndex(Instruction *E) {
unsigned Opcode = E->getOpcode();
assert((Opcode == Instruction::ExtractElement ||
Opcode == Instruction::ExtractValue) &&
"Expected extractelement or extractvalue instruction.");
if (Opcode == Instruction::ExtractElement) {
auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
if (!CI)
return None;
return CI->getZExtValue();
}
ExtractValueInst *EI = cast<ExtractValueInst>(E);
if (EI->getNumIndices() != 1)
return None;
return *EI->idx_begin();
}
/// \returns True if in-tree use also needs extract. This refers to
/// possible scalar operand in vectorized instruction.
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
TargetLibraryInfo *TLI) {
unsigned Opcode = UserInst->getOpcode();
switch (Opcode) {
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(UserInst);
return (LI->getPointerOperand() == Scalar);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(UserInst);
return (SI->getPointerOperand() == Scalar);
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(UserInst);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
if (hasVectorInstrinsicScalarOpd(ID, i))
return (CI->getArgOperand(i) == Scalar);
}
LLVM_FALLTHROUGH;
}
default:
return false;
}
}
/// \returns the AA location that is being access by the instruction.
static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return MemoryLocation::get(SI);
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return MemoryLocation::get(LI);
return MemoryLocation();
}
/// \returns True if the instruction is not a volatile or atomic load/store.
static bool isSimple(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isSimple();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isSimple();
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
return !MI->isVolatile();
return true;
}
namespace llvm {
static void inversePermutation(ArrayRef<unsigned> Indices,
SmallVectorImpl<int> &Mask) {
Mask.clear();
const unsigned E = Indices.size();
Mask.resize(E, E + 1);
for (unsigned I = 0; I < E; ++I)
Mask[Indices[I]] = I;
}
/// \returns inserting index of InsertElement or InsertValue instruction,
/// using Offset as base offset for index.
static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
int Index = Offset;
if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
auto *VT = cast<FixedVectorType>(IE->getType());
if (CI->getValue().uge(VT->getNumElements()))
return UndefMaskElem;
Index *= VT->getNumElements();
Index += CI->getZExtValue();
return Index;
}
if (isa<UndefValue>(IE->getOperand(2)))
return UndefMaskElem;
return None;
}
auto *IV = cast<InsertValueInst>(InsertInst);
Type *CurrentType = IV->getType();
for (unsigned I : IV->indices()) {
if (auto *ST = dyn_cast<StructType>(CurrentType)) {
Index *= ST->getNumElements();
CurrentType = ST->getElementType(I);
} else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
Index *= AT->getNumElements();
CurrentType = AT->getElementType();
} else {
return None;
}
Index += I;
}
return Index;
}
namespace slpvectorizer {
/// Bottom Up SLP Vectorizer.
class BoUpSLP {
struct TreeEntry;
struct ScheduleData;
public:
using ValueList = SmallVector<Value *, 8>;
using InstrList = SmallVector<Instruction *, 16>;
using ValueSet = SmallPtrSet<Value *, 16>;
using StoreList = SmallVector<StoreInst *, 8>;
using ExtraValueToDebugLocsMap =
MapVector<Value *, SmallVector<Instruction *, 2>>;
using OrdersType = SmallVector<unsigned, 4>;
BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
const DataLayout *DL, OptimizationRemarkEmitter *ORE)
: F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
CodeMetrics::collectEphemeralValues(F, AC, EphValues);
// Use the vector register size specified by the target unless overridden
// by a command-line option.
// TODO: It would be better to limit the vectorization factor based on
// data type rather than just register size. For example, x86 AVX has
// 256-bit registers, but it does not support integer operations
// at that width (that requires AVX2).
if (MaxVectorRegSizeOption.getNumOccurrences())
MaxVecRegSize = MaxVectorRegSizeOption;
else
MaxVecRegSize =
TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
.getFixedSize();
if (MinVectorRegSizeOption.getNumOccurrences())
MinVecRegSize = MinVectorRegSizeOption;
else
MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
}
/// Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root.
Value *vectorizeTree();
/// Vectorize the tree but with the list of externally used values \p
/// ExternallyUsedValues. Values in this MapVector can be replaced but the
/// generated extractvalue instructions.
Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
/// \returns the cost incurred by unwanted spills and fills, caused by
/// holding live values over call sites.
InstructionCost getSpillCost() const;
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
/// the purpose of scheduling and extraction in the \p UserIgnoreLst.
void buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst = None);
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
/// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
/// into account (and updating it, if required) list of externally used
/// values stored in \p ExternallyUsedValues.
void buildTree(ArrayRef<Value *> Roots,
ExtraValueToDebugLocsMap &ExternallyUsedValues,
ArrayRef<Value *> UserIgnoreLst = None);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
ExternalUses.clear();
NumOpsWantToKeepOrder.clear();
NumOpsWantToKeepOriginalOrder = 0;
for (auto &Iter : BlocksSchedules) {
BlockScheduling *BS = Iter.second.get();
BS->clear();
}
MinBWs.clear();
InstrElementSize.clear();
}
unsigned getTreeSize() const { return VectorizableTree.size(); }
/// Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
/// \returns The best order of instructions for vectorization.
Optional<ArrayRef<unsigned>> bestOrder() const {
assert(llvm::all_of(
NumOpsWantToKeepOrder,
[this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
return D.getFirst().size() ==
VectorizableTree[0]->Scalars.size();
}) &&
"All orders must have the same size as number of instructions in "
"tree node.");
auto I = std::max_element(
NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
[](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
return D1.second < D2.second;
});
if (I == NumOpsWantToKeepOrder.end() ||
I->getSecond() <= NumOpsWantToKeepOriginalOrder)
return None;
return makeArrayRef(I->getFirst());
}
/// Builds the correct order for root instructions.
/// If some leaves have the same instructions to be vectorized, we may
/// incorrectly evaluate the best order for the root node (it is built for the
/// vector of instructions without repeated instructions and, thus, has less
/// elements than the root node). This function builds the correct order for
/// the root node.
/// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
/// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
/// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
/// be reordered, the best order will be \<1, 0\>. We need to extend this
/// order for the root node. For the root node this order should look like
/// \<3, 0, 1, 2\>. This function extends the order for the reused
/// instructions.
void findRootOrder(OrdersType &Order) {
// If the leaf has the same number of instructions to vectorize as the root
// - order must be set already.
unsigned RootSize = VectorizableTree[0]->Scalars.size();
if (Order.size() == RootSize)
return;
SmallVector<unsigned, 4> RealOrder(Order.size());
std::swap(Order, RealOrder);
SmallVector<int, 4> Mask;
inversePermutation(RealOrder, Mask);
Order.assign(Mask.begin(), Mask.end());
// The leaf has less number of instructions - need to find the true order of
// the root.
// Scan the nodes starting from the leaf back to the root.
const TreeEntry *PNode = VectorizableTree.back().get();
SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
SmallPtrSet<const TreeEntry *, 4> Visited;
while (!Nodes.empty() && Order.size() != RootSize) {
const TreeEntry *PNode = Nodes.pop_back_val();
if (!Visited.insert(PNode).second)
continue;
const TreeEntry &Node = *PNode;
for (const EdgeInfo &EI : Node.UserTreeIndices)
if (EI.UserTE)
Nodes.push_back(EI.UserTE);
if (Node.ReuseShuffleIndices.empty())
continue;
// Build the order for the parent node.
OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
// The algorithm of the order extension is:
// 1. Calculate the number of the same instructions for the order.
// 2. Calculate the index of the new order: total number of instructions
// with order less than the order of the current instruction + reuse
// number of the current instruction.
// 3. The new order is just the index of the instruction in the original
// vector of the instructions.
for (unsigned I : Node.ReuseShuffleIndices)
++OrderCounter[Order[I]];
SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
unsigned OrderIdx = Order[ReusedIdx];
unsigned NewIdx = 0;
for (unsigned J = 0; J < OrderIdx; ++J)
NewIdx += OrderCounter[J];
NewIdx += CurrentCounter[OrderIdx];
++CurrentCounter[OrderIdx];
assert(NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.");
NewOrder[NewIdx] = I;
}
std::swap(Order, NewOrder);
}
assert(Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.");
assert(llvm::all_of(Order,
[RootSize](unsigned Val) { return Val != RootSize; }) &&
"All indices must be initialized");
}
/// \return The vector element size in bits to use when vectorizing the
/// expression tree ending at \p V. If V is a store, the size is the width of
/// the stored value. Otherwise, the size is the width of the largest loaded
/// value reaching V. This method is used by the vectorizer to calculate
/// vectorization factors.
unsigned getVectorElementSize(Value *V);
/// Compute the minimum type sizes required to represent the entries in a
/// vectorizable tree.
void computeMinimumValueSizes();
// \returns maximum vector register size as set by TTI or overridden by cl::opt.
unsigned getMaxVecRegSize() const {
return MaxVecRegSize;
}
// \returns minimum vector register size as set by cl::opt.
unsigned getMinVecRegSize() const {
return MinVecRegSize;
}
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
return MaxVF ? MaxVF : UINT_MAX;
}
/// Check if homogeneous aggregate is isomorphic to some VectorType.
/// Accepts homogeneous multidimensional aggregate of scalars/vectors like
/// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
/// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
///
/// \returns number of elements in vector if isomorphism exists, 0 otherwise.
unsigned canMapToVector(Type *T, const DataLayout &DL) const;
/// \returns True if the VectorizableTree is both tiny and not fully
/// vectorizable. We do not vectorize such trees.
bool isTreeTinyAndNotFullyVectorizable() const;
/// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
/// can be load combined in the backend. Load combining may not be allowed in
/// the IR optimizer, so we do not want to alter the pattern. For example,
/// partially transforming a scalar bswap() pattern into vector code is
/// effectively impossible for the backend to undo.
/// TODO: If load combining is allowed in the IR optimizer, this analysis
/// may not be necessary.
bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
/// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
/// can be load combined in the backend. Load combining may not be allowed in
/// the IR optimizer, so we do not want to alter the pattern. For example,
/// partially transforming a scalar bswap() pattern into vector code is
/// effectively impossible for the backend to undo.
/// TODO: If load combining is allowed in the IR optimizer, this analysis
/// may not be necessary.
bool isLoadCombineCandidate() const;
OptimizationRemarkEmitter *getORE() { return ORE; }
/// This structure holds any data we need about the edges being traversed
/// during buildTree_rec(). We keep track of:
/// (i) the user TreeEntry index, and
/// (ii) the index of the edge.
struct EdgeInfo {
EdgeInfo() = default;
EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
: UserTE(UserTE), EdgeIdx(EdgeIdx) {}
/// The user TreeEntry.
TreeEntry *UserTE = nullptr;
/// The operand index of the use.
unsigned EdgeIdx = UINT_MAX;
#ifndef NDEBUG
friend inline raw_ostream &operator<<(raw_ostream &OS,
const BoUpSLP::EdgeInfo &EI) {
EI.dump(OS);
return OS;
}
/// Debug print.
void dump(raw_ostream &OS) const {
OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
<< " EdgeIdx:" << EdgeIdx << "}";
}
LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
#endif
};
/// A helper data structure to hold the operands of a vector of instructions.
/// This supports a fixed vector length for all operand vectors.
class VLOperands {
/// For each operand we need (i) the value, and (ii) the opcode that it
/// would be attached to if the expression was in a left-linearized form.
/// This is required to avoid illegal operand reordering.
/// For example:
/// \verbatim
/// 0 Op1
/// |/
/// Op1 Op2 Linearized + Op2
/// \ / ----------> |/
/// - -
///
/// Op1 - Op2 (0 + Op1) - Op2
/// \endverbatim
///
/// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
///
/// Another way to think of this is to track all the operations across the
/// path from the operand all the way to the root of the tree and to
/// calculate the operation that corresponds to this path. For example, the
/// path from Op2 to the root crosses the RHS of the '-', therefore the
/// corresponding operation is a '-' (which matches the one in the
/// linearized tree, as shown above).
///
/// For lack of a better term, we refer to this operation as Accumulated
/// Path Operation (APO).
struct OperandData {
OperandData() = default;
OperandData(Value *V, bool APO, bool IsUsed)
: V(V), APO(APO), IsUsed(IsUsed) {}
/// The operand value.
Value *V = nullptr;
/// TreeEntries only allow a single opcode, or an alternate sequence of
/// them (e.g, +, -). Therefore, we can safely use a boolean value for the
/// APO. It is set to 'true' if 'V' is attached to an inverse operation
/// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
/// (e.g., Add/Mul)
bool APO = false;
/// Helper data for the reordering function.
bool IsUsed = false;
};
/// During operand reordering, we are trying to select the operand at lane
/// that matches best with the operand at the neighboring lane. Our
/// selection is based on the type of value we are looking for. For example,
/// if the neighboring lane has a load, we need to look for a load that is
/// accessing a consecutive address. These strategies are summarized in the
/// 'ReorderingMode' enumerator.
enum class ReorderingMode {
Load, ///< Matching loads to consecutive memory addresses
Opcode, ///< Matching instructions based on opcode (same or alternate)
Constant, ///< Matching constants
Splat, ///< Matching the same instruction multiple times (broadcast)
Failed, ///< We failed to create a vectorizable group
};
using OperandDataVec = SmallVector<OperandData, 2>;
/// A vector of operand vectors.
SmallVector<OperandDataVec, 4> OpsVec;
const DataLayout &DL;
ScalarEvolution &SE;
const BoUpSLP &R;
/// \returns the operand data at \p OpIdx and \p Lane.
OperandData &getData(unsigned OpIdx, unsigned Lane) {
return OpsVec[OpIdx][Lane];
}
/// \returns the operand data at \p OpIdx and \p Lane. Const version.
const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
return OpsVec[OpIdx][Lane];
}
/// Clears the used flag for all entries.
void clearUsed() {
for (unsigned OpIdx = 0, NumOperands = getNumOperands();
OpIdx != NumOperands; ++OpIdx)
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
++Lane)
OpsVec[OpIdx][Lane].IsUsed = false;
}
/// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
}
// The hard-coded scores listed here are not very important. When computing
// the scores of matching one sub-tree with another, we are basically
// counting the number of values that are matching. So even if all scores
// are set to 1, we would still get a decent matching result.
// However, sometimes we have to break ties. For example we may have to
// choose between matching loads vs matching opcodes. This is what these
// scores are helping us with: they provide the order of preference.
/// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
static const int ScoreConsecutiveLoads = 3;
/// ExtractElementInst from same vector and consecutive indexes.
static const int ScoreConsecutiveExtracts = 3;
/// Constants.
static const int ScoreConstants = 2;
/// Instructions with the same opcode.
static const int ScoreSameOpcode = 2;
/// Instructions with alt opcodes (e.g, add + sub).
static const int ScoreAltOpcodes = 1;
/// Identical instructions (a.k.a. splat or broadcast).
static const int ScoreSplat = 1;
/// Matching with an undef is preferable to failing.
static const int ScoreUndef = 1;
/// Score for failing to find a decent match.
static const int ScoreFail = 0;
/// User exteranl to the vectorized code.
static const int ExternalUseCost = 1;
/// The user is internal but in a different lane.
static const int UserInDiffLaneCost = ExternalUseCost;
/// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
ScalarEvolution &SE) {
auto *LI1 = dyn_cast<LoadInst>(V1);
auto *LI2 = dyn_cast<LoadInst>(V2);
if (LI1 && LI2) {
if (LI1->getParent() != LI2->getParent())
return VLOperands::ScoreFail;
Optional<int> Dist = getPointersDiff(
LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
: VLOperands::ScoreFail;
}
auto *C1 = dyn_cast<Constant>(V1);
auto *C2 = dyn_cast<Constant>(V2);
if (C1 && C2)
return VLOperands::ScoreConstants;
// Extracts from consecutive indexes of the same vector better score as
// the extracts could be optimized away.
Value *EV;
ConstantInt *Ex1Idx, *Ex2Idx;
if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
return VLOperands::ScoreConsecutiveExtracts;
auto *I1 = dyn_cast<Instruction>(V1);
auto *I2 = dyn_cast<Instruction>(V2);
if (I1 && I2) {
if (I1 == I2)
return VLOperands::ScoreSplat;
InstructionsState S = getSameOpcode({I1, I2});
// Note: Only consider instructions with <= 2 operands to avoid
// complexity explosion.
if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
: VLOperands::ScoreSameOpcode;
}
if (isa<UndefValue>(V2))
return VLOperands::ScoreUndef;
return VLOperands::ScoreFail;
}
/// Holds the values and their lane that are taking part in the look-ahead
/// score calculation. This is used in the external uses cost calculation.
SmallDenseMap<Value *, int> InLookAheadValues;
/// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
/// either external to the vectorized code, or require shuffling.
int getExternalUsesCost(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS) {
int Cost = 0;
std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
Value *V = Values[Idx].first;
if (isa<Constant>(V)) {
// Since this is a function pass, it doesn't make semantic sense to
// walk the users of a subclass of Constant. The users could be in
// another function, or even another module that happens to be in
// the same LLVMContext.
continue;
}
// Calculate the absolute lane, using the minimum relative lane of LHS
// and RHS as base and Idx as the offset.
int Ln = std::min(LHS.second, RHS.second) + Idx;
assert(Ln >= 0 && "Bad lane calculation");
unsigned UsersBudget = LookAheadUsersBudget;
for (User *U : V->users()) {
if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
// The user is in the VectorizableTree. Check if we need to insert.
auto It = llvm::find(UserTE->Scalars, U);
assert(It != UserTE->Scalars.end() && "U is in UserTE");
int UserLn = std::distance(UserTE->Scalars.begin(), It);
assert(UserLn >= 0 && "Bad lane");
if (UserLn != Ln)
Cost += UserInDiffLaneCost;
} else {
// Check if the user is in the look-ahead code.
auto It2 = InLookAheadValues.find(U);
if (It2 != InLookAheadValues.end()) {
// The user is in the look-ahead code. Check the lane.
if (It2->second != Ln)
Cost += UserInDiffLaneCost;
} else {
// The user is neither in SLP tree nor in the look-ahead code.
Cost += ExternalUseCost;
}
}
// Limit the number of visited uses to cap compilation time.
if (--UsersBudget == 0)
break;
}
}
return Cost;
}
/// Go through the operands of \p LHS and \p RHS recursively until \p
/// MaxLevel, and return the cummulative score. For example:
/// \verbatim
/// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
/// \ / \ / \ / \ /
/// + + + +
/// G1 G2 G3 G4
/// \endverbatim
/// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
/// each level recursively, accumulating the score. It starts from matching
/// the additions at level 0, then moves on to the loads (level 1). The
/// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
/// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
/// {A[0],C[0]} has a score of VLOperands::ScoreFail.
/// Please note that the order of the operands does not matter, as we
/// evaluate the score of all profitable combinations of operands. In
/// other words the score of G1 and G4 is the same as G1 and G2. This
/// heuristic is based on ideas described in:
/// Look-ahead SLP: Auto-vectorization in the presence of commutative
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
/// Luís F. W. Góes
int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS, int CurrLevel,
int MaxLevel) {
Value *V1 = LHS.first;
Value *V2 = RHS.first;
// Get the shallow score of V1 and V2.
int ShallowScoreAtThisLevel =
std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
getExternalUsesCost(LHS, RHS));
int Lane1 = LHS.second;
int Lane2 = RHS.second;
// If reached MaxLevel,
// or if V1 and V2 are not instructions,
// or if they are SPLAT,
// or if they are not consecutive, early return the current cost.
auto *I1 = dyn_cast<Instruction>(V1);
auto *I2 = dyn_cast<Instruction>(V2);
if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
(isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
return ShallowScoreAtThisLevel;
assert(I1 && I2 && "Should have early exited.");
// Keep track of in-tree values for determining the external-use cost.
InLookAheadValues[V1] = Lane1;
InLookAheadValues[V2] = Lane2;
// Contains the I2 operand indexes that got matched with I1 operands.
SmallSet<unsigned, 4> Op2Used;
// Recursion towards the operands of I1 and I2. We are trying all possbile
// operand pairs, and keeping track of the best score.
for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
OpIdx1 != NumOperands1; ++OpIdx1) {
// Try to pair op1I with the best operand of I2.
int MaxTmpScore = 0;
unsigned MaxOpIdx2 = 0;
bool FoundBest = false;
// If I2 is commutative try all combinations.
unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
unsigned ToIdx = isCommutative(I2)
? I2->getNumOperands()
: std::min(I2->getNumOperands(), OpIdx1 + 1);
assert(FromIdx <= ToIdx && "Bad index");
for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
// Skip operands already paired with OpIdx1.
if (Op2Used.count(OpIdx2))
continue;
// Recursively calculate the cost at each level
int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
{I2->getOperand(OpIdx2), Lane2},
CurrLevel + 1, MaxLevel);
// Look for the best score.
if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
MaxTmpScore = TmpScore;
MaxOpIdx2 = OpIdx2;
FoundBest = true;
}
}
if (FoundBest) {
// Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
Op2Used.insert(MaxOpIdx2);
ShallowScoreAtThisLevel += MaxTmpScore;
}
}
return ShallowScoreAtThisLevel;
}
/// \Returns the look-ahead score, which tells us how much the sub-trees
/// rooted at \p LHS and \p RHS match, the more they match the higher the
/// score. This helps break ties in an informed way when we cannot decide on
/// the order of the operands by just considering the immediate
/// predecessors.
int getLookAheadScore(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS) {
InLookAheadValues.clear();
return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
}
// Search all operands in Ops[*][Lane] for the one that matches best
// Ops[OpIdx][LastLane] and return its opreand index.
// If no good match can be found, return None.
Optional<unsigned>
getBestOperand(unsigned OpIdx, int Lane, int LastLane,
ArrayRef<ReorderingMode> ReorderingModes) {
unsigned NumOperands = getNumOperands();
// The operand of the previous lane at OpIdx.
Value *OpLastLane = getData(OpIdx, LastLane).V;
// Our strategy mode for OpIdx.
ReorderingMode RMode = ReorderingModes[OpIdx];
// The linearized opcode of the operand at OpIdx, Lane.
bool OpIdxAPO = getData(OpIdx, Lane).APO;
// The best operand index and its score.
// Sometimes we have more than one option (e.g., Opcode and Undefs), so we
// are using the score to differentiate between the two.
struct BestOpData {
Optional<unsigned> Idx = None;
unsigned Score = 0;
} BestOp;
// Iterate through all unused operands and look for the best.
for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
// Get the operand at Idx and Lane.
OperandData &OpData = getData(Idx, Lane);
Value *Op = OpData.V;
bool OpAPO = OpData.APO;
// Skip already selected operands.
if (OpData.IsUsed)
continue;
// Skip if we are trying to move the operand to a position with a
// different opcode in the linearized tree form. This would break the
// semantics.
if (OpAPO != OpIdxAPO)
continue;
// Look for an operand that matches the current mode.
switch (RMode) {
case ReorderingMode::Load:
case ReorderingMode::Constant:
case ReorderingMode::Opcode: {
bool LeftToRight = Lane > LastLane;
Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
Value *OpRight = (LeftToRight) ? Op : OpLastLane;
unsigned Score =
getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
if (Score > BestOp.Score) {
BestOp.Idx = Idx;
BestOp.Score = Score;
}
break;
}
case ReorderingMode::Splat:
if (Op == OpLastLane)
BestOp.Idx = Idx;
break;
case ReorderingMode::Failed:
return None;
}
}
if (BestOp.Idx) {
getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
return BestOp.Idx;
}
// If we could not find a good match return None.
return None;
}
/// Helper for reorderOperandVecs. \Returns the lane that we should start
/// reordering from. This is the one which has the least number of operands
/// that can freely move about.
unsigned getBestLaneToStartReordering() const {
unsigned BestLane = 0;
unsigned Min = UINT_MAX;
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
++Lane) {
unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
if (NumFreeOps < Min) {
Min = NumFreeOps;
BestLane = Lane;
}
}
return BestLane;
}
/// \Returns the maximum number of operands that are allowed to be reordered
/// for \p Lane. This is used as a heuristic for selecting the first lane to
/// start operand reordering.
unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
unsigned CntTrue = 0;
unsigned NumOperands = getNumOperands();
// Operands with the same APO can be reordered. We therefore need to count
// how many of them we have for each APO, like this: Cnt[APO] = x.
// Since we only have two APOs, namely true and false, we can avoid using
// a map. Instead we can simply count the number of operands that
// correspond to one of them (in this case the 'true' APO), and calculate
// the other by subtracting it from the total number of operands.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
if (getData(OpIdx, Lane).APO)
++CntTrue;
unsigned CntFalse = NumOperands - CntTrue;
return std::max(CntTrue, CntFalse);
}
/// Go through the instructions in VL and append their operands.
void appendOperandsOfVL(ArrayRef<Value *> VL) {
assert(!VL.empty() && "Bad VL");
assert((empty() || VL.size() == getNumLanes()) &&
"Expected same number of lanes");
assert(isa<Instruction>(VL[0]) && "Expected instruction");
unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
OpsVec.resize(NumOperands);
unsigned NumLanes = VL.size();
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
OpsVec[OpIdx].resize(NumLanes);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
// Our tree has just 3 nodes: the root and two operands.
// It is therefore trivial to get the APO. We only need to check the
// opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
// RHS operand. The LHS operand of both add and sub is never attached
// to an inversese operation in the linearized form, therefore its APO
// is false. The RHS is true only if VL[Lane] is an inverse operation.
// Since operand reordering is performed on groups of commutative
// operations or alternating sequences (e.g., +, -), we can safely
// tell the inverse operations by checking commutativity.
bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
bool APO = (OpIdx == 0) ? false : IsInverseOperation;
OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
APO, false};
}
}
}
/// \returns the number of operands.
unsigned getNumOperands() const { return OpsVec.size(); }
/// \returns the number of lanes.
unsigned getNumLanes() const { return OpsVec[0].size(); }
/// \returns the operand value at \p OpIdx and \p Lane.
Value *getValue(unsigned OpIdx, unsigned Lane) const {
return getData(OpIdx, Lane).V;
}
/// \returns true if the data structure is empty.
bool empty() const { return OpsVec.empty(); }
/// Clears the data.
void clear() { OpsVec.clear(); }
/// \Returns true if there are enough operands identical to \p Op to fill
/// the whole vector.
/// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
bool OpAPO = getData(OpIdx, Lane).APO;
for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
if (Ln == Lane)
continue;
// This is set to true if we found a candidate for broadcast at Lane.
bool FoundCandidate = false;
for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
OperandData &Data = getData(OpI, Ln);
if (Data.APO != OpAPO || Data.IsUsed)
continue;
if (Data.V == Op) {
FoundCandidate = true;
Data.IsUsed = true;
break;
}
}
if (!FoundCandidate)
return false;
}
return true;
}
public:
/// Initialize with all the operands of the instruction vector \p RootVL.
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
ScalarEvolution &SE, const BoUpSLP &R)
: DL(DL), SE(SE), R(R) {
// Append all the operands of RootVL.
appendOperandsOfVL(RootVL);
}
/// \Returns a value vector with the operands across all lanes for the
/// opearnd at \p OpIdx.
ValueList getVL(unsigned OpIdx) const {
ValueList OpVL(OpsVec[OpIdx].size());
assert(OpsVec[OpIdx].size() == getNumLanes() &&
"Expected same num of lanes across all operands");
for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
OpVL[Lane] = OpsVec[OpIdx][Lane].V;
return OpVL;
}
// Performs operand reordering for 2 or more operands.
// The original operands are in OrigOps[OpIdx][Lane].
// The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
void reorder() {
unsigned NumOperands = getNumOperands();
unsigned NumLanes = getNumLanes();
// Each operand has its own mode. We are using this mode to help us select
// the instructions for each lane, so that they match best with the ones
// we have selected so far.
SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
// This is a greedy single-pass algorithm. We are going over each lane
// once and deciding on the best order right away with no back-tracking.
// However, in order to increase its effectiveness, we start with the lane
// that has operands that can move the least. For example, given the
// following lanes:
// Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
// Lane 1 : A[1] = C[1] - B[1] // Visited 1st
// Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
// Lane 3 : A[3] = C[3] - B[3] // Visited 4th
// we will start at Lane 1, since the operands of the subtraction cannot
// be reordered. Then we will visit the rest of the lanes in a circular
// fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
// Find the first lane that we will start our search from.
unsigned FirstLane = getBestLaneToStartReordering();
// Initialize the modes.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
Value *OpLane0 = getValue(OpIdx, FirstLane);
// Keep track if we have instructions with all the same opcode on one
// side.
if (isa<LoadInst>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Load;
else if (isa<Instruction>(OpLane0)) {
// Check if OpLane0 should be broadcast.
if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
ReorderingModes[OpIdx] = ReorderingMode::Splat;
else
ReorderingModes[OpIdx] = ReorderingMode::Opcode;
}
else if (isa<Constant>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Constant;
else if (isa<Argument>(OpLane0))
// Our best hope is a Splat. It may save some cost in some cases.
ReorderingModes[OpIdx] = ReorderingMode::Splat;
else
// NOTE: This should be unreachable.
ReorderingModes[OpIdx] = ReorderingMode::Failed;
}
// If the initial strategy fails for any of the operand indexes, then we
// perform reordering again in a second pass. This helps avoid assigning
// high priority to the failed strategy, and should improve reordering for
// the non-failed operand indexes.
for (int Pass = 0; Pass != 2; ++Pass) {
// Skip the second pass if the first pass did not fail.
bool StrategyFailed = false;
// Mark all operand data as free to use.
clearUsed();
// We keep the original operand order for the FirstLane, so reorder the
// rest of the lanes. We are visiting the nodes in a circular fashion,
// using FirstLane as the center point and increasing the radius
// distance.
for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
// Visit the lane on the right and then the lane on the left.
for (int Direction : {+1, -1}) {
int Lane = FirstLane + Direction * Distance;
if (Lane < 0 || Lane >= (int)NumLanes)
continue;
int LastLane = Lane - Direction;
assert(LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds");
// Look for a good match for each operand.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
// Search for the operand that matches SortedOps[OpIdx][Lane-1].
Optional<unsigned> BestIdx =
getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
// By not selecting a value, we allow the operands that follow to
// select a better matching value. We will get a non-null value in
// the next run of getBestOperand().
if (BestIdx) {
// Swap the current operand with the one returned by
// getBestOperand().
swap(OpIdx, BestIdx.getValue(), Lane);
} else {
// We failed to find a best operand, set mode to 'Failed'.
ReorderingModes[OpIdx] = ReorderingMode::Failed;
// Enable the second pass.
StrategyFailed = true;
}
}
}
}
// Skip second pass if the strategy did not fail.
if (!StrategyFailed)
break;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
switch (RMode) {
case ReorderingMode::Load:
return "Load";
case ReorderingMode::Opcode:
return "Opcode";
case ReorderingMode::Constant:
return "Constant";
case ReorderingMode::Splat:
return "Splat";
case ReorderingMode::Failed:
return "Failed";
}
llvm_unreachable("Unimplemented Reordering Type");
}
LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
raw_ostream &OS) {
return OS << getModeStr(RMode);
}
/// Debug print.
LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
printMode(RMode, dbgs());
}
friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
return printMode(RMode, OS);
}
LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
const unsigned Indent = 2;
unsigned Cnt = 0;
for (const OperandDataVec &OpDataVec : OpsVec) {
OS << "Operand " << Cnt++ << "\n";
for (const OperandData &OpData : OpDataVec) {
OS.indent(Indent) << "{";
if (Value *V = OpData.V)
OS << *V;
else
OS << "null";
OS << ", APO:" << OpData.APO << "}\n";
}
OS << "\n";
}
return OS;
}
/// Debug print.
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
};
/// Checks if the instruction is marked for deletion.
bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
/// Marks values operands for later deletion by replacing them with Undefs.
void eraseInstructions(ArrayRef<Value *> AV);
~BoUpSLP();
private:
/// Checks if all users of \p I are the part of the vectorization tree.
bool areAllUsersVectorized(Instruction *I,
ArrayRef<Value *> VectorizedVals) const;
/// \returns the cost of the vectorizable entry.
InstructionCost getEntryCost(const TreeEntry *E,
ArrayRef<Value *> VectorizedVals);
/// This is the recursive part of buildTree.
void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
const EdgeInfo &EI);
/// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
/// be vectorized to use the original vector (or aggregate "bitcast" to a
/// vector) and sets \p CurrentOrder to the identity permutation; otherwise
/// returns false, setting \p CurrentOrder to either an empty vector or a
/// non-identity permutation that allows to reuse extract instructions.
bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
SmallVectorImpl<unsigned> &CurrentOrder) const;
/// Vectorize a single entry in the tree.
Value *vectorizeTree(TreeEntry *E);
/// Vectorize a single entry in the tree, starting in \p VL.
Value *vectorizeTree(ArrayRef<Value *> VL);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
InstructionCost
getGatherCost(FixedVectorType *Ty,
const DenseSet<unsigned> &ShuffledIndices) const;
/// Checks if the gathered \p VL can be represented as shuffle(s) of previous
/// tree entries.
/// \returns ShuffleKind, if gathered values can be represented as shuffles of
/// previous tree entries. \p Mask is filled with the shuffle mask.
Optional<TargetTransformInfo::ShuffleKind>
isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
SmallVectorImpl<const TreeEntry *> &Entries);
/// \returns the scalarization cost for this list of values. Assuming that
/// this subtree gets vectorized, we may need to extract the values from the
/// roots. This method calculates the cost of extracting the values.
InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
/// Set the Builder insert point to one after the last instruction in
/// the bundle
void setInsertPointAfterBundle(const TreeEntry *E);
/// \returns a vector from a collection of scalars in \p VL.
Value *gather(ArrayRef<Value *> VL);
/// \returns whether the VectorizableTree is fully vectorizable and will
/// be beneficial even the tree height is tiny.
bool isFullyVectorizableTinyTree() const;
/// Reorder commutative or alt operands to get better probability of
/// generating vectorized code.
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right,
const DataLayout &DL,
ScalarEvolution &SE,
const BoUpSLP &R);
struct TreeEntry {
using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
TreeEntry(VecTreeTy &Container) : Container(Container) {}
/// \returns true if the scalars in VL are equal to this entry.
bool isSame(ArrayRef<Value *> VL) const {
if (VL.size() == Scalars.size())
return std::equal(VL.begin(), VL.end(), Scalars.begin());
return VL.size() == ReuseShuffleIndices.size() &&
std::equal(
VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
[this](Value *V, int Idx) { return V == Scalars[Idx]; });
}
/// A vector of scalars.
ValueList Scalars;
/// The Scalars are vectorized into this value. It is initialized to Null.
Value *VectorizedValue = nullptr;
/// Do we need to gather this sequence or vectorize it
/// (either with vector instruction or with scatter/gather
/// intrinsics for store/load)?
enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
EntryState State;
/// Does this sequence require some shuffling?
SmallVector<int, 4> ReuseShuffleIndices;
/// Does this entry require reordering?
SmallVector<unsigned, 4> ReorderIndices;
/// Points back to the VectorizableTree.
///
/// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
/// to be a pointer and needs to be able to initialize the child iterator.
/// Thus we need a reference back to the container to translate the indices
/// to entries.
VecTreeTy &Container;
/// The TreeEntry index containing the user of this entry. We can actually
/// have multiple users so the data structure is not truly a tree.
SmallVector<EdgeInfo, 1> UserTreeIndices;
/// The index of this treeEntry in VectorizableTree.
int Idx = -1;
private:
/// The operands of each instruction in each lane Operands[op_index][lane].
/// Note: This helps avoid the replication of the code that performs the
/// reordering of operands during buildTree_rec() and vectorizeTree().
SmallVector<ValueList, 2> Operands;
/// The main/alternate instruction.
Instruction *MainOp = nullptr;
Instruction *AltOp = nullptr;
public:
/// Set this bundle's \p OpIdx'th operand to \p OpVL.
void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
if (Operands.size() < OpIdx + 1)
Operands.resize(OpIdx + 1);
assert(Operands[OpIdx].empty() && "Already resized?");
Operands[OpIdx].resize(Scalars.size());
for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
Operands[OpIdx][Lane] = OpVL[Lane];
}
/// Set the operands of this bundle in their original order.
void setOperandsInOrder() {
assert(Operands.empty() && "Already initialized?");
auto *I0 = cast<Instruction>(Scalars[0]);
Operands.resize(I0->getNumOperands());
unsigned NumLanes = Scalars.size();
for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
OpIdx != NumOperands; ++OpIdx) {
Operands[OpIdx].resize(NumLanes);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
auto *I = cast<Instruction>(Scalars[Lane]);
assert(I->getNumOperands() == NumOperands &&
"Expected same number of operands");
Operands[OpIdx][Lane] = I->getOperand(OpIdx);
}
}
}
/// \returns the \p OpIdx operand of this TreeEntry.
ValueList &getOperand(unsigned OpIdx) {
assert(OpIdx < Operands.size() && "Off bounds");
return Operands[OpIdx];
}
/// \returns the number of operands.
unsigned getNumOperands() const { return Operands.size(); }
/// \return the single \p OpIdx operand.
Value *getSingleOperand(unsigned OpIdx) const {
assert(OpIdx < Operands.size() && "Off bounds");
assert(!Operands[OpIdx].empty() && "No operand available");
return Operands[OpIdx][0];
}
/// Some of the instructions in the list have alternate opcodes.
bool isAltShuffle() const {
return getOpcode() != getAltOpcode();
}
bool isOpcodeOrAlt(Instruction *I) const {
unsigned CheckedOpcode = I->getOpcode();
return (getOpcode() == CheckedOpcode ||
getAltOpcode() == CheckedOpcode);
}
/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
/// \p OpValue.
Value *isOneOf(Value *Op) const {
auto *I = dyn_cast<Instruction>(Op);
if (I && isOpcodeOrAlt(I))
return Op;
return MainOp;
}
void setOperations(const InstructionsState &S) {
MainOp = S.MainOp;
AltOp = S.AltOp;
}
Instruction *getMainOp() const {
return MainOp;
}
Instruction *getAltOp() const {
return AltOp;
}
/// The main/alternate opcodes for the list of instructions.
unsigned getOpcode() const {
return MainOp ? MainOp->getOpcode() : 0;
}
unsigned getAltOpcode() const {
return AltOp ? AltOp->getOpcode() : 0;
}
/// Update operations state of this entry if reorder occurred.
bool updateStateIfReorder() {
if (ReorderIndices.empty())
return false;
InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
setOperations(S);
return true;
}
/// When ReuseShuffleIndices is empty it just returns position of \p V
/// within vector of Scalars. Otherwise, try to remap on its reuse index.
int findLaneForValue(Value *V) const {
unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
if (!ReuseShuffleIndices.empty()) {
FoundLane = std::distance(ReuseShuffleIndices.begin(),
find(ReuseShuffleIndices, FoundLane));
}
return FoundLane;
}
#ifndef NDEBUG
/// Debug printer.
LLVM_DUMP_METHOD void dump() const {
dbgs() << Idx << ".\n";
for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
dbgs() << "Operand " << OpI << ":\n";
for (const Value *V : Operands[OpI])
dbgs().indent(2) << *V << "\n";
}
dbgs() << "Scalars: \n";
for (Value *V : Scalars)
dbgs().indent(2) << *V << "\n";
dbgs() << "State: ";
switch (State) {
case Vectorize:
dbgs() << "Vectorize\n";
break;
case ScatterVectorize:
dbgs() << "ScatterVectorize\n";
break;
case NeedToGather:
dbgs() << "NeedToGather\n";
break;
}
dbgs() << "MainOp: ";
if (MainOp)
dbgs() << *MainOp << "\n";
else
dbgs() << "NULL\n";
dbgs() << "AltOp: ";
if (AltOp)
dbgs() << *AltOp << "\n";
else
dbgs() << "NULL\n";
dbgs() << "VectorizedValue: ";
if (VectorizedValue)
dbgs() << *VectorizedValue << "\n";
else
dbgs() << "NULL\n";
dbgs() << "ReuseShuffleIndices: ";
if (ReuseShuffleIndices.empty())
dbgs() << "Empty";
else
for (unsigned ReuseIdx : ReuseShuffleIndices)
dbgs() << ReuseIdx << ", ";
dbgs() << "\n";
dbgs() << "ReorderIndices: ";
for (unsigned ReorderIdx : ReorderIndices)
dbgs() << ReorderIdx << ", ";
dbgs() << "\n";
dbgs() << "UserTreeIndices: ";
for (const auto &EInfo : UserTreeIndices)
dbgs() << EInfo << ", ";
dbgs() << "\n";
}
#endif
};
#ifndef NDEBUG
void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
InstructionCost VecCost,
InstructionCost ScalarCost) const {
dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
dbgs() << "SLP: Costs:\n";
dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
dbgs() << "SLP: VectorCost = " << VecCost << "\n";
dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
ReuseShuffleCost + VecCost - ScalarCost << "\n";
}
#endif
/// Create a new VectorizableTree entry.
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
const InstructionsState &S,
const EdgeInfo &UserTreeIdx,
ArrayRef<unsigned> ReuseShuffleIndices = None,
ArrayRef<unsigned> ReorderIndices = None) {
TreeEntry::EntryState EntryState =
Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
ReuseShuffleIndices, ReorderIndices);
}
TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
TreeEntry::EntryState EntryState,
Optional<ScheduleData *> Bundle,
const InstructionsState &S,
const EdgeInfo &UserTreeIdx,
ArrayRef<unsigned> ReuseShuffleIndices = None,
ArrayRef<unsigned> ReorderIndices = None) {
assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
(Bundle && EntryState != TreeEntry::NeedToGather)) &&
"Need to vectorize gather entry?");
VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
TreeEntry *Last = VectorizableTree.back().get();
Last->Idx = VectorizableTree.size() - 1;
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
Last->State = EntryState;
Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
ReuseShuffleIndices.end());
Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
Last->setOperations(S);
if (Last->State != TreeEntry::NeedToGather) {
for (Value *V : VL) {
assert(!getTreeEntry(V) && "Scalar already in tree!");
ScalarToTreeEntry[V] = Last;
}
// Update the scheduler bundle to point to this TreeEntry.
unsigned Lane = 0;
for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
BundleMember = BundleMember->NextInBundle) {
BundleMember->TE = Last;
BundleMember->Lane = Lane;
++Lane;
}
assert((!Bundle.getValue() || Lane == VL.size()) &&
"Bundle and VL out of sync");
} else {
MustGather.insert(VL.begin(), VL.end());
}
if (UserTreeIdx.UserTE)
Last->UserTreeIndices.push_back(UserTreeIdx);
return Last;
}
/// -- Vectorization State --
/// Holds all of the tree entries.
TreeEntry::VecTreeTy VectorizableTree;
#ifndef NDEBUG
/// Debug printer.
LLVM_DUMP_METHOD void dumpVectorizableTree() const {
for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
VectorizableTree[Id]->dump();
dbgs() << "\n";
}
}
#endif
TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
const TreeEntry *getTreeEntry(Value *V) const {
return ScalarToTreeEntry.lookup(V);
}
/// Maps a specific scalar to its tree entry.
SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
/// Maps a value to the proposed vectorizable size.
SmallDenseMap<Value *, unsigned> InstrElementSize;
/// A list of scalars that we found that we need to keep as scalars.
ValueSet MustGather;
/// This POD struct describes one external user in the vectorized tree.
struct ExternalUser {
ExternalUser(Value *S, llvm::User *U, int L)
: Scalar(S), User(U), Lane(L) {}
// Which scalar in our function.
Value *Scalar;
// Which user that uses the scalar.
llvm::User *User;
// Which lane does the scalar belong to.
int Lane;
};
using UserList = SmallVector<ExternalUser, 16>;
/// Checks if two instructions may access the same memory.
///
/// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
/// is invariant in the calling loop.
bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
Instruction *Inst2) {
// First check if the result is already in the cache.
AliasCacheKey key = std::make_pair(Inst1, Inst2);
Optional<bool> &result = AliasCache[key];
if (result.hasValue()) {
return result.getValue();
}
MemoryLocation Loc2 = getLocation(Inst2, AA);
bool aliased = true;
if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
// Do the alias check.
aliased = !AA->isNoAlias(Loc1, Loc2);
}
// Store the result in the cache.
result = aliased;
return aliased;
}
using AliasCacheKey = std::pair<Instruction *, Instruction *>;
/// Cache for alias results.
/// TODO: consider moving this to the AliasAnalysis itself.
DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
/// Removes an instruction from its block and eventually deletes it.
/// It's like Instruction::eraseFromParent() except that the actual deletion
/// is delayed until BoUpSLP is destructed.
/// This is required to ensure that there are no incorrect collisions in the
/// AliasCache, which can happen if a new instruction is allocated at the
/// same address as a previously deleted instruction.
void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
}
/// Temporary store for deleted instructions. Instructions will be deleted
/// eventually when the BoUpSLP is destructed.
DenseMap<Instruction *, bool> DeletedInstructions;
/// A list of values that need to extracted out of the tree.
/// This list holds pairs of (Internal Scalar : External User). External User
/// can be nullptr, it means that this Internal Scalar will be used later,
/// after vectorization.
UserList ExternalUses;
/// Values used only by @llvm.assume calls.
SmallPtrSet<const Value *, 32> EphValues;
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
/// A list of blocks that we are going to CSE.
SetVector<BasicBlock *> CSEBlocks;
/// Contains all scheduling relevant data for an instruction.
/// A ScheduleData either represents a single instruction or a member of an
/// instruction bundle (= a group of instructions which is combined into a
/// vector instruction).
struct ScheduleData {
// The initial value for the dependency counters. It means that the
// dependencies are not calculated yet.
enum { InvalidDeps = -1 };
ScheduleData() = default;
void init(int BlockSchedulingRegionID, Value *OpVal) {
FirstInBundle = this;
NextInBundle = nullptr;
NextLoadStore = nullptr;
IsScheduled = false;
SchedulingRegionID = BlockSchedulingRegionID;
UnscheduledDepsInBundle = UnscheduledDeps;
clearDependencies();
OpValue = OpVal;
TE = nullptr;
Lane = -1;
}
/// Returns true if the dependency information has been calculated.
bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
/// Returns true for single instructions and for bundle representatives
/// (= the head of a bundle).
bool isSchedulingEntity() const { return FirstInBundle == this; }
/// Returns true if it represents an instruction bundle and not only a
/// single instruction.
bool isPartOfBundle() const {
return NextInBundle != nullptr || FirstInBundle != this;
}
/// Returns true if it is ready for scheduling, i.e. it has no more
/// unscheduled depending instructions/bundles.
bool isReady() const {
assert(isSchedulingEntity() &&
"can't consider non-scheduling entity for ready list");
return UnscheduledDepsInBundle == 0 && !IsScheduled;
}
/// Modifies the number of unscheduled dependencies, also updating it for
/// the whole bundle.
int incrementUnscheduledDeps(int Incr) {
UnscheduledDeps += Incr;
return FirstInBundle->UnscheduledDepsInBundle += Incr;
}
/// Sets the number of unscheduled dependencies to the number of
/// dependencies.
void resetUnscheduledDeps() {
incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
}
/// Clears all dependency information.
void clearDependencies() {
Dependencies = InvalidDeps;
resetUnscheduledDeps();
MemoryDependencies.clear();
}
void dump(raw_ostream &os) const {
if (!isSchedulingEntity()) {
os << "/ " << *Inst;
} else if (NextInBundle) {
os << '[' << *Inst;
ScheduleData *SD = NextInBundle;
while (SD) {
os << ';' << *SD->Inst;
SD = SD->NextInBundle;
}
os << ']';
} else {
os << *Inst;
}
}
Instruction *Inst = nullptr;
/// Points to the head in an instruction bundle (and always to this for
/// single instructions).
ScheduleData *FirstInBundle = nullptr;
/// Single linked list of all instructions in a bundle. Null if it is a
/// single instruction.
ScheduleData *NextInBundle = nullptr;
/// Single linked list of all memory instructions (e.g. load, store, call)
/// in the block - until the end of the scheduling region.
ScheduleData *NextLoadStore = nullptr;
/// The dependent memory instructions.
/// This list is derived on demand in calculateDependencies().
SmallVector<ScheduleData *, 4> MemoryDependencies;
/// This ScheduleData is in the current scheduling region if this matches
/// the current SchedulingRegionID of BlockScheduling.
int SchedulingRegionID = 0;
/// Used for getting a "good" final ordering of instructions.
int SchedulingPriority = 0;
/// The number of dependencies. Constitutes of the number of users of the
/// instruction plus the number of dependent memory instructions (if any).
/// This value is calculated on demand.
/// If InvalidDeps, the number of dependencies is not calculated yet.
int Dependencies = InvalidDeps;
/// The number of dependencies minus the number of dependencies of scheduled
/// instructions. As soon as this is zero, the instruction/bundle gets ready
/// for scheduling.
/// Note that this is negative as long as Dependencies is not calculated.
int UnscheduledDeps = InvalidDeps;
/// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
/// single instructions.
int UnscheduledDepsInBundle = InvalidDeps;
/// True if this instruction is scheduled (or considered as scheduled in the
/// dry-run).
bool IsScheduled = false;
/// Opcode of the current instruction in the schedule data.
Value *OpValue = nullptr;
/// The TreeEntry that this instruction corresponds to.
TreeEntry *TE = nullptr;
/// The lane of this node in the TreeEntry.
int Lane = -1;
};
#ifndef NDEBUG
friend inline raw_ostream &operator<<(raw_ostream &os,
const BoUpSLP::ScheduleData &SD) {
SD.dump(os);
return os;
}
#endif
friend struct GraphTraits<BoUpSLP *>;
friend struct DOTGraphTraits<BoUpSLP *>;
/// Contains all scheduling data for a basic block.
struct BlockScheduling {
BlockScheduling(BasicBlock *BB)
: BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
void clear() {
ReadyInsts.clear();
ScheduleStart = nullptr;
ScheduleEnd = nullptr;
FirstLoadStoreInRegion = nullptr;
LastLoadStoreInRegion = nullptr;
// Reduce the maximum schedule region size by the size of the
// previous scheduling run.
ScheduleRegionSizeLimit -= ScheduleRegionSize;
if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
ScheduleRegionSizeLimit = MinScheduleRegionSize;
ScheduleRegionSize = 0;
// Make a new scheduling region, i.e. all existing ScheduleData is not
// in the new region yet.
++SchedulingRegionID;
}
ScheduleData *getScheduleData(Value *V) {
ScheduleData *SD = ScheduleDataMap[V];
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
return SD;
return nullptr;
}
ScheduleData *getScheduleData(Value *V, Value *Key) {
if (V == Key)
return getScheduleData(V);
auto I = ExtraScheduleDataMap.find(V);
if (I != ExtraScheduleDataMap.end()) {
ScheduleData *SD = I->second[Key];
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
return SD;
}
return nullptr;
}
bool isInSchedulingRegion(ScheduleData *SD) const {
return SD->SchedulingRegionID == SchedulingRegionID;
}
/// Marks an instruction as scheduled and puts all dependent ready
/// instructions into the ready-list.
template <typename ReadyListType>
void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
SD->IsScheduled = true;
LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
ScheduleData *BundleMember = SD;
while (BundleMember) {
if (BundleMember->Inst != BundleMember->OpValue) {
BundleMember = BundleMember->NextInBundle;
continue;
}
// Handle the def-use chain dependencies.
// Decrement the unscheduled counter and insert to ready list if ready.
auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
if (OpDef && OpDef->hasValidDependencies() &&
OpDef->incrementUnscheduledDeps(-1) == 0) {
// There are no more unscheduled dependencies after
// decrementing, so we can put the dependent instruction
// into the ready list.
ScheduleData *DepBundle = OpDef->FirstInBundle;
assert(!DepBundle->IsScheduled &&
"already scheduled bundle gets ready");
ReadyList.insert(DepBundle);
LLVM_DEBUG(dbgs()
<< "SLP: gets ready (def): " << *DepBundle << "\n");
}
});
};
// If BundleMember is a vector bundle, its operands may have been
// reordered duiring buildTree(). We therefore need to get its operands
// through the TreeEntry.
if (TreeEntry *TE = BundleMember->TE) {
int Lane = BundleMember->Lane;
assert(Lane >= 0 && "Lane not set");
// Since vectorization tree is being built recursively this assertion
// ensures that the tree entry has all operands set before reaching
// this code. Couple of exceptions known at the moment are extracts
// where their second (immediate) operand is not added. Since
// immediates do not affect scheduler behavior this is considered
// okay.
auto *In = TE->getMainOp();
assert(In &&
(isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
In->getNumOperands() == TE->getNumOperands()) &&
"Missed TreeEntry operands?");
(void)In; // fake use to avoid build failure when assertions disabled
for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
OpIdx != NumOperands; ++OpIdx)
if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
DecrUnsched(I);
} else {
// If BundleMember is a stand-alone instruction, no operand reordering
// has taken place, so we directly access its operands.
for (Use &U : BundleMember->Inst->operands())
if (auto *I = dyn_cast<Instruction>(U.get()))
DecrUnsched(I);
}
// Handle the memory dependencies.
for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
// There are no more unscheduled dependencies after decrementing,
// so we can put the dependent instruction into the ready list.
ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
assert(!DepBundle->IsScheduled &&
"already scheduled bundle gets ready");
ReadyList.insert(DepBundle);
LLVM_DEBUG(dbgs()
<< "SLP: gets ready (mem): " << *DepBundle << "\n");
}
}
BundleMember = BundleMember->NextInBundle;
}
}
void doForAllOpcodes(Value *V,
function_ref<void(ScheduleData *SD)> Action) {
if (ScheduleData *SD = getScheduleData(V))
Action(SD);
auto I = ExtraScheduleDataMap.find(V);
if (I != ExtraScheduleDataMap.end())
for (auto &P : I->second)
if (P.second->SchedulingRegionID == SchedulingRegionID)
Action(P.second);
}
/// Put all instructions into the ReadyList which are ready for scheduling.
template <typename ReadyListType>
void initialFillReadyList(ReadyListType &ReadyList) {
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
doForAllOpcodes(I, [&](ScheduleData *SD) {
if (SD->isSchedulingEntity() && SD->isReady()) {
ReadyList.insert(SD);
LLVM_DEBUG(dbgs()
<< "SLP: initially in ready list: " << *I << "\n");
}
});
}
}
/// Checks if a bundle of instructions can be scheduled, i.e. has no
/// cyclic dependencies. This is only a dry-run, no instructions are
/// actually moved at this stage.
/// \returns the scheduling bundle. The returned Optional value is non-None
/// if \p VL is allowed to be scheduled.
Optional<ScheduleData *>
tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
const InstructionsState &S);
/// Un-bundles a group of instructions.
void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
/// Allocates schedule data chunk.
ScheduleData *allocateScheduleDataChunks();
/// Extends the scheduling region so that V is inside the region.
/// \returns true if the region size is within the limit.
bool extendSchedulingRegion(Value *V, const InstructionsState &S);
/// Initialize the ScheduleData structures for new instructions in the
/// scheduling region.
void initScheduleData(Instruction *FromI, Instruction *ToI,
ScheduleData *PrevLoadStore,
ScheduleData *NextLoadStore);
/// Updates the dependency information of a bundle and of all instructions/
/// bundles which depend on the original bundle.
void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
BoUpSLP *SLP);
/// Sets all instruction in the scheduling region to un-scheduled.
void resetSchedule();
BasicBlock *BB;
/// Simple memory allocation for ScheduleData.
std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
/// The size of a ScheduleData array in ScheduleDataChunks.
int ChunkSize;
/// The allocator position in the current chunk, which is the last entry
/// of ScheduleDataChunks.
int ChunkPos;
/// Attaches ScheduleData to Instruction.
/// Note that the mapping survives during all vectorization iterations, i.e.
/// ScheduleData structures are recycled.
DenseMap<Value *, ScheduleData *> ScheduleDataMap;
/// Attaches ScheduleData to Instruction with the leading key.
DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
ExtraScheduleDataMap;
struct ReadyList : SmallVector<ScheduleData *, 8> {
void insert(ScheduleData *SD) { push_back(SD); }
};
/// The ready-list for scheduling (only used for the dry-run).
ReadyList ReadyInsts;
/// The first instruction of the scheduling region.
Instruction *ScheduleStart = nullptr;
/// The first instruction _after_ the scheduling region.
Instruction *ScheduleEnd = nullptr;
/// The first memory accessing instruction in the scheduling region
/// (can be null).
ScheduleData *FirstLoadStoreInRegion = nullptr;
/// The last memory accessing instruction in the scheduling region
/// (can be null).
ScheduleData *LastLoadStoreInRegion = nullptr;
/// The current size of the scheduling region.
int ScheduleRegionSize = 0;
/// The maximum size allowed for the scheduling region.
int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
/// The ID of the scheduling region. For a new vectorization iteration this
/// is incremented which "removes" all ScheduleData from the region.
// Make sure that the initial SchedulingRegionID is greater than the
// initial SchedulingRegionID in ScheduleData (which is 0).
int SchedulingRegionID = 1;
};
/// Attaches the BlockScheduling structures to basic blocks.
MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
/// Performs the "real" scheduling. Done before vectorization is actually
/// performed in a basic block.
void scheduleBlock(BlockScheduling *BS);
/// List of users to ignore during scheduling and that don't need extracting.
ArrayRef<Value *> UserIgnoreList;
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
/// sorted SmallVectors of unsigned.
struct OrdersTypeDenseMapInfo {
static OrdersType getEmptyKey() {
OrdersType V;
V.push_back(~1U);
return V;
}
static OrdersType getTombstoneKey() {
OrdersType V;
V.push_back(~2U);
return V;
}
static unsigned getHashValue(const OrdersType &V) {
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
}
static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
return LHS == RHS;
}
};
/// Contains orders of operations along with the number of bundles that have
/// operations in this order. It stores only those orders that require
/// reordering, if reordering is not required it is counted using \a
/// NumOpsWantToKeepOriginalOrder.
DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
/// Number of bundles that do not require reordering.
unsigned NumOpsWantToKeepOriginalOrder = 0;
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
TargetTransformInfo *TTI;
TargetLibraryInfo *TLI;
AAResults *AA;
LoopInfo *LI;
DominatorTree *DT;
AssumptionCache *AC;
DemandedBits *DB;
const DataLayout *DL;
OptimizationRemarkEmitter *ORE;
unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
unsigned MinVecRegSize; // Set by cl::opt (default: 128).
/// Instruction builder to construct the vectorized tree.
IRBuilder<> Builder;
/// A map of scalar integer values to the smallest bit width with which they
/// can legally be represented. The values map to (width, signed) pairs,
/// where "width" indicates the minimum bit width and "signed" is True if the
/// value must be signed-extended, rather than zero-extended, back to its
/// original width.
MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
};
} // end namespace slpvectorizer
template <> struct GraphTraits<BoUpSLP *> {
using TreeEntry = BoUpSLP::TreeEntry;
/// NodeRef has to be a pointer per the GraphWriter.
using NodeRef = TreeEntry *;
using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
/// Add the VectorizableTree to the index iterator to be able to return
/// TreeEntry pointers.
struct ChildIteratorType
: public iterator_adaptor_base<
ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
ContainerTy &VectorizableTree;
ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
ContainerTy &VT)
: ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
NodeRef operator*() { return I->UserTE; }
};
static NodeRef getEntryNode(BoUpSLP &R) {
return R.VectorizableTree[0].get();
}
static ChildIteratorType child_begin(NodeRef N) {
return {N->UserTreeIndices.begin(), N->Container};
}
static ChildIteratorType child_end(NodeRef N) {
return {N->UserTreeIndices.end(), N->Container};
}
/// For the node iterator we just need to turn the TreeEntry iterator into a
/// TreeEntry* iterator so that it dereferences to NodeRef.
class nodes_iterator {
using ItTy = ContainerTy::iterator;
ItTy It;
public:
nodes_iterator(const ItTy &It2) : It(It2) {}
NodeRef operator*() { return It->get(); }
nodes_iterator operator++() {
++It;
return *this;
}
bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
};
static nodes_iterator nodes_begin(BoUpSLP *R) {
return nodes_iterator(R->VectorizableTree.begin());
}
static nodes_iterator nodes_end(BoUpSLP *R) {
return nodes_iterator(R->VectorizableTree.end());
}
static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
};
template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
using TreeEntry = BoUpSLP::TreeEntry;
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
std::string Str;
raw_string_ostream OS(Str);
if (isSplat(Entry->Scalars)) {
OS << "<splat> " << *Entry->Scalars[0];
return Str;
}
for (auto V : Entry->Scalars) {
OS << *V;
if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
return EU.Scalar == V;
}))
OS << " <extract>";
OS << "\n";
}
return Str;
}
static std::string getNodeAttributes(const TreeEntry *Entry,
const BoUpSLP *) {
if (Entry->State == TreeEntry::NeedToGather)
return "color=red";
return "";
}
};
} // end namespace llvm
BoUpSLP::~BoUpSLP() {
for (const auto &Pair : DeletedInstructions) {
// Replace operands of ignored instructions with Undefs in case if they were
// marked for deletion.
if (Pair.getSecond()) {
Value *Undef = UndefValue::get(Pair.getFirst()->getType());
Pair.getFirst()->replaceAllUsesWith(Undef);
}
Pair.getFirst()->dropAllReferences();
}
for (const auto &Pair : DeletedInstructions) {
assert(Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.");
Pair.getFirst()->eraseFromParent();
}
#ifdef EXPENSIVE_CHECKS
// If we could guarantee that this call is not extremely slow, we could
// remove the ifdef limitation (see PR47712).
assert(!verifyFunction(*F, &dbgs()));
#endif
}
void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
for (auto *V : AV) {
if (auto *I = dyn_cast<Instruction>(V))
eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
};
}
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst) {
ExtraValueToDebugLocsMap ExternallyUsedValues;
buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
}
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ExtraValueToDebugLocsMap &ExternallyUsedValues,
ArrayRef<Value *> UserIgnoreLst) {
deleteTree();
UserIgnoreList = UserIgnoreLst;
if (!allSameType(Roots))
return;
buildTree_rec(Roots, 0, EdgeInfo());
// Collect the values that we need to extract from the tree.
for (auto &TEPtr : VectorizableTree) {
TreeEntry *Entry = TEPtr.get();
// No need to handle users of gathered values.
if (Entry->State == TreeEntry::NeedToGather)
continue;
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
int FoundLane = Entry->findLaneForValue(Scalar);
// Check if the scalar is externally used as an extra arg.
auto ExtI = ExternallyUsedValues.find(Scalar);
if (ExtI != ExternallyUsedValues.end()) {
LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n");
ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
}
for (User *U : Scalar->users()) {
LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
Instruction *UserInst = dyn_cast<Instruction>(U);
if (!UserInst)
continue;
// Skip in-tree scalars that become vectors
if (TreeEntry *UseEntry = getTreeEntry(U)) {
Value *UseScalar = UseEntry->Scalars[0];
// Some in-tree scalars will remain as scalar in vectorized
// instructions. If that is the case, the one in Lane 0 will
// be used.
if (UseScalar != U ||
UseEntry->State == TreeEntry::ScatterVectorize ||
!InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
<< ".\n");
assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
continue;
}
}
// Ignore users in the user ignore list.
if (is_contained(UserIgnoreList, UserInst))
continue;
LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
<< Lane << " from " << *Scalar << ".\n");
ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
}
}
}
}
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
const EdgeInfo &UserTreeIdx) {
assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
InstructionsState S = getSameOpcode(VL);
if (Depth == RecursionMaxDepth) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Don't handle scalable vectors
if (S.getOpcode() == Instruction::ExtractElement &&
isa<ScalableVectorType>(
cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Don't handle vectors.
if (S.OpValue->getType()->isVectorTy() &&
!isa<InsertElementInst>(S.OpValue)) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
if (SI->getValueOperand()->getType()->isVectorTy()) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// If all of the operands are identical or constant we have a simple solution.
if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// We now know that this is a vector of instructions of the same type from
// the same block.
// Don't vectorize ephemeral values.
for (Value *V : VL) {
if (EphValues.count(V)) {
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
<< ") is ephemeral.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// Check if this is a duplicate of another entry.
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
if (!E->isSame(VL)) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Record the reuse of the tree node. FIXME, currently this is only used to
// properly draw the graph rather than for the actual vectorization.
E->UserTreeIndices.push_back(UserTreeIdx);
LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
<< ".\n");
return;
}
// Check that none of the instructions in the bundle are already in the tree.
for (Value *V : VL) {
auto *I = dyn_cast<Instruction>(V);
if (!I)
continue;
if (getTreeEntry(I)) {
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
<< ") is already in tree.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// If any of the scalars is marked as a value that needs to stay scalar, then
// we need to gather the scalars.
// The reduction nodes (stored in UserIgnoreList) also should stay scalar.
for (Value *V : VL) {
if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// Check that all of the users of the scalars that we want to vectorize are
// schedulable.
auto *VL0 = cast<Instruction>(S.OpValue);
BasicBlock *BB = VL0->getParent();
if (!DT->isReachableFromEntry(BB)) {
// Don't go into unreachable blocks. They may contain instructions with
// dependency cycles which confuse the final scheduling.
LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Check that every instruction appears once in this bundle.
SmallVector<unsigned, 4> ReuseShuffleIndicies;
SmallVector<Value *, 4> UniqueValues;
DenseMap<Value *, unsigned> UniquePositions;
for (Value *V : VL) {
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
ReuseShuffleIndicies.emplace_back(Res.first->second);
if (Res.second)
UniqueValues.emplace_back(V);
}
size_t NumUniqueScalarValues = UniqueValues.size();
if (NumUniqueScalarValues == VL.size()) {
ReuseShuffleIndicies.clear();
} else {
LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
if (NumUniqueScalarValues <= 1 ||
!llvm::isPowerOf2_32(NumUniqueScalarValues)) {
LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
VL = UniqueValues;
}
auto &BSRef = BlocksSchedules[BB];
if (!BSRef)
BSRef = std::make_unique<BlockScheduling>(BB);
BlockScheduling &BS = *BSRef.get();
Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
if (!Bundle) {
LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
assert((!BS.getScheduleData(VL0) ||
!BS.getScheduleData(VL0)->isPartOfBundle()) &&
"tryScheduleBundle should cancelScheduling on failure");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
unsigned ShuffleOrOp = S.isAltShuffle() ?
(unsigned) Instruction::ShuffleVector : S.getOpcode();
switch (ShuffleOrOp) {
case Instruction::PHI: {
auto *PH = cast<PHINode>(VL0);
// Check for terminator values (e.g. invoke).
for (Value *V : VL)
for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
Instruction *Term = dyn_cast<Instruction>(
cast<PHINode>(V)->getIncomingValueForBlock(
PH->getIncomingBlock(I)));
if (Term && Term->isTerminator()) {
LLVM_DEBUG(dbgs()
<< "SLP: Need to swizzle PHINodes (terminator use).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
TreeEntry *TE =
newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
// Keeps the reordered operands to avoid code duplication.
SmallVector<ValueList, 2> OperandsVec;
for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
TE->setOperand(I, Operands);
OperandsVec.push_back(Operands);
continue;
}
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
PH->getIncomingBlock(I)));
TE->setOperand(I, Operands);
OperandsVec.push_back(Operands);
}
for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
return;
}
case Instruction::ExtractValue:
case Instruction::ExtractElement: {
OrdersType CurrentOrder;
bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
if (Reuse) {
LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
++NumOpsWantToKeepOriginalOrder;
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
// This is a special case, as it does not gather, but at the same time
// we are not extending buildTree_rec() towards the operands.
ValueList Op0;
Op0.assign(VL.size(), VL0->getOperand(0));
VectorizableTree.back()->setOperand(0, Op0);
return;
}
if (!CurrentOrder.empty()) {
LLVM_DEBUG({
dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order";
for (unsigned Idx : CurrentOrder)
dbgs() << " " << Idx;
dbgs() << "\n";
});
// Insert new order with initial value 0, if it does not exist,
// otherwise return the iterator to the existing one.
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
// This is a special case, as it does not gather, but at the same time
// we are not extending buildTree_rec() towards the operands.
ValueList Op0;
Op0.assign(VL.size(), VL0->getOperand(0));
VectorizableTree.back()->setOperand(0, Op0);
return;
}
LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
BS.cancelScheduling(VL, VL0);
return;
}
case Instruction::InsertElement: {
assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
// Check that we have a buildvector and not a shuffle of 2 or more
// different vectors.
ValueSet SourceVectors;
for (Value *V : VL)
SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
if (count_if(VL, [&SourceVectors](Value *V) {
return !SourceVectors.contains(V);
}) >= 2) {
// Found 2nd source vector - cancel.
LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
BS.cancelScheduling(VL, VL0);
return;
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
constexpr int NumOps = 2;
ValueList VectorOperands[NumOps];
for (int I = 0; I < NumOps; ++I) {
for (Value *V : VL)
VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
TE->setOperand(I, VectorOperands[I]);
}
buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
return;
}
case Instruction::Load: {
// Check that a vectorized load would load the same memory as a scalar
// load. For example, we don't want to vectorize loads that are smaller
// than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
// treats loading/storing it as an i8 struct. If we vectorize loads/stores
// from such a struct, we read/write packed bits disagreeing with the
// unvectorized version.
Type *ScalarTy = VL0->getType();
if (DL->getTypeSizeInBits(ScalarTy) !=
DL->getTypeAllocSizeInBits(ScalarTy)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
return;
}
// Make sure all loads in the bundle are simple - we can't vectorize
// atomic or volatile loads.
SmallVector<Value *, 4> PointerOps(VL.size());
auto POIter = PointerOps.begin();
for (Value *V : VL) {
auto *L = cast<LoadInst>(V);
if (!L->isSimple()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
return;
}
*POIter = L->getPointerOperand();
++POIter;
}
OrdersType CurrentOrder;
// Check the order of pointer operands.
if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
Value *Ptr0;
Value *PtrN;
if (CurrentOrder.empty()) {
Ptr0 = PointerOps.front();
PtrN = PointerOps.back();
} else {
Ptr0 = PointerOps[CurrentOrder.front()];
PtrN = PointerOps[CurrentOrder.back()];
}
Optional<int> Diff = getPointersDiff(
ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
// Check that the sorted loads are consecutive.
if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
if (CurrentOrder.empty()) {
// Original loads are consecutive and does not require reordering.
++NumOpsWantToKeepOriginalOrder;
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
UserTreeIdx, ReuseShuffleIndicies);
TE->setOperandsInOrder();
LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
} else {
// Need to reorder.
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
for (Value *V : VL)
CommonAlignment =
commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
if (TTI->isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
CommonAlignment)) {
// Vectorizing non-consecutive loads with `llvm.masked.gather`.
TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle,
S, UserTreeIdx, ReuseShuffleIndicies);
TE->setOperandsInOrder();
buildTree_rec(PointerOps, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs()
<< "SLP: added a vector of non-consecutive loads.\n");
return;
}
}
LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
for (Value *V : VL) {
Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
if (Ty != SrcTy || !isValidElementType(Ty)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs()
<< "SLP: Gathering casts with different src types.\n");
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Check that all of the compares have the same predicate.
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
Type *ComparedTy = VL0->getOperand(0)->getType();
for (Value *V : VL) {
CmpInst *Cmp = cast<CmpInst>(V);
if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
Cmp->getOperand(0)->getType() != ComparedTy) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs()
<< "SLP: Gathering cmp with different predicate.\n");
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
ValueList Left, Right;
if (cast<CmpInst>(VL0)->isCommutative()) {
// Commutative predicate - collect + sort operands of the instructions
// so that each side is more likely to have the same opcode.
assert(P0 == SwapP0 && "Commutative Predicate mismatch");
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
} else {
// Collect operands - commute if it uses the swapped predicate.
for (Value *V : VL) {
auto *Cmp = cast<CmpInst>(V);
Value *LHS = Cmp->getOperand(0);
Value *RHS = Cmp->getOperand(1);
if (Cmp->getPredicate() != P0)
std::swap(LHS, RHS);
Left.push_back(LHS);
Right.push_back(RHS);
}
}
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
case Instruction::Select:
case Instruction::FNeg:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
// Sort operands of the instructions so that each side is more likely to
// have the same opcode.
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::GetElementPtr: {
// We don't combine GEPs with complicated (nested) indexing.
for (Value *V : VL) {
if (cast<Instruction>(V)->getNumOperands() != 2) {
LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
// We can't combine several GEPs into one vector if they operate on
// different types.
Type *Ty0 = VL0->getOperand(0)->getType();
for (Value *V : VL) {
Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
if (Ty0 != CurTy) {
LLVM_DEBUG(dbgs()
<< "SLP: not-vectorizable GEP (different types).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
// We don't combine GEPs with non-constant indexes.
Type *Ty1 = VL0->getOperand(1)->getType();
for (Value *V : VL) {
auto Op = cast<Instruction>(V)->getOperand(1);
if (!isa<ConstantInt>(Op) ||
(Op->getType() != Ty1 &&
Op->getType()->getScalarSizeInBits() >
DL->getIndexSizeInBits(
V->getType()->getPointerAddressSpace()))) {
LLVM_DEBUG(dbgs()
<< "SLP: not-vectorizable GEP (non-constant indexes).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
TE->setOperandsInOrder();
for (unsigned i = 0, e = 2; i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::Store: {
// Check if the stores are consecutive or if we need to swizzle them.
llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
// Avoid types that are padded when being allocated as scalars, while
// being packed together in a vector (such as i1).
if (DL->getTypeSizeInBits(ScalarTy) !=
DL->getTypeAllocSizeInBits(ScalarTy)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
return;
}
// Make sure all stores in the bundle are simple - we can't vectorize
// atomic or volatile stores.
SmallVector<Value *, 4> PointerOps(VL.size());
ValueList Operands(VL.size());
auto POIter = PointerOps.begin();
auto OIter = Operands.begin();
for (Value *V : VL) {
auto *SI = cast<StoreInst>(V);
if (!SI->isSimple()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
return;
}
*POIter = SI->getPointerOperand();
*OIter = SI->getValueOperand();
++POIter;
++OIter;
}
OrdersType CurrentOrder;
// Check the order of pointer operands.
if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
Value *Ptr0;
Value *PtrN;
if (CurrentOrder.empty()) {
Ptr0 = PointerOps.front();
PtrN = PointerOps.back();
} else {
Ptr0 = PointerOps[CurrentOrder.front()];
PtrN = PointerOps[CurrentOrder.back()];
}
Optional<int> Dist =
getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
// Check that the sorted pointer operands are consecutive.
if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
if (CurrentOrder.empty()) {
// Original stores are consecutive and does not require reordering.
++NumOpsWantToKeepOriginalOrder;
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
UserTreeIdx, ReuseShuffleIndicies);
TE->setOperandsInOrder();
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
} else {
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
}
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
return;
}
case Instruction::Call: {
// Check if the calls are all to the same vectorizable intrinsic or
// library function.
CallInst *CI = cast<CallInst>(VL0);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
VFShape Shape = VFShape::get(
*CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
false /*HasGlobalPred*/);
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
if (!VecFunc && !isTriviallyVectorizable(ID)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
}
Function *F = CI->getCalledFunction();
unsigned NumArgs = CI->getNumArgOperands();
SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
for (unsigned j = 0; j != NumArgs; ++j)
if (hasVectorInstrinsicScalarOpd(ID, j))
ScalarArgs[j] = CI->getArgOperand(j);
for (Value *V : VL) {
CallInst *CI2 = dyn_cast<CallInst>(V);
if (!CI2 || CI2->getCalledFunction() != F ||
getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
(VecFunc &&
VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
!CI->hasIdenticalOperandBundleSchema(*CI2)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
<< "\n");
return;
}
// Some intrinsics have scalar arguments and should be same in order for
// them to be vectorized.
for (unsigned j = 0; j != NumArgs; ++j) {
if (hasVectorInstrinsicScalarOpd(ID, j)) {
Value *A1J = CI2->getArgOperand(j);
if (ScalarArgs[j] != A1J) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
<< " argument " << ScalarArgs[j] << "!=" << A1J
<< "\n");
return;
}
}
}
// Verify that the bundle operands are identical between the two calls.
if (CI->hasOperandBundles() &&
!std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
CI->op_begin() + CI->getBundleOperandsEndIndex(),
CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n');
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
TE->setOperandsInOrder();
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL) {
auto *CI2 = cast<CallInst>(V);
Operands.push_back(CI2->getArgOperand(i));
}
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::ShuffleVector: {
// If this is not an alternate sequence of opcode like add-sub
// then do not vectorize this instruction.
if (!S.isAltShuffle()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
return;
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
// Reorder operands if reordering would enable vectorization.
if (isa<BinaryOperator>(VL0)) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
default:
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
return;
}
}
unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
unsigned N = 1;
Type *EltTy = T;
while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
isa<VectorType>(EltTy)) {
if (auto *ST = dyn_cast<StructType>(EltTy)) {
// Check that struct is homogeneous.
for (const auto *Ty : ST->elements())
if (Ty != *ST->element_begin())
return 0;
N *= ST->getNumElements();
EltTy = *ST->element_begin();
} else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
N *= AT->getNumElements();
EltTy = AT->getElementType();
} else {
auto *VT = cast<FixedVectorType>(EltTy);
N *= VT->getNumElements();
EltTy = VT->getElementType();
}
}
if (!isValidElementType(EltTy))
return 0;
uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
return 0;
return N;
}
bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
SmallVectorImpl<unsigned> &CurrentOrder) const {
Instruction *E0 = cast<Instruction>(OpValue);
assert(E0->getOpcode() == Instruction::ExtractElement ||
E0->getOpcode() == Instruction::ExtractValue);
assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
// Check if all of the extracts come from the same vector and from the
// correct offset.
Value *Vec = E0->getOperand(0);
CurrentOrder.clear();
// We have to extract from a vector/aggregate with the same number of elements.
unsigned NElts;
if (E0->getOpcode() == Instruction::ExtractValue) {
const DataLayout &DL = E0->getModule()->getDataLayout();
NElts = canMapToVector(Vec->getType(), DL);
if (!NElts)
return false;
// Check if load can be rewritten as load of vector.
LoadInst *LI = dyn_cast<LoadInst>(Vec);
if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
return false;
} else {
NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
}
if (NElts != VL.size())
return false;
// Check that all of the indices extract from the correct offset.
bool ShouldKeepOrder = true;
unsigned E = VL.size();
// Assign to all items the initial value E + 1 so we can check if the extract
// instruction index was used already.
// Also, later we can check that all the indices are used and we have a
// consecutive access in the extract instructions, by checking that no
// element of CurrentOrder still has value E + 1.
CurrentOrder.assign(E, E + 1);
unsigned I = 0;
for (; I < E; ++I) {
auto *Inst = cast<Instruction>(VL[I]);
if (Inst->getOperand(0) != Vec)
break;
Optional<unsigned> Idx = getExtractIndex(Inst);
if (!Idx)
break;
const unsigned ExtIdx = *Idx;
if (ExtIdx != I) {
if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
break;
ShouldKeepOrder = false;
CurrentOrder[ExtIdx] = I;
} else {
if (CurrentOrder[I] != E + 1)
break;
CurrentOrder[I] = I;
}
}
if (I < E) {
CurrentOrder.clear();
return false;
}
return ShouldKeepOrder;
}
bool BoUpSLP::areAllUsersVectorized(Instruction *I,
ArrayRef<Value *> VectorizedVals) const {
return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
llvm::all_of(I->users(), [this](User *U) {
return ScalarToTreeEntry.count(U) > 0;
});
}
static std::pair<InstructionCost, InstructionCost>
getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
SmallVector<Type *, 4> VecTys;
for (Use &Arg : CI->args())
VecTys.push_back(
FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
FastMathFlags FMF;
if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
FMF = FPCI->getFastMathFlags();
SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
dyn_cast<IntrinsicInst>(CI));
auto IntrinsicCost =
TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
VecTy->getNumElements())),
false /*HasGlobalPred*/);
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
auto LibCost = IntrinsicCost;
if (!CI->isNoBuiltin() && VecFunc) {
// Calculate the cost of the vector library call.
// If the corresponding vector call is cheaper, return its cost.
LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
TTI::TCK_RecipThroughput);
}
return {IntrinsicCost, LibCost};
}
/// Compute the cost of creating a vector of type \p VecTy containing the
/// extracted values from \p VL.
static InstructionCost
computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
TargetTransformInfo::ShuffleKind ShuffleKind,
ArrayRef<int> Mask, TargetTransformInfo &TTI) {
unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
VecTy->getNumElements() < NumOfParts)
return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
bool AllConsecutive = true;
unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
unsigned Idx = -1;
InstructionCost Cost = 0;
// Process extracts in blocks of EltsPerVector to check if the source vector
// operand can be re-used directly. If not, add the cost of creating a shuffle
// to extract the values into a vector register.
for (auto *V : VL) {
++Idx;
// Reached the start of a new vector registers.
if (Idx % EltsPerVector == 0) {
AllConsecutive = true;
continue;
}
// Check all extracts for a vector register on the target directly
// extract values in order.
unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
CurrentIdx % EltsPerVector == Idx % EltsPerVector;
if (AllConsecutive)
continue;
// Skip all indices, except for the last index per vector block.
if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
continue;
// If we have a series of extracts which are not consecutive and hence
// cannot re-use the source vector register directly, compute the shuffle
// cost to extract the a vector with EltsPerVector elements.
Cost += TTI.getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc,
FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
}
return Cost;
}
/// Shuffles \p Mask in accordance with the given \p SubMask.
static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
if (SubMask.empty())
return;
if (Mask.empty()) {
Mask.append(SubMask.begin(), SubMask.end());
return;
}
SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
int TermValue = std::min(Mask.size(), SubMask.size());
for (int I = 0, E = SubMask.size(); I < E; ++I) {
if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
Mask[SubMask[I]] >= TermValue) {
NewMask[I] = UndefMaskElem;
continue;
}
NewMask[I] = Mask[SubMask[I]];
}
Mask.swap(NewMask);
}
InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
ArrayRef<Value *> VectorizedVals) {
ArrayRef<Value*> VL = E->Scalars;
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
ScalarTy = CI->getOperand(0)->getType();
else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
ScalarTy = IE->getOperand(1)->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
// If we have computed a smaller type for the expression, update VecTy so
// that the costs will be accurate.
if (MinBWs.count(VL[0]))
VecTy = FixedVectorType::get(
IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
auto *FinalVecTy = VecTy;
unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
if (NeedToShuffleReuses)
FinalVecTy =
FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers);
// FIXME: it tries to fix a problem with MSVC buildbots.
TargetTransformInfo &TTIRef = *TTI;
auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
VectorizedVals](InstructionCost &Cost,
bool IsGather) {
DenseMap<Value *, int> ExtractVectorsTys;
for (auto *V : VL) {
// If all users of instruction are going to be vectorized and this
// instruction itself is not going to be vectorized, consider this
// instruction as dead and remove its cost from the final cost of the
// vectorized tree.
if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
(IsGather && ScalarToTreeEntry.count(V)))
continue;
auto *EE = cast<ExtractElementInst>(V);
unsigned Idx = *getExtractIndex(EE);
if (TTIRef.getNumberOfParts(VecTy) !=
TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
auto It =
ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
It->getSecond() = std::min<int>(It->second, Idx);
}
// Take credit for instruction that will become dead.
if (EE->hasOneUse()) {
Instruction *Ext = EE->user_back();
if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
all_of(Ext->users(),
[](User *U) { return isa<GetElementPtrInst>(U); })) {
// Use getExtractWithExtendCost() to calculate the cost of
// extractelement/ext pair.
Cost -=
TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
EE->getVectorOperandType(), Idx);
// Add back the cost of s|zext which is subtracted separately.
Cost += TTIRef.getCastInstrCost(
Ext->getOpcode(), Ext->getType(), EE->getType(),
TTI::getCastContextHint(Ext), CostKind, Ext);
continue;
}
}
Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
EE->getVectorOperandType(), Idx);
}
// Add a cost for subvector extracts/inserts if required.
for (const auto &Data : ExtractVectorsTys) {
auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
unsigned NumElts = VecTy->getNumElements();
if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
unsigned Idx = (Data.second / NumElts) * NumElts;
unsigned EENumElts = EEVTy->getNumElements();
if (Idx + NumElts <= EENumElts) {
Cost +=
TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
EEVTy, None, Idx, VecTy);
} else {
// Need to round up the subvector type vectorization factor to avoid a
// crash in cost model functions. Make SubVT so that Idx + VF of SubVT
// <= EENumElts.
auto *SubVT =
FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
Cost +=
TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
EEVTy, None, Idx, SubVT);
}
} else {
Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
VecTy, None, 0, EEVTy);
}
}
};
if (E->State == TreeEntry::NeedToGather) {
if (allConstant(VL))
return 0;
if (isa<InsertElementInst>(VL[0]))
return InstructionCost::getInvalid();
SmallVector<int> Mask;
SmallVector<const TreeEntry *> Entries;
Optional<TargetTransformInfo::ShuffleKind> Shuffle =
isGatherShuffledEntry(E, Mask, Entries);
if (Shuffle.hasValue()) {
InstructionCost GatherCost = 0;
if (ShuffleVectorInst::isIdentityMask(Mask)) {
// Perfect match in the graph, will reuse the previously vectorized
// node. Cost is 0.
LLVM_DEBUG(
dbgs()
<< "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n");
if (NeedToShuffleReuses)
GatherCost =
TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
FinalVecTy, E->ReuseShuffleIndices);
} else {
LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
<< " entries for bundle that starts with "
<< *VL.front() << ".\n");
// Detected that instead of gather we can emit a shuffle of single/two
// previously vectorized nodes. Add the cost of the permutation rather
// than gather.
::addMask(Mask, E->ReuseShuffleIndices);
GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
}
return GatherCost;
}
if (isSplat(VL)) {
// Found the broadcasting of the single scalar, calculate the cost as the
// broadcast.
return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
}
if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
allSameBlock(VL) &&
!isa<ScalableVectorType>(
cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) {
// Check that gather of extractelements can be represented as just a
// shuffle of a single/two vectors the scalars are extracted from.
SmallVector<int> Mask;
Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
isShuffle(VL, Mask);
if (ShuffleKind.hasValue()) {
// Found the bunch of extractelement instructions that must be gathered
// into a vector and can be represented as a permutation elements in a
// single input vector or of 2 input vectors.
InstructionCost Cost =
computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
AdjustExtractsCost(Cost, /*IsGather=*/true);
if (NeedToShuffleReuses)
Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
FinalVecTy, E->ReuseShuffleIndices);
return Cost;
}
}
InstructionCost ReuseShuffleCost = 0;
if (NeedToShuffleReuses)
ReuseShuffleCost = TTI->getShuffleCost(
TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
return ReuseShuffleCost + getGatherCost(VL);
}
InstructionCost CommonCost = 0;
SmallVector<int> Mask;
if (!E->ReorderIndices.empty()) {
SmallVector<int> NewMask;
if (E->getOpcode() == Instruction::Store) {
// For stores the order is actually a mask.
NewMask.resize(E->ReorderIndices.size());
copy(E->ReorderIndices, NewMask.begin());
} else {
inversePermutation(E->ReorderIndices, NewMask);
}
::addMask(Mask, NewMask);
}
if (NeedToShuffleReuses)
::addMask(Mask, E->ReuseShuffleIndices);
if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
CommonCost =
TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
assert((E->State == TreeEntry::Vectorize ||
E->State == TreeEntry::ScatterVectorize) &&
"Unhandled state");
assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
Instruction *VL0 = E->getMainOp();
unsigned ShuffleOrOp =
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
switch (ShuffleOrOp) {
case Instruction::PHI:
return 0;
case Instruction::ExtractValue:
case Instruction::ExtractElement: {
// The common cost of removal ExtractElement/ExtractValue instructions +
// the cost of shuffles, if required to resuffle the original vector.
if (NeedToShuffleReuses) {
unsigned Idx = 0;
for (unsigned I : E->ReuseShuffleIndices) {
if (ShuffleOrOp == Instruction::ExtractElement) {
auto *EE = cast<ExtractElementInst>(VL[I]);
CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
EE->getVectorOperandType(),
*getExtractIndex(EE));
} else {
CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
VecTy, Idx);
++Idx;
}
}
Idx = ReuseShuffleNumbers;
for (Value *V : VL) {
if (ShuffleOrOp == Instruction::ExtractElement) {
auto *EE = cast<ExtractElementInst>(V);
CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
EE->getVectorOperandType(),
*getExtractIndex(EE));
} else {
--Idx;
CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
VecTy, Idx);
}
}
}
if (ShuffleOrOp == Instruction::ExtractValue) {
for (unsigned I = 0, E = VL.size(); I < E; ++I) {
auto *EI = cast<Instruction>(VL[I]);
// Take credit for instruction that will become dead.
if (EI->hasOneUse()) {
Instruction *Ext = EI->user_back();
if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
all_of(Ext->users(),
[](User *U) { return isa<GetElementPtrInst>(U); })) {
// Use getExtractWithExtendCost() to calculate the cost of
// extractelement/ext pair.
CommonCost -= TTI->getExtractWithExtendCost(
Ext->getOpcode(), Ext->getType(), VecTy, I);
// Add back the cost of s|zext which is subtracted separately.
CommonCost += TTI->getCastInstrCost(
Ext->getOpcode(), Ext->getType(), EI->getType(),
TTI::getCastContextHint(Ext), CostKind, Ext);
continue;
}
}
CommonCost -=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
}
} else {
AdjustExtractsCost(CommonCost, /*IsGather=*/false);
}
return CommonCost;
}
case Instruction::InsertElement: {
auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
unsigned const NumElts = SrcVecTy->getNumElements();
unsigned const NumScalars = VL.size();
APInt DemandedElts = APInt::getNullValue(NumElts);
// TODO: Add support for Instruction::InsertValue.
unsigned Offset = UINT_MAX;
bool IsIdentity = true;
SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
for (unsigned I = 0; I < NumScalars; ++I) {
Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
if (!InsertIdx || *InsertIdx == UndefMaskElem)
continue;
unsigned Idx = *InsertIdx;
DemandedElts.setBit(Idx);
if (Idx < Offset) {
Offset = Idx;
IsIdentity &= I == 0;
} else {
assert(Idx >= Offset && "Failed to find vector index offset");
IsIdentity &= Idx - Offset == I;
}
ShuffleMask[Idx] = I;
}
assert(Offset < NumElts && "Failed to find vector index offset");
InstructionCost Cost = 0;
Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
/*Insert*/ true, /*Extract*/ false);
if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
// FIXME: Replace with SK_InsertSubvector once it is properly supported.
unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
Cost += TTI->getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc,
FixedVectorType::get(SrcVecTy->getElementType(), Sz));
} else if (!IsIdentity) {
Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
ShuffleMask);
}
return Cost;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
InstructionCost ScalarEltCost =
TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
TTI::getCastContextHint(VL0), CostKind, VL0);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
// Calculate the cost of this instruction.
InstructionCost ScalarCost = VL.size() * ScalarEltCost;
auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
InstructionCost VecCost = 0;
// Check if the values are candidates to demote.
if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
VecCost = CommonCost + TTI->getCastInstrCost(
E->getOpcode(), VecTy, SrcVecTy,
TTI::getCastContextHint(VL0), CostKind, VL0);
}
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
return VecCost - ScalarCost;
}
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select: {
// Calculate the cost of this instruction.
InstructionCost ScalarEltCost =
TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
// Check if all entries in VL are either compares or selects with compares
// as condition that have the same predicates.
CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
bool First = true;
for (auto *V : VL) {
CmpInst::Predicate CurrentPred;
auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
!match(V, MatchCmp)) ||
(!First && VecPred != CurrentPred)) {
VecPred = CmpInst::BAD_ICMP_PREDICATE;
break;
}
First = false;
VecPred = CurrentPred;
}
InstructionCost VecCost = TTI->getCmpSelInstrCost(
E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
// Check if it is possible and profitable to use min/max for selects in
// VL.
//
auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
{VecTy, VecTy});
InstructionCost IntrinsicCost =
TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
// If the selects are the only uses of the compares, they will be dead
// and we can adjust the cost by removing their cost.
if (IntrinsicAndUse.second)
IntrinsicCost -=
TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
VecCost = std::min(VecCost, IntrinsicCost);
}
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
return CommonCost + VecCost - ScalarCost;
}
case Instruction::FNeg:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Certain instructions can be cheaper to vectorize if they have a
// constant second vector operand.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
TargetTransformInfo::OperandValueProperties Op1VP =
TargetTransformInfo::OP_None;
TargetTransformInfo::OperandValueProperties Op2VP =
TargetTransformInfo::OP_PowerOf2;
// If all operands are exactly the same ConstantInt then set the
// operand kind to OK_UniformConstantValue.
// If instead not all operands are constants, then set the operand kind
// to OK_AnyValue. If all operands are constants but not the same,
// then set the operand kind to OK_NonUniformConstantValue.
ConstantInt *CInt0 = nullptr;
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
const Instruction *I = cast<Instruction>(VL[i]);
unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
if (!CInt) {
Op2VK = TargetTransformInfo::OK_AnyValue;
Op2VP = TargetTransformInfo::OP_None;
break;
}
if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
!CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_None;
if (i == 0) {
CInt0 = CInt;
continue;
}
if (CInt0 != CInt)
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
}
SmallVector<const Value *, 4> Operands(VL0->operand_values());
InstructionCost ScalarEltCost =
TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
Op2VK, Op1VP, Op2VP, Operands, VL0);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
InstructionCost VecCost =
TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
Op2VK, Op1VP, Op2VP, Operands, VL0);
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
return CommonCost + VecCost - ScalarCost;
}
case Instruction::GetElementPtr: {
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
InstructionCost VecCost = TTI->getArithmeticInstrCost(
Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
return CommonCost + VecCost - ScalarCost;
}
case Instruction::Load: {
// Cost of wide load - cost of scalar loads.
Align Alignment = cast<LoadInst>(VL0)->getAlign();
InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
InstructionCost VecLdCost;
if (E->State == TreeEntry::Vectorize) {
VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
CostKind, VL0);
} else {
assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
Align CommonAlignment = Alignment;
for (Value *V : VL)
CommonAlignment =
commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
VecLdCost = TTI->getGatherScatterOpCost(
Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
/*VariableMask=*/false, CommonAlignment, CostKind, VL0);
}
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
return CommonCost + VecLdCost - ScalarLdCost;
}
case Instruction::Store: {
// We know that we can merge the stores. Calculate the cost.
bool IsReorder = !E->ReorderIndices.empty();
auto *SI =
cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
Align Alignment = SI->getAlign();
InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
InstructionCost VecStCost = TTI->getMemoryOpCost(
Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
return CommonCost + VecStCost - ScalarStCost;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
InstructionCost ScalarEltCost =
TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
if (NeedToShuffleReuses) {
CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
InstructionCost VecCallCost =
std::min(VecCallCosts.first, VecCallCosts.second);
LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
<< " (" << VecCallCost << "-" << ScalarCallCost << ")"
<< " for " << *CI << "\n");
return CommonCost + VecCallCost - ScalarCallCost;
}
case Instruction::ShuffleVector: {
assert(E->isAltShuffle() &&
((Instruction::isBinaryOp(E->getOpcode()) &&
Instruction::isBinaryOp(E->getAltOpcode())) ||
(Instruction::isCast(E->getOpcode()) &&
Instruction::isCast(E->getAltOpcode()))) &&
"Invalid Shuffle Vector Operand");
InstructionCost ScalarCost = 0;
if (NeedToShuffleReuses) {
for (unsigned Idx : E->ReuseShuffleIndices) {
Instruction *I = cast<Instruction>(VL[Idx]);
CommonCost -= TTI->getInstructionCost(I, CostKind);
}
for (Value *V : VL) {
Instruction *I = cast<Instruction>(V);
CommonCost += TTI->getInstructionCost(I, CostKind);
}
}
for (Value *V : VL) {
Instruction *I = cast<Instruction>(V);
assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
ScalarCost += TTI->getInstructionCost(I, CostKind);
}
// VecCost is equal to sum of the cost of creating 2 vectors
// and the cost of creating shuffle.
InstructionCost VecCost = 0;
if (Instruction::isBinaryOp(E->getOpcode())) {
VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
CostKind);
} else {
Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
TTI::CastContextHint::None, CostKind);
VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
TTI::CastContextHint::None, CostKind);
}
SmallVector<int> Mask(E->Scalars.size());
for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
auto *OpInst = cast<Instruction>(E->Scalars[I]);
assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
}
VecCost +=
TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
return CommonCost + VecCost - ScalarCost;
}
default:
llvm_unreachable("Unknown instruction");
}
}
bool BoUpSLP::isFullyVectorizableTinyTree() const {
LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n");
// We only handle trees of heights 1 and 2.
if (VectorizableTree.size() == 1 &&
VectorizableTree[0]->State == TreeEntry::Vectorize)
return true;
if (VectorizableTree.size() != 2)
return false;
// Handle splat and all-constants stores. Also try to vectorize tiny trees
// with the second gather nodes if they have less scalar operands rather than
// the initial tree element (may be profitable to shuffle the second gather)
// or they are extractelements, which form shuffle.
SmallVector<int> Mask;
if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
(allConstant(VectorizableTree[1]->Scalars) ||
isSplat(VectorizableTree[1]->Scalars) ||
(VectorizableTree[1]->State == TreeEntry::NeedToGather &&
VectorizableTree[1]->Scalars.size() <
VectorizableTree[0]->Scalars.size()) ||
(VectorizableTree[1]->State == TreeEntry::NeedToGather &&
VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
isShuffle(VectorizableTree[1]->Scalars, Mask))))
return true;
// Gathering cost would be too much for tiny trees.
if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
VectorizableTree[1]->State == TreeEntry::NeedToGather)
return false;
return true;
}
static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
TargetTransformInfo *TTI,
bool MustMatchOrInst) {
// Look past the root to find a source value. Arbitrarily follow the
// path through operand 0 of any 'or'. Also, peek through optional
// shift-left-by-multiple-of-8-bits.
Value *ZextLoad = Root;
const APInt *ShAmtC;
bool FoundOr = false;
while (!isa<ConstantExpr>(ZextLoad) &&
(match(ZextLoad, m_Or(m_Value(), m_Value())) ||
(match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
ShAmtC->urem(8) == 0))) {
auto *BinOp = cast<BinaryOperator>(ZextLoad);
ZextLoad = BinOp->getOperand(0);
if (BinOp->getOpcode() == Instruction::Or)
FoundOr = true;
}
// Check if the input is an extended load of the required or/shift expression.
Value *LoadPtr;
if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
return false;
// Require that the total load bit width is a legal integer type.
// For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
// But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
Type *SrcTy = LoadPtr->getType()->getPointerElementType();
unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
return false;
// Everything matched - assume that we can fold the whole sequence using
// load combining.
LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n");
return true;
}
bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
if (RdxKind != RecurKind::Or)
return false;
unsigned NumElts = VectorizableTree[0]->Scalars.size();
Value *FirstReduced = VectorizableTree[0]->Scalars[0];
return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
/* MatchOr */ false);
}
bool BoUpSLP::isLoadCombineCandidate() const {
// Peek through a final sequence of stores and check if all operations are
// likely to be load-combined.
unsigned NumElts = VectorizableTree[0]->Scalars.size();
for (Value *Scalar : VectorizableTree[0]->Scalars) {
Value *X;
if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
!isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
return false;
}
return true;
}
bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
// No need to vectorize inserts of gathered values.
if (VectorizableTree.size() == 2 &&
isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
VectorizableTree[1]->State == TreeEntry::NeedToGather)
return true;
// We can vectorize the tree if its size is greater than or equal to the
// minimum size specified by the MinTreeSize command line option.
if (VectorizableTree.size() >= MinTreeSize)
return false;
// If we have a tiny tree (a tree whose size is less than MinTreeSize), we
// can vectorize it if we can prove it fully vectorizable.
if (isFullyVectorizableTinyTree())
return false;
assert(VectorizableTree.empty()
? ExternalUses.empty()
: true && "We shouldn't have any external users");
// Otherwise, we can't vectorize the tree. It is both tiny and not fully
// vectorizable.
return true;
}
InstructionCost BoUpSLP::getSpillCost() const {
// Walk from the bottom of the tree to the top, tracking which values are
// live. When we see a call instruction that is not part of our tree,
// query TTI to see if there is a cost to keeping values live over it
// (for example, if spills and fills are required).
unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
InstructionCost Cost = 0;
SmallPtrSet<Instruction*, 4> LiveValues;
Instruction *PrevInst = nullptr;
// The entries in VectorizableTree are not necessarily ordered by their
// position in basic blocks. Collect them and order them by dominance so later
// instructions are guaranteed to be visited first. For instructions in
// different basic blocks, we only scan to the beginning of the block, so
// their order does not matter, as long as all instructions in a basic block
// are grouped together. Using dominance ensures a deterministic order.
SmallVector<Instruction *, 16> OrderedScalars;
for (const auto &TEPtr : VectorizableTree) {
Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
if (!Inst)
continue;
OrderedScalars.push_back(Inst);
}
llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
auto *NodeA = DT->getNode(A->getParent());
auto *NodeB = DT->getNode(B->getParent());
assert(NodeA && "Should only process reachable instructions");
assert(NodeB && "Should only process reachable instructions");
assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
"Different nodes should have different DFS numbers");
if (NodeA != NodeB)
return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
return B->comesBefore(A);
});
for (Instruction *Inst : OrderedScalars) {
if (!PrevInst) {
PrevInst = Inst;
continue;
}
// Update LiveValues.
LiveValues.erase(PrevInst);
for (auto &J : PrevInst->operands()) {
if (isa<Instruction>(&*J) && getTreeEntry(&*J))
LiveValues.insert(cast<Instruction>(&*J));
}
LLVM_DEBUG({
dbgs() << "SLP: #LV: " << LiveValues.size();
for (auto *X : LiveValues)
dbgs() << " " << X->getName();
dbgs() << ", Looking at ";
Inst->dump();
});
// Now find the sequence of instructions between PrevInst and Inst.
unsigned NumCalls = 0;
BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
PrevInstIt =
PrevInst->getIterator().getReverse();
while (InstIt != PrevInstIt) {
if (PrevInstIt == PrevInst->getParent()->rend()) {
PrevInstIt = Inst->getParent()->rbegin();
continue;
}
// Debug information does not impact spill cost.
if ((isa<CallInst>(&*PrevInstIt) &&
!isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
&*PrevInstIt != PrevInst)
NumCalls++;
++PrevInstIt;
}
if (NumCalls) {
SmallVector<Type*, 4> V;
for (auto *II : LiveValues) {
auto *ScalarTy = II->getType();
if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
ScalarTy = VectorTy->getElementType();
V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
}
Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
}
PrevInst = Inst;
}
return Cost;
}
InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
InstructionCost Cost = 0;
LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n");
unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
TreeEntry &TE = *VectorizableTree[I].get();
InstructionCost C = getEntryCost(&TE, VectorizedVals);
Cost += C;
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
<< " for bundle that starts with " << *TE.Scalars[0]
<< ".\n"
<< "SLP: Current total cost = " << Cost << "\n");
}
SmallPtrSet<Value *, 16> ExtractCostCalculated;
InstructionCost ExtractCost = 0;
SmallVector<unsigned> VF;
SmallVector<SmallVector<int>> ShuffleMask;
SmallVector<Value *> FirstUsers;
SmallVector<APInt> DemandedElts;
for (ExternalUser &EU : ExternalUses) {
// We only add extract cost once for the same scalar.
if (!ExtractCostCalculated.insert(EU.Scalar).second)
continue;
// Uses by ephemeral values are free (because the ephemeral value will be
// removed prior to code generation, and so the extraction will be
// removed as well).
if (EphValues.count(EU.User))
continue;
// No extract cost for vector "scalar"
if (isa<FixedVectorType>(EU.Scalar->getType()))
continue;
// Already counted the cost for external uses when tried to adjust the cost
// for extractelements, no need to add it again.
if (isa<ExtractElementInst>(EU.Scalar))
continue;
// If found user is an insertelement, do not calculate extract cost but try
// to detect it as a final shuffled/identity match.
if (EU.User && isa<InsertElementInst>(EU.User)) {
if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
if (!InsertIdx || *InsertIdx == UndefMaskElem)
continue;
Value *VU = EU.User;
auto *It = find_if(FirstUsers, [VU](Value *V) {
// Checks if 2 insertelements are from the same buildvector.
if (VU->getType() != V->getType())
return false;
auto *IE1 = cast<InsertElementInst>(VU);
auto *IE2 = cast<InsertElementInst>(V);
// Go though of insertelement instructions trying to find either VU as
// the original vector for IE2 or V as the original vector for IE1.
do {
if (IE1 == VU || IE2 == V)
return true;
if (IE1)
IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
if (IE2)
IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
} while (IE1 || IE2);
return false;
});
int VecId = -1;
if (It == FirstUsers.end()) {
VF.push_back(FTy->getNumElements());
ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
FirstUsers.push_back(EU.User);
DemandedElts.push_back(APInt::getNullValue(VF.back()));
VecId = FirstUsers.size() - 1;
} else {
VecId = std::distance(FirstUsers.begin(), It);
}
int Idx = *InsertIdx;
ShuffleMask[VecId][Idx] = EU.Lane;
DemandedElts[VecId].setBit(Idx);
}
}
// If we plan to rewrite the tree in a smaller type, we will need to sign
// extend the extracted value back to the original type. Here, we account
// for the extract and the added cost of the sign extend if needed.
auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
if (MinBWs.count(ScalarRoot)) {
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
auto Extend =
MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
VecTy = FixedVectorType::get(MinTy, BundleWidth);
ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
VecTy, EU.Lane);
} else {
ExtractCost +=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
}
}
InstructionCost SpillCost = getSpillCost();
Cost += SpillCost + ExtractCost;
for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
// For the very first element - simple shuffle of the source vector.
int Limit = ShuffleMask[I].size() * 2;
if (I == 0 &&
all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) &&
!ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) {
InstructionCost C = TTI->getShuffleCost(
TTI::SK_PermuteSingleSrc,
cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
<< " for final shuffle of insertelement external users "
<< *VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost << "\n");
Cost += C;
continue;
}
// Other elements - permutation of 2 vectors (the initial one and the next
// Ith incoming vector).
unsigned VF = ShuffleMask[I].size();
for (unsigned Idx = 0; Idx < VF; ++Idx) {
int &Mask = ShuffleMask[I][Idx];
Mask = Mask == UndefMaskElem ? Idx : VF + Mask;
}
InstructionCost C = TTI->getShuffleCost(
TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
ShuffleMask[I]);
LLVM_DEBUG(
dbgs()
<< "SLP: Adding cost " << C
<< " for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost << "\n");
Cost += C;
InstructionCost InsertCost = TTI->getScalarizationOverhead(
cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
/*Insert*/ true,
/*Extract*/ false);
Cost -= InsertCost;
LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
<< " for insertelements gather.\n"
<< "SLP: Current total cost = " << Cost << "\n");
}
#ifndef NDEBUG
SmallString<256> Str;
{
raw_svector_ostream OS(Str);
OS << "SLP: Spill Cost = " << SpillCost << ".\n"
<< "SLP: Extract Cost = " << ExtractCost << ".\n"
<< "SLP: Total Cost = " << Cost << ".\n";
}
LLVM_DEBUG(dbgs() << Str);
if (ViewSLPTree)
ViewGraph(this, "SLP" + F->getName(), false, Str);
#endif
return Cost;
}
Optional<TargetTransformInfo::ShuffleKind>
BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
SmallVectorImpl<const TreeEntry *> &Entries) {
// TODO: currently checking only for Scalars in the tree entry, need to count
// reused elements too for better cost estimation.
Mask.assign(TE->Scalars.size(), UndefMaskElem);
Entries.clear();
// Build a lists of values to tree entries.
DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
if (EntryPtr.get() == TE)
break;
if (EntryPtr->State != TreeEntry::NeedToGather)
continue;
for (Value *V : EntryPtr->Scalars)
ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
}
// Find all tree entries used by the gathered values. If no common entries
// found - not a shuffle.
// Here we build a set of tree nodes for each gathered value and trying to
// find the intersection between these sets. If we have at least one common
// tree node for each gathered value - we have just a permutation of the
// single vector. If we have 2 different sets, we're in situation where we
// have a permutation of 2 input vectors.
SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
DenseMap<Value *, int> UsedValuesEntry;
for (Value *V : TE->Scalars) {
if (isa<UndefValue>(V))
continue;
// Build a list of tree entries where V is used.
SmallPtrSet<const TreeEntry *, 4> VToTEs;
auto It = ValueToTEs.find(V);
if (It != ValueToTEs.end())
VToTEs = It->second;
if (const TreeEntry *VTE = getTreeEntry(V))
VToTEs.insert(VTE);
if (VToTEs.empty())
return None;
if (UsedTEs.empty()) {
// The first iteration, just insert the list of nodes to vector.
UsedTEs.push_back(VToTEs);
} else {
// Need to check if there are any previously used tree nodes which use V.
// If there are no such nodes, consider that we have another one input
// vector.
SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
unsigned Idx = 0;
for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
// Do we have a non-empty intersection of previously listed tree entries
// and tree entries using current V?
set_intersect(VToTEs, Set);
if (!VToTEs.empty()) {
// Yes, write the new subset and continue analysis for the next
// scalar.
Set.swap(VToTEs);
break;
}
VToTEs = SavedVToTEs;
++Idx;
}
// No non-empty intersection found - need to add a second set of possible
// source vectors.
if (Idx == UsedTEs.size()) {
// If the number of input vectors is greater than 2 - not a permutation,
// fallback to the regular gather.
if (UsedTEs.size() == 2)
return None;
UsedTEs.push_back(SavedVToTEs);
Idx = UsedTEs.size() - 1;
}
UsedValuesEntry.try_emplace(V, Idx);
}
}
unsigned VF = 0;
if (UsedTEs.size() == 1) {
// Try to find the perfect match in another gather node at first.
auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
return EntryPtr->isSame(TE->Scalars);
});
if (It != UsedTEs.front().end()) {
Entries.push_back(*It);
std::iota(Mask.begin(), Mask.end(), 0);
return TargetTransformInfo::SK_PermuteSingleSrc;
}
// No perfect match, just shuffle, so choose the first tree node.
Entries.push_back(*UsedTEs.front().begin());
} else {
// Try to find nodes with the same vector factor.
assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
// FIXME: Shall be replaced by GetVF function once non-power-2 patch is
// landed.
auto &&GetVF = [](const TreeEntry *TE) {
if (!TE->ReuseShuffleIndices.empty())
return TE->ReuseShuffleIndices.size();
return TE->Scalars.size();
};
DenseMap<int, const TreeEntry *> VFToTE;
for (const TreeEntry *TE : UsedTEs.front())
VFToTE.try_emplace(GetVF(TE), TE);
for (const TreeEntry *TE : UsedTEs.back()) {
auto It = VFToTE.find(GetVF(TE));
if (It != VFToTE.end()) {
VF = It->first;
Entries.push_back(It->second);
Entries.push_back(TE);
break;
}
}
// No 2 source vectors with the same vector factor - give up and do regular
// gather.
if (Entries.empty())
return None;
}
// Build a shuffle mask for better cost estimation and vector emission.
for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
Value *V = TE->Scalars[I];
if (isa<UndefValue>(V))
continue;
unsigned Idx = UsedValuesEntry.lookup(V);
const TreeEntry *VTE = Entries[Idx];
int FoundLane = VTE->findLaneForValue(V);
Mask[I] = Idx * VF + FoundLane;
// Extra check required by isSingleSourceMaskImpl function (called by
// ShuffleVectorInst::isSingleSourceMask).
if (Mask[I] >= 2 * E)
return None;
}
switch (Entries.size()) {
case 1:
return TargetTransformInfo::SK_PermuteSingleSrc;
case 2:
return TargetTransformInfo::SK_PermuteTwoSrc;
default:
break;
}
return None;
}
InstructionCost
BoUpSLP::getGatherCost(FixedVectorType *Ty,
const DenseSet<unsigned> &ShuffledIndices) const {
unsigned NumElts = Ty->getNumElements();
APInt DemandedElts = APInt::getNullValue(NumElts);
for (unsigned I = 0; I < NumElts; ++I)
if (!ShuffledIndices.count(I))
DemandedElts.setBit(I);
InstructionCost Cost =
TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
/*Extract*/ false);
if (!ShuffledIndices.empty())
Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
return Cost;
}
InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
// Find the type of the operands in VL.
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
// Find the cost of inserting/extracting values from the vector.
// Check if the same elements are inserted several times and count them as
// shuffle candidates.
DenseSet<unsigned> ShuffledElements;
DenseSet<Value *> UniqueElements;
// Iterate in reverse order to consider insert elements with the high cost.
for (unsigned I = VL.size(); I > 0; --I) {
unsigned Idx = I - 1;
if (isConstant(VL[Idx]))
continue;
if (!UniqueElements.insert(VL[Idx]).second)
ShuffledElements.insert(Idx);
}
return getGatherCost(VecTy, ShuffledElements);
}
// Perform operand reordering on the instructions in VL and return the reordered
// operands in Left and Right.
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right,
const DataLayout &DL,
ScalarEvolution &SE,
const BoUpSLP &R) {
if (VL.empty())
return;
VLOperands Ops(VL, DL, SE, R);
// Reorder the operands in place.
Ops.reorder();
Left = Ops.getVL(0);
Right = Ops.getVL(1);
}
void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
// Get the basic block this bundle is in. All instructions in the bundle
// should be in this block.
auto *Front = E->getMainOp();
auto *BB = Front->getParent();
assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
auto *I = cast<Instruction>(V);
return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
}));
// The last instruction in the bundle in program order.
Instruction *LastInst = nullptr;
// Find the last instruction. The common case should be that BB has been
// scheduled, and the last instruction is VL.back(). So we start with
// VL.back() and iterate over schedule data until we reach the end of the
// bundle. The end of the bundle is marked by null ScheduleData.
if (BlocksSchedules.count(BB)) {
auto *Bundle =
BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
if (Bundle && Bundle->isPartOfBundle())
for (; Bundle; Bundle = Bundle->NextInBundle)
if (Bundle->OpValue == Bundle->Inst)
LastInst = Bundle->Inst;
}
// LastInst can still be null at this point if there's either not an entry
// for BB in BlocksSchedules or there's no ScheduleData available for
// VL.back(). This can be the case if buildTree_rec aborts for various
// reasons (e.g., the maximum recursion depth is reached, the maximum region
// size is reached, etc.). ScheduleData is initialized in the scheduling
// "dry-run".
//
// If this happens, we can still find the last instruction by brute force. We
// iterate forwards from Front (inclusive) until we either see all
// instructions in the bundle or reach the end of the block. If Front is the
// last instruction in program order, LastInst will be set to Front, and we
// will visit all the remaining instructions in the block.
//
// One of the reasons we exit early from buildTree_rec is to place an upper
// bound on compile-time. Thus, taking an additional compile-time hit here is
// not ideal. However, this should be exceedingly rare since it requires that
// we both exit early from buildTree_rec and that the bundle be out-of-order
// (causing us to iterate all the way to the end of the block).
if (!LastInst) {
SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
LastInst = &I;
if (Bundle.empty())
break;
}
}
assert(LastInst && "Failed to find last instruction in bundle");
// Set the insertion point after the last instruction in the bundle. Set the
// debug location to Front.
Builder.SetInsertPoint(BB, ++LastInst->getIterator());
Builder.SetCurrentDebugLocation(Front->getDebugLoc());
}
Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
// List of instructions/lanes from current block and/or the blocks which are
// part of the current loop. These instructions will be inserted at the end to
// make it possible to optimize loops and hoist invariant instructions out of
// the loops body with better chances for success.
SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
SmallSet<int, 4> PostponedIndices;
Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
SmallPtrSet<BasicBlock *, 4> Visited;
while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
InsertBB = InsertBB->getSinglePredecessor();
return InsertBB && InsertBB == InstBB;
};
for (int I = 0, E = VL.size(); I < E; ++I) {
if (auto *Inst = dyn_cast<Instruction>(VL[I]))
if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
PostponedIndices.insert(I).second)
PostponedInsts.emplace_back(Inst, I);
}
auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
auto *InsElt = dyn_cast<InsertElementInst>(Vec);
if (!InsElt)
return Vec;
GatherSeq.insert(InsElt);
CSEBlocks.insert(InsElt->getParent());
// Add to our 'need-to-extract' list.
if (TreeEntry *Entry = getTreeEntry(V)) {
// Find which lane we need to extract.
unsigned FoundLane = Entry->findLaneForValue(V);
ExternalUses.emplace_back(V, InsElt, FoundLane);
}
return Vec;
};
Value *Val0 =
isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
Value *Vec = PoisonValue::get(VecTy);
SmallVector<int> NonConsts;
// Insert constant values at first.
for (int I = 0, E = VL.size(); I < E; ++I) {
if (PostponedIndices.contains(I))
continue;
if (!isConstant(VL[I])) {
NonConsts.push_back(I);
continue;
}
Vec = CreateInsertElement(Vec, VL[I], I);
}
// Insert non-constant values.
for (int I : NonConsts)
Vec = CreateInsertElement(Vec, VL[I], I);
// Append instructions, which are/may be part of the loop, in the end to make
// it possible to hoist non-loop-based instructions.
for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
return Vec;
}
namespace {
/// Merges shuffle masks and emits final shuffle instruction, if required.
class ShuffleInstructionBuilder {
IRBuilderBase &Builder;
const unsigned VF = 0;
bool IsFinalized = false;
SmallVector<int, 4> Mask;
public:
ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
: Builder(Builder), VF(VF) {}
/// Adds a mask, inverting it before applying.
void addInversedMask(ArrayRef<unsigned> SubMask) {
if (SubMask.empty())
return;
SmallVector<int, 4> NewMask;
inversePermutation(SubMask, NewMask);
addMask(NewMask);
}
/// Functions adds masks, merging them into single one.
void addMask(ArrayRef<unsigned> SubMask) {
SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
addMask(NewMask);
}
void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
Value *finalize(Value *V) {
IsFinalized = true;
unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
if (VF == ValueVF && Mask.empty())
return V;
SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
addMask(NormalizedMask);
if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
return V;
return Builder.CreateShuffleVector(V, Mask, "shuffle");
}
~ShuffleInstructionBuilder() {
assert((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.");
}
};
} // namespace
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
unsigned VF = VL.size();
InstructionsState S = getSameOpcode(VL);
if (S.getOpcode()) {
if (TreeEntry *E = getTreeEntry(S.OpValue))
if (E->isSame(VL)) {
Value *V = vectorizeTree(E);
if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
if (!E->ReuseShuffleIndices.empty()) {
// Reshuffle to get only unique values.
// If some of the scalars are duplicated in the vectorization tree
// entry, we do not vectorize them but instead generate a mask for
// the reuses. But if there are several users of the same entry,
// they may have different vectorization factors. This is especially
// important for PHI nodes. In this case, we need to adapt the
// resulting instruction for the user vectorization factor and have
// to reshuffle it again to take only unique elements of the vector.
// Without this code the function incorrectly returns reduced vector
// instruction with the same elements, not with the unique ones.
// block:
// %phi = phi <2 x > { .., %entry} {%shuffle, %block}
// %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
// ... (use %2)
// %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
// br %block
SmallVector<int> UniqueIdxs;
SmallSet<int, 4> UsedIdxs;
int Pos = 0;
int Sz = VL.size();
for (int Idx : E->ReuseShuffleIndices) {
if (Idx != Sz && UsedIdxs.insert(Idx).second)
UniqueIdxs.emplace_back(Pos);
++Pos;
}
assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
"less than original vector size.");
UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
} else {
assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
"Expected vectorization factor less "
"than original vector size.");
SmallVector<int> UniformMask(VF, 0);
std::iota(UniformMask.begin(), UniformMask.end(), 0);
V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
}
}
return V;
}
}
// Check that every instruction appears once in this bundle.
SmallVector<int> ReuseShuffleIndicies;
SmallVector<Value *> UniqueValues;
if (VL.size() > 2) {
DenseMap<Value *, unsigned> UniquePositions;
unsigned NumValues =
std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
return !isa<UndefValue>(V);
}).base());
VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
int UniqueVals = 0;
bool HasUndefs = false;
for (Value *V : VL.drop_back(VL.size() - VF)) {
if (isa<UndefValue>(V)) {
ReuseShuffleIndicies.emplace_back(UndefMaskElem);
HasUndefs = true;
continue;
}
if (isConstant(V)) {
ReuseShuffleIndicies.emplace_back(UniqueValues.size());
UniqueValues.emplace_back(V);
continue;
}
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
ReuseShuffleIndicies.emplace_back(Res.first->second);
if (Res.second) {
UniqueValues.emplace_back(V);
++UniqueVals;
}
}
if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
// Emit pure splat vector.
// FIXME: why it is not identified as an identity.
unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
if (NumUndefs == ReuseShuffleIndicies.size() - 1)
ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
UndefMaskElem);
else
ReuseShuffleIndicies.assign(VF, 0);
} else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
ReuseShuffleIndicies.clear();
UniqueValues.clear();
UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
}
UniqueValues.append(VF - UniqueValues.size(),
PoisonValue::get(VL[0]->getType()));
VL = UniqueValues;
}
ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
Value *Vec = gather(VL);
if (!ReuseShuffleIndicies.empty()) {
ShuffleBuilder.addMask(ReuseShuffleIndicies);
Vec = ShuffleBuilder.finalize(Vec);
if (auto *I = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(I);
CSEBlocks.insert(I->getParent());
}
}
return Vec;
}
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
IRBuilder<>::InsertPointGuard Guard(Builder);
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
return E->VectorizedValue;
}
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
unsigned VF = E->Scalars.size();
if (NeedToShuffleReuses)
VF = E->ReuseShuffleIndices.size();
ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
if (E->State == TreeEntry::NeedToGather) {
setInsertPointAfterBundle(E);
Value *Vec;
SmallVector<int> Mask;
SmallVector<const TreeEntry *> Entries;
Optional<TargetTransformInfo::ShuffleKind> Shuffle =
isGatherShuffledEntry(E, Mask, Entries);
if (Shuffle.hasValue()) {
assert((Entries.size() == 1 || Entries.size() == 2) &&
"Expected shuffle of 1 or 2 entries.");
Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
Entries.back()->VectorizedValue, Mask);
} else {
Vec = gather(E->Scalars);
}
if (NeedToShuffleReuses) {
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
Vec = ShuffleBuilder.finalize(Vec);
if (auto *I = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(I);
CSEBlocks.insert(I->getParent());
}
}
E->VectorizedValue = Vec;
return Vec;
}
assert((E->State == TreeEntry::Vectorize ||
E->State == TreeEntry::ScatterVectorize) &&
"Unhandled state");
unsigned ShuffleOrOp =
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
Instruction *VL0 = E->getMainOp();
Type *ScalarTy = VL0->getType();
if (auto *Store = dyn_cast<StoreInst>(VL0))
ScalarTy = Store->getValueOperand()->getType();
else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
ScalarTy = IE->getOperand(1)->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
switch (ShuffleOrOp) {
case Instruction::PHI: {
auto *PH = cast<PHINode>(VL0);
Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
Value *V = NewPhi;
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
// PHINodes may have multiple entries from the same block. We want to
// visit every block once.
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
BasicBlock *IBB = PH->getIncomingBlock(i);
if (!VisitedBBs.insert(IBB).second) {
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
continue;
}
Builder.SetInsertPoint(IBB->getTerminator());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
Value *Vec = vectorizeTree(E->getOperand(i));
NewPhi->addIncoming(Vec, IBB);
}
assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
"Invalid number of incoming values");
return V;
}
case Instruction::ExtractElement: {
Value *V = E->getSingleOperand(0);
Builder.SetInsertPoint(VL0);
ShuffleBuilder.addInversedMask(E->ReorderIndices);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
return V;
}
case Instruction::ExtractValue: {
auto *LI = cast<LoadInst>(E->getSingleOperand(0));
Builder.SetInsertPoint(LI);
auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
Value *NewV = propagateMetadata(V, E->Scalars);
ShuffleBuilder.addInversedMask(E->ReorderIndices);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
NewV = ShuffleBuilder.finalize(NewV);
E->VectorizedValue = NewV;
return NewV;
}
case Instruction::InsertElement: {
Builder.SetInsertPoint(VL0);
Value *V = vectorizeTree(E->getOperand(1));
const unsigned NumElts =
cast<FixedVectorType>(VL0->getType())->getNumElements();
const unsigned NumScalars = E->Scalars.size();
// Create InsertVector shuffle if necessary
Instruction *FirstInsert = nullptr;
bool IsIdentity = true;
unsigned Offset = UINT_MAX;
for (unsigned I = 0; I < NumScalars; ++I) {
Value *Scalar = E->Scalars[I];
if (!FirstInsert &&
!is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
FirstInsert = cast<Instruction>(Scalar);
Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
if (!InsertIdx || *InsertIdx == UndefMaskElem)
continue;
unsigned Idx = *InsertIdx;
if (Idx < Offset) {
Offset = Idx;
IsIdentity &= I == 0;
} else {
assert(Idx >= Offset && "Failed to find vector index offset");
IsIdentity &= Idx - Offset == I;
}
}
assert(Offset < NumElts && "Failed to find vector index offset");
// Create shuffle to resize vector
SmallVector<int> Mask(NumElts, UndefMaskElem);
if (!IsIdentity) {
for (unsigned I = 0; I < NumScalars; ++I) {
Value *Scalar = E->Scalars[I];
Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
if (!InsertIdx || *InsertIdx == UndefMaskElem)
continue;
Mask[*InsertIdx - Offset] = I;
}
} else {
std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
}
if (!IsIdentity || NumElts != NumScalars)
V = Builder.CreateShuffleVector(V, Mask);
if (NumElts != NumScalars) {
SmallVector<int> InsertMask(NumElts);
std::iota(InsertMask.begin(), InsertMask.end(), 0);
for (unsigned I = 0; I < NumElts; I++) {
if (Mask[I] != UndefMaskElem)
InsertMask[Offset + I] = NumElts + I;
}
V = Builder.CreateShuffleVector(
FirstInsert->getOperand(0), V, InsertMask,
cast<Instruction>(E->Scalars.back())->getName());
}
++NumVectorInstructions;
E->VectorizedValue = V;
return V;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
setInsertPointAfterBundle(E);
Value *InVec = vectorizeTree(E->getOperand(0));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
auto *CI = cast<CastInst>(VL0);
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::FCmp:
case Instruction::ICmp: {
setInsertPointAfterBundle(E);
Value *L = vectorizeTree(E->getOperand(0));
Value *R = vectorizeTree(E->getOperand(1));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
Value *V = Builder.CreateCmp(P0, L, R);
propagateIRFlags(V, E->Scalars, VL0);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Select: {
setInsertPointAfterBundle(E);
Value *Cond = vectorizeTree(E->getOperand(0));
Value *True = vectorizeTree(E->getOperand(1));
Value *False = vectorizeTree(E->getOperand(2));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateSelect(Cond, True, False);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::FNeg: {
setInsertPointAfterBundle(E);
Value *Op = vectorizeTree(E->getOperand(0));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateUnOp(
static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
propagateIRFlags(V, E->Scalars, VL0);
if (auto *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
setInsertPointAfterBundle(E);
Value *LHS = vectorizeTree(E->getOperand(0));
Value *RHS = vectorizeTree(E->getOperand(1));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
RHS);
propagateIRFlags(V, E->Scalars, VL0);
if (auto *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Load: {
// Loads are inserted at the head of the tree because we don't want to
// sink them all the way down past store instructions.
bool IsReorder = E->updateStateIfReorder();
if (IsReorder)
VL0 = E->getMainOp();
setInsertPointAfterBundle(E);
LoadInst *LI = cast<LoadInst>(VL0);
Instruction *NewLI;
unsigned AS = LI->getPointerAddressSpace();
Value *PO = LI->getPointerOperand();
if (E->State == TreeEntry::Vectorize) {
Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
// The pointer operand uses an in-tree scalar so we add the new BitCast
// to ExternalUses list to make sure that an extract will be generated
// in the future.
if (getTreeEntry(PO))
ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
} else {
assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
Value *VecPtr = vectorizeTree(E->getOperand(0));
// Use the minimum alignment of the gathered loads.
Align CommonAlignment = LI->getAlign();
for (Value *V : E->Scalars)
CommonAlignment =
commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
}
Value *V = propagateMetadata(NewLI, E->Scalars);
ShuffleBuilder.addInversedMask(E->ReorderIndices);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Store: {
bool IsReorder = !E->ReorderIndices.empty();
auto *SI = cast<StoreInst>(
IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
unsigned AS = SI->getPointerAddressSpace();
setInsertPointAfterBundle(E);
Value *VecValue = vectorizeTree(E->getOperand(0));
ShuffleBuilder.addMask(E->ReorderIndices);
VecValue = ShuffleBuilder.finalize(VecValue);
Value *ScalarPtr = SI->getPointerOperand();
Value *VecPtr = Builder.CreateBitCast(
ScalarPtr, VecValue->getType()->getPointerTo(AS));
StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
SI->getAlign());
// The pointer operand uses an in-tree scalar, so add the new BitCast to
// ExternalUses to make sure that an extract will be generated in the
// future.
if (getTreeEntry(ScalarPtr))
ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
Value *V = propagateMetadata(ST, E->Scalars);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::GetElementPtr: {
setInsertPointAfterBundle(E);
Value *Op0 = vectorizeTree(E->getOperand(0));
std::vector<Value *> OpVecs;
for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
++j) {
ValueList &VL = E->getOperand(j);
// Need to cast all elements to the same type before vectorization to
// avoid crash.
Type *VL0Ty = VL0->getOperand(j)->getType();
Type *Ty = llvm::all_of(
VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
? VL0Ty
: DL->getIndexType(cast<GetElementPtrInst>(VL0)
->getPointerOperandType()
->getScalarType());
for (Value *&V : VL) {
auto *CI = cast<ConstantInt>(V);
V = ConstantExpr::getIntegerCast(CI, Ty,
CI->getValue().isSignBitSet());
}
Value *OpVec = vectorizeTree(VL);
OpVecs.push_back(OpVec);
}
Value *V = Builder.CreateGEP(
cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
if (Instruction *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
setInsertPointAfterBundle(E);
Intrinsic::ID IID = Intrinsic::not_intrinsic;
if (Function *FI = CI->getCalledFunction())
IID = FI->getIntrinsicID();
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
VecCallCosts.first <= VecCallCosts.second;
Value *ScalarArg = nullptr;
std::vector<Value *> OpVecs;
SmallVector<Type *, 2> TysForDecl =
{FixedVectorType::get(CI->getType(), E->Scalars.size())};
for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
ValueList OpVL;
// Some intrinsics have scalar arguments. This argument should not be
// vectorized.
if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
CallInst *CEI = cast<CallInst>(VL0);
ScalarArg = CEI->getArgOperand(j);
OpVecs.push_back(CEI->getArgOperand(j));
if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
TysForDecl.push_back(ScalarArg->getType());
continue;
}
Value *OpVec = vectorizeTree(E->getOperand(j));
LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
OpVecs.push_back(OpVec);
}
Function *CF;
if (!UseIntrinsic) {
VFShape Shape =
VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
VecTy->getNumElements())),
false /*HasGlobalPred*/);
CF = VFDatabase(*CI).getVectorizedFunction(Shape);
} else {
CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
// The scalar argument uses an in-tree scalar so we add the new vectorized
// call to ExternalUses list to make sure that an extract will be
// generated in the future.
if (ScalarArg && getTreeEntry(ScalarArg))
ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
propagateIRFlags(V, E->Scalars, VL0);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::ShuffleVector: {
assert(E->isAltShuffle() &&
((Instruction::isBinaryOp(E->getOpcode()) &&
Instruction::isBinaryOp(E->getAltOpcode())) ||
(Instruction::isCast(E->getOpcode()) &&
Instruction::isCast(E->getAltOpcode()))) &&
"Invalid Shuffle Vector Operand");
Value *LHS = nullptr, *RHS = nullptr;
if (Instruction::isBinaryOp(E->getOpcode())) {
setInsertPointAfterBundle(E);
LHS = vectorizeTree(E->getOperand(0));
RHS = vectorizeTree(E->getOperand(1));
} else {
setInsertPointAfterBundle(E);
LHS = vectorizeTree(E->getOperand(0));
}
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V0, *V1;
if (Instruction::isBinaryOp(E->getOpcode())) {
V0 = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
V1 = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
} else {
V0 = Builder.CreateCast(
static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
V1 = Builder.CreateCast(
static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
}
// Create shuffle to take alternate operations from the vector.
// Also, gather up main and alt scalar ops to propagate IR flags to
// each vector operation.
ValueList OpScalars, AltScalars;
unsigned Sz = E->Scalars.size();
SmallVector<int> Mask(Sz);
for (unsigned I = 0; I < Sz; ++I) {
auto *OpInst = cast<Instruction>(E->Scalars[I]);
assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
if (OpInst->getOpcode() == E->getAltOpcode()) {
Mask[I] = Sz + I;
AltScalars.push_back(E->Scalars[I]);
} else {
Mask[I] = I;
OpScalars.push_back(E->Scalars[I]);
}
}
propagateIRFlags(V0, OpScalars);
propagateIRFlags(V1, AltScalars);
Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
if (Instruction *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
ShuffleBuilder.addMask(E->ReuseShuffleIndices);
V = ShuffleBuilder.finalize(V);
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
default:
llvm_unreachable("unknown inst");
}
return nullptr;
}
Value *BoUpSLP::vectorizeTree() {
ExtraValueToDebugLocsMap ExternallyUsedValues;
return vectorizeTree(ExternallyUsedValues);
}
Value *
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
// All blocks must be scheduled before any instructions are inserted.
for (auto &BSIter : BlocksSchedules) {
scheduleBlock(BSIter.second.get());
}
Builder.SetInsertPoint(&F->getEntryBlock().front());
auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
// If the vectorized tree can be rewritten in a smaller type, we truncate the
// vectorized root. InstCombine will then rewrite the entire expression. We
// sign extend the extracted values below.
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
if (MinBWs.count(ScalarRoot)) {
if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
// If current instr is a phi and not the last phi, insert it after the
// last phi node.
if (isa<PHINode>(I))
Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
else
Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
}
auto BundleWidth = VectorizableTree[0]->Scalars.size();
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
VectorizableTree[0]->VectorizedValue = Trunc;
}
LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
<< " values .\n");
// Extract all of the elements with the external uses.
for (const auto &ExternalUse : ExternalUses) {
Value *Scalar = ExternalUse.Scalar;
llvm::User *User = ExternalUse.User;
// Skip users that we already RAUW. This happens when one instruction
// has multiple uses of the same value.
if (User && !is_contained(Scalar->users(), User))
continue;
TreeEntry *E = getTreeEntry(Scalar);
assert(E && "Invalid scalar");
assert(E->State != TreeEntry::NeedToGather &&
"Extracting from a gather list");
Value *Vec = E->VectorizedValue;
assert(Vec && "Can't find vectorizable value");
Value *Lane = Builder.getInt32(ExternalUse.Lane);
auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
if (Scalar->getType() != Vec->getType()) {
Value *Ex;
// "Reuse" the existing extract to improve final codegen.
if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
Ex = Builder.CreateExtractElement(ES->getOperand(0),
ES->getOperand(1));
} else {
Ex = Builder.CreateExtractElement(Vec, Lane);
}
// If necessary, sign-extend or zero-extend ScalarRoot
// to the larger type.
if (!MinBWs.count(ScalarRoot))
return Ex;
if (MinBWs[ScalarRoot].second)
return Builder.CreateSExt(Ex, Scalar->getType());
return Builder.CreateZExt(Ex, Scalar->getType());
}
assert(isa<FixedVectorType>(Scalar->getType()) &&
isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?");
return Vec;
};
// If User == nullptr, the Scalar is used as extra arg. Generate
// ExtractElement instruction and update the record for this scalar in
// ExternallyUsedValues.
if (!User) {
assert(ExternallyUsedValues.count(Scalar) &&
"Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map");
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
Builder.SetInsertPoint(VecI->getParent(),
std::next(VecI->getIterator()));
} else {
Builder.SetInsertPoint(&F->getEntryBlock().front());
}
Value *NewInst = ExtractAndExtendIfNeeded(Vec);
CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
auto &NewInstLocs = ExternallyUsedValues[NewInst];
auto It = ExternallyUsedValues.find(Scalar);
assert(It != ExternallyUsedValues.end() &&
"Externally used scalar is not found in ExternallyUsedValues");
NewInstLocs.append(It->second);
ExternallyUsedValues.erase(Scalar);
// Required to update internally referenced instructions.
Scalar->replaceAllUsesWith(NewInst);
continue;
}
// Generate extracts for out-of-tree users.
// Find the insertion point for the extractelement lane.
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
if (PHINode *PH = dyn_cast<PHINode>(User)) {
for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
if (PH->getIncomingValue(i) == Scalar) {
Instruction *IncomingTerminator =
PH->getIncomingBlock(i)->getTerminator();
if (isa<CatchSwitchInst>(IncomingTerminator)) {
Builder.SetInsertPoint(VecI->getParent(),
std::next(VecI->getIterator()));
} else {
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
}
Value *NewInst = ExtractAndExtendIfNeeded(Vec);
CSEBlocks.insert(PH->getIncomingBlock(i));
PH->setOperand(i, NewInst);
}
}
} else {
Builder.SetInsertPoint(cast<Instruction>(User));
Value *NewInst = ExtractAndExtendIfNeeded(Vec);
CSEBlocks.insert(cast<Instruction>(User)->getParent());
User->replaceUsesOfWith(Scalar, NewInst);
}
} else {
Builder.SetInsertPoint(&F->getEntryBlock().front());
Value *NewInst = ExtractAndExtendIfNeeded(Vec);
CSEBlocks.insert(&F->getEntryBlock());
User->replaceUsesOfWith(Scalar, NewInst);
}
LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
}
// For each vectorized value:
for (auto &TEPtr : VectorizableTree) {
TreeEntry *Entry = TEPtr.get();
// No need to handle users of gathered values.
if (Entry->State == TreeEntry::NeedToGather)
continue;
assert(Entry->VectorizedValue && "Can't find vectorizable value");
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
#ifndef NDEBUG
Type *Ty = Scalar->getType();
if (!Ty->isVoidTy()) {
for (User *U : Scalar->users()) {
LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
// It is legal to delete users in the ignorelist.
assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value");
}
}
#endif
LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
eraseInstruction(cast<Instruction>(Scalar));
}
}
Builder.ClearInsertionPoint();
InstrElementSize.clear();
return VectorizableTree[0]->VectorizedValue;
}
void BoUpSLP::optimizeGatherSequence() {
LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
<< " gather sequences instructions.\n");
// LICM InsertElementInst sequences.
for (Instruction *I : GatherSeq) {
if (isDeleted(I))
continue;
// Check if this block is inside a loop.
Loop *L = LI->getLoopFor(I->getParent());
if (!L)
continue;
// Check if it has a preheader.
BasicBlock *PreHeader = L->getLoopPreheader();
if (!PreHeader)
continue;
// If the vector or the element that we insert into it are
// instructions that are defined in this basic block then we can't
// hoist this instruction.
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
if (Op0 && L->contains(Op0))
continue;
if (Op1 && L->contains(Op1))
continue;
// We can hoist this instruction. Move it to the pre-header.
I->moveBefore(PreHeader->getTerminator());
}
// Make a list of all reachable blocks in our CSE queue.
SmallVector<const DomTreeNode *, 8> CSEWorkList;
CSEWorkList.reserve(CSEBlocks.size());
for (BasicBlock *BB : CSEBlocks)
if (DomTreeNode *N = DT->getNode(BB)) {
assert(DT->isReachableFromEntry(N));
CSEWorkList.push_back(N);
}
// Sort blocks by domination. This ensures we visit a block after all blocks
// dominating it are visited.
llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
"Different nodes should have different DFS numbers");
return A->getDFSNumIn() < B->getDFSNumIn();
});
// Perform O(N^2) search over the gather sequences and merge identical
// instructions. TODO: We can further optimize this scan if we split the
// instructions into different buckets based on the insert lane.
SmallVector<Instruction *, 16> Visited;
for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
assert(*I &&
(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
"Worklist not sorted properly!");
BasicBlock *BB = (*I)->getBlock();
// For all instructions in blocks containing gather sequences:
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
Instruction *In = &*it++;
if (isDeleted(In))
continue;
if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
for (Instruction *v : Visited) {
if (In->isIdenticalTo(v) &&
DT->dominates(v->getParent(), In->getParent())) {
In->replaceAllUsesWith(v);
eraseInstruction(In);
In = nullptr;
break;
}
}
if (In) {
assert(!is_contained(Visited, In));
Visited.push_back(In);
}
}
}
CSEBlocks.clear();
GatherSeq.clear();
}
// Groups the instructions to a bundle (which is then a single scheduling entity)
// and schedules instructions until the bundle gets ready.
Optional<BoUpSLP::ScheduleData *>
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
const InstructionsState &S) {
if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
return nullptr;
// Initialize the instruction bundle.
Instruction *OldScheduleEnd = ScheduleEnd;
ScheduleData *PrevInBundle = nullptr;
ScheduleData *Bundle = nullptr;
bool ReSchedule = false;
LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
ScheduleData *Bundle) {
// The scheduling region got new instructions at the lower end (or it is a
// new region for the first bundle). This makes it necessary to
// recalculate all dependencies.
// It is seldom that this needs to be done a second time after adding the
// initial bundle to the region.
if (ScheduleEnd != OldScheduleEnd) {
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
ReSchedule = true;
}
if (ReSchedule) {
resetSchedule();
initialFillReadyList(ReadyInsts);
}
if (Bundle) {
LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
<< " in block " << BB->getName() << "\n");
calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
}
// Now try to schedule the new bundle or (if no bundle) just calculate
// dependencies. As soon as the bundle is "ready" it means that there are no
// cyclic dependencies and we can schedule it. Note that's important that we
// don't "schedule" the bundle yet (see cancelScheduling).
while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
!ReadyInsts.empty()) {
ScheduleData *Picked = ReadyInsts.pop_back_val();
if (Picked->isSchedulingEntity() && Picked->isReady())
schedule(Picked, ReadyInsts);
}
};
// Make sure that the scheduling region contains all
// instructions of the bundle.
for (Value *V : VL) {
if (!extendSchedulingRegion(V, S)) {
// If the scheduling region got new instructions at the lower end (or it
// is a new region for the first bundle). This makes it necessary to
// recalculate all dependencies.
// Otherwise the compiler may crash trying to incorrectly calculate
// dependencies and emit instruction in the wrong order at the actual
// scheduling.
TryScheduleBundle(/*ReSchedule=*/false, nullptr);
return None;
}
}
for (Value *V : VL) {
ScheduleData *BundleMember = getScheduleData(V);
assert(BundleMember &&
"no ScheduleData for bundle member (maybe not in same basic block)");
if (BundleMember->IsScheduled) {
// A bundle member was scheduled as single instruction before and now
// needs to be scheduled as part of the bundle. We just get rid of the
// existing schedule.
LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
<< " was already scheduled\n");
ReSchedule = true;
}
assert(BundleMember->isSchedulingEntity() &&
"bundle member already part of other bundle");
if (PrevInBundle) {
PrevInBundle->NextInBundle = BundleMember;
} else {
Bundle = BundleMember;
}
BundleMember->UnscheduledDepsInBundle = 0;
Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
// Group the instructions to a bundle.
BundleMember->FirstInBundle = Bundle;
PrevInBundle = BundleMember;
}
assert(Bundle && "Failed to find schedule bundle");
TryScheduleBundle(ReSchedule, Bundle);
if (!Bundle->isReady()) {
cancelScheduling(VL, S.OpValue);
return None;
}
return Bundle;
}
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
Value *OpValue) {
if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
return;
ScheduleData *Bundle = getScheduleData(OpValue);
LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
assert(!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled");
assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
"tried to unbundle something which is not a bundle");
// Un-bundle: make single instructions out of the bundle.
ScheduleData *BundleMember = Bundle;
while (BundleMember) {
assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
BundleMember->FirstInBundle = BundleMember;
ScheduleData *Next = BundleMember->NextInBundle;
BundleMember->NextInBundle = nullptr;
BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
if (BundleMember->UnscheduledDepsInBundle == 0) {
ReadyInsts.insert(BundleMember);
}
BundleMember = Next;
}
}
BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
// Allocate a new ScheduleData for the instruction.
if (ChunkPos >= ChunkSize) {
ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
ChunkPos = 0;
}
return &(ScheduleDataChunks.back()[ChunkPos++]);
}
bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
const InstructionsState &S) {
if (getScheduleData(V, isOneOf(S, V)))
return true;
Instruction *I = dyn_cast<Instruction>(V);
assert(I && "bundle member must be an instruction");
assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
"phi nodes/insertelements don't need to be scheduled");
auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
ScheduleData *ISD = getScheduleData(I);
if (!ISD)
return false;
assert(isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region");
ScheduleData *SD = allocateScheduleDataChunks();
SD->Inst = I;
SD->init(SchedulingRegionID, S.OpValue);
ExtraScheduleDataMap[I][S.OpValue] = SD;
return true;
};
if (CheckSheduleForI(I))
return true;
if (!ScheduleStart) {
// It's the first instruction in the new region.
initScheduleData(I, I->getNextNode(), nullptr, nullptr);
ScheduleStart = I;
ScheduleEnd = I->getNextNode();
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
assert(ScheduleEnd && "tried to vectorize a terminator?");
LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
return true;
}
// Search up and down at the same time, because we don't know if the new
// instruction is above or below the existing scheduling region.
BasicBlock::reverse_iterator UpIter =
++ScheduleStart->getIterator().getReverse();
BasicBlock::reverse_iterator UpperEnd = BB->rend();
BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
BasicBlock::iterator LowerEnd = BB->end();
while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
&*DownIter != I) {
if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
return false;
}
++UpIter;
++DownIter;
}
if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
assert(I->getParent() == ScheduleStart->getParent() &&
"Instruction is in wrong basic block.");
initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
ScheduleStart = I;
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
<< "\n");
return true;
}
assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
"Expected to reach top of the basic block or instruction down the "
"lower end.");
assert(I->getParent() == ScheduleEnd->getParent() &&
"Instruction is in wrong basic block.");
initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
nullptr);
ScheduleEnd = I->getNextNode();
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
assert(ScheduleEnd && "tried to vectorize a terminator?");
LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
return true;
}
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
Instruction *ToI,
ScheduleData *PrevLoadStore,
ScheduleData *NextLoadStore) {
ScheduleData *CurrentLoadStore = PrevLoadStore;
for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
ScheduleData *SD = ScheduleDataMap[I];
if (!SD) {
SD = allocateScheduleDataChunks();
ScheduleDataMap[I] = SD;
SD->Inst = I;
}
assert(!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region");
SD->init(SchedulingRegionID, I);
if (I->mayReadOrWriteMemory() &&
(!isa<IntrinsicInst>(I) ||
(cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
cast<IntrinsicInst>(I)->getIntrinsicID() !=
Intrinsic::pseudoprobe))) {
// Update the linked list of memory accessing instructions.
if (CurrentLoadStore) {
CurrentLoadStore->NextLoadStore = SD;
} else {
FirstLoadStoreInRegion = SD;
}
CurrentLoadStore = SD;
}
}
if (NextLoadStore) {
if (CurrentLoadStore)
CurrentLoadStore->NextLoadStore = NextLoadStore;
} else {
LastLoadStoreInRegion = CurrentLoadStore;
}
}
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
bool InsertInReadyList,
BoUpSLP *SLP) {
assert(SD->isSchedulingEntity());
SmallVector<ScheduleData *, 10> WorkList;
WorkList.push_back(SD);
while (!WorkList.empty()) {
ScheduleData *SD = WorkList.pop_back_val();
ScheduleData *BundleMember = SD;
while (BundleMember) {
assert(isInSchedulingRegion(BundleMember));
if (!BundleMember->hasValidDependencies()) {
LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
<< "\n");
BundleMember->Dependencies = 0;
BundleMember->resetUnscheduledDeps();
// Handle def-use chain dependencies.
if (BundleMember->OpValue != BundleMember->Inst) {
ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
BundleMember->Dependencies++;
ScheduleData *DestBundle = UseSD->FirstInBundle;
if (!DestBundle->IsScheduled)
BundleMember->incrementUnscheduledDeps(1);
if (!DestBundle->hasValidDependencies())
WorkList.push_back(DestBundle);
}
} else {
for (User *U : BundleMember->Inst->users()) {
if (isa<Instruction>(U)) {
ScheduleData *UseSD = getScheduleData(U);
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
BundleMember->Dependencies++;
ScheduleData *DestBundle = UseSD->FirstInBundle;
if (!DestBundle->IsScheduled)
BundleMember->incrementUnscheduledDeps(1);
if (!DestBundle->hasValidDependencies())
WorkList.push_back(DestBundle);
}
} else {
// I'm not sure if this can ever happen. But we need to be safe.
// This lets the instruction/bundle never be scheduled and
// eventually disable vectorization.
BundleMember->Dependencies++;
BundleMember->incrementUnscheduledDeps(1);
}
}
}
// Handle the memory dependencies.
ScheduleData *DepDest = BundleMember->NextLoadStore;
if (DepDest) {
Instruction *SrcInst = BundleMember->Inst;
MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
unsigned numAliased = 0;
unsigned DistToSrc = 1;
while (DepDest) {
assert(isInSchedulingRegion(DepDest));
// We have two limits to reduce the complexity:
// 1) AliasedCheckLimit: It's a small limit to reduce calls to
// SLP->isAliased (which is the expensive part in this loop).
// 2) MaxMemDepDistance: It's for very large blocks and it aborts
// the whole loop (even if the loop is fast, it's quadratic).
// It's important for the loop break condition (see below) to
// check this limit even between two read-only instructions.
if (DistToSrc >= MaxMemDepDistance ||
((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
(numAliased >= AliasedCheckLimit ||
SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
// We increment the counter only if the locations are aliased
// (instead of counting all alias checks). This gives a better
// balance between reduced runtime and accurate dependencies.
numAliased++;
DepDest->MemoryDependencies.push_back(BundleMember);
BundleMember->Dependencies++;
ScheduleData *DestBundle = DepDest->FirstInBundle;
if (!DestBundle->IsScheduled) {
BundleMember->incrementUnscheduledDeps(1);
}
if (!DestBundle->hasValidDependencies()) {
WorkList.push_back(DestBundle);
}
}
DepDest = DepDest->NextLoadStore;
// Example, explaining the loop break condition: Let's assume our
// starting instruction is i0 and MaxMemDepDistance = 3.
//
// +--------v--v--v
// i0,i1,i2,i3,i4,i5,i6,i7,i8
// +--------^--^--^
//
// MaxMemDepDistance let us stop alias-checking at i3 and we add
// dependencies from i0 to i3,i4,.. (even if they are not aliased).
// Previously we already added dependencies from i3 to i6,i7,i8
// (because of MaxMemDepDistance). As we added a dependency from
// i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
// and we can abort this loop at i6.
if (DistToSrc >= 2 * MaxMemDepDistance)
break;
DistToSrc++;
}
}
}
BundleMember = BundleMember->NextInBundle;
}
if (InsertInReadyList && SD->isReady()) {
ReadyInsts.push_back(SD);
LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
<< "\n");
}
}
}
void BoUpSLP::BlockScheduling::resetSchedule() {
assert(ScheduleStart &&
"tried to reset schedule on block which has not been scheduled");
for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
doForAllOpcodes(I, [&](ScheduleData *SD) {
assert(isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region");
SD->IsScheduled = false;
SD->resetUnscheduledDeps();
});
}
ReadyInsts.clear();
}
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
if (!BS->ScheduleStart)
return;
LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
BS->resetSchedule();
// For the real scheduling we use a more sophisticated ready-list: it is
// sorted by the original instruction location. This lets the final schedule
// be as close as possible to the original instruction order.
struct ScheduleDataCompare {
bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
return SD2->SchedulingPriority < SD1->SchedulingPriority;
}
};
std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
// Ensure that all dependency data is updated and fill the ready-list with
// initial instructions.
int Idx = 0;
int NumToSchedule = 0;
for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
I = I->getNextNode()) {
BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
assert((isa<InsertElementInst>(SD->Inst) ||
SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
"scheduler and vectorizer bundle mismatch");
SD->FirstInBundle->SchedulingPriority = Idx++;
if (SD->isSchedulingEntity()) {
BS->calculateDependencies(SD, false, this);
NumToSchedule++;
}
});
}
BS->initialFillReadyList(ReadyInsts);
Instruction *LastScheduledInst = BS->ScheduleEnd;
// Do the "real" scheduling.
while (!ReadyInsts.empty()) {
ScheduleData *picked = *ReadyInsts.begin();
ReadyInsts.erase(ReadyInsts.begin());
// Move the scheduled instruction(s) to their dedicated places, if not
// there yet.
ScheduleData *BundleMember = picked;
while (BundleMember) {
Instruction *pickedInst = BundleMember->Inst;
if (pickedInst->getNextNode() != LastScheduledInst) {
BS->BB->getInstList().remove(pickedInst);
BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
pickedInst);
}
LastScheduledInst = pickedInst;
BundleMember = BundleMember->NextInBundle;
}
BS->schedule(picked, ReadyInsts);
NumToSchedule--;
}
assert(NumToSchedule == 0 && "could not schedule all instructions");
// Avoid duplicate scheduling of the block.
BS->ScheduleStart = nullptr;
}
unsigned BoUpSLP::getVectorElementSize(Value *V) {
// If V is a store, just return the width of the stored value (or value
// truncated just before storing) without traversing the expression tree.
// This is the common case.
if (auto *Store = dyn_cast<StoreInst>(V)) {
if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
return DL->getTypeSizeInBits(Trunc->getSrcTy());
return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
}
if (auto *IEI = dyn_cast<InsertElementInst>(V))
return getVectorElementSize(IEI->getOperand(1));
auto E = InstrElementSize.find(V);
if (E != InstrElementSize.end())
return E->second;
// If V is not a store, we can traverse the expression tree to find loads
// that feed it. The type of the loaded value may indicate a more suitable
// width than V's type. We want to base the vector element size on the width
// of memory operations where possible.
SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
SmallPtrSet<Instruction *, 16> Visited;
if (auto *I = dyn_cast<Instruction>(V)) {
Worklist.emplace_back(I, I->getParent());
Visited.insert(I);
}
// Traverse the expression tree in bottom-up order looking for loads. If we
// encounter an instruction we don't yet handle, we give up.
auto Width = 0u;
while (!Worklist.empty()) {
Instruction *I;
BasicBlock *Parent;
std::tie(I, Parent) = Worklist.pop_back_val();
// We should only be looking at scalar instructions here. If the current
// instruction has a vector type, skip.
auto *Ty = I->getType();
if (isa<VectorType>(Ty))
continue;
// If the current instruction is a load, update MaxWidth to reflect the
// width of the loaded value.
if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
isa<ExtractValueInst>(I))
Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
// Otherwise, we need to visit the operands of the instruction. We only
// handle the interesting cases from buildTree here. If an operand is an
// instruction we haven't yet visited and from the same basic block as the
// user or the use is a PHI node, we add it to the worklist.
else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
isa<UnaryOperator>(I)) {
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get()))
if (Visited.insert(J).second &&
(isa<PHINode>(I) || J->getParent() == Parent))
Worklist.emplace_back(J, J->getParent());
} else {
break;
}
}
// If we didn't encounter a memory access in the expression tree, or if we
// gave up for some reason, just return the width of V. Otherwise, return the
// maximum width we found.
if (!Width) {
if (auto *CI = dyn_cast<CmpInst>(V))
V = CI->getOperand(0);
Width = DL->getTypeSizeInBits(V->getType());
}
for (Instruction *I : Visited)
InstrElementSize[I] = Width;
return Width;
}
// Determine if a value V in a vectorizable expression Expr can be demoted to a
// smaller type with a truncation. We collect the values that will be demoted
// in ToDemote and additional roots that require investigating in Roots.
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
SmallVectorImpl<Value *> &ToDemote,
SmallVectorImpl<Value *> &Roots) {
// We can always demote constants.
if (isa<Constant>(V)) {
ToDemote.push_back(V);
return true;
}
// If the value is not an instruction in the expression with only one use, it
// cannot be demoted.
auto *I = dyn_cast<Instruction>(V);
if (!I || !I->hasOneUse() || !Expr.count(I))
return false;
switch (I->getOpcode()) {
// We can always demote truncations and extensions. Since truncations can
// seed additional demotion, we save the truncated value.
case Instruction::Trunc:
Roots.push_back(I->getOperand(0));
break;
case Instruction::ZExt:
case Instruction::SExt:
if (isa<ExtractElementInst>(I->getOperand(0)) ||
isa<InsertElementInst>(I->getOperand(0)))
return false;
break;
// We can demote certain binary operations if we can demote both of their
// operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
!collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
return false;
break;
// We can demote selects if we can demote their true and false values.
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
!collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
return false;
break;
}
// We can demote phis if we can demote all their incoming operands. Note that
// we don't need to worry about cycles since we ensure single use above.
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(I);
for (Value *IncValue : PN->incoming_values())
if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
return false;
break;
}
// Otherwise, conservatively give up.
default:
return false;
}
// Record the value that we can demote.
ToDemote.push_back(V);
return true;
}
void BoUpSLP::computeMinimumValueSizes() {
// If there are no external uses, the expression tree must be rooted by a
// store. We can't demote in-memory values, so there is nothing to do here.
if (ExternalUses.empty())
return;
// We only attempt to truncate integer expressions.
auto &TreeRoot = VectorizableTree[0]->Scalars;
auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
if (!TreeRootIT)
return;
// If the expression is not rooted by a store, these roots should have
// external uses. We will rely on InstCombine to rewrite the expression in
// the narrower type. However, InstCombine only rewrites single-use values.
// This means that if a tree entry other than a root is used externally, it
// must have multiple uses and InstCombine will not rewrite it. The code
// below ensures that only the roots are used externally.
SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
for (auto &EU : ExternalUses)
if (!Expr.erase(EU.Scalar))
return;
if (!Expr.empty())
return;
// Collect the scalar values of the vectorizable expression. We will use this
// context to determine which values can be demoted. If we see a truncation,
// we mark it as seeding another demotion.
for (auto &EntryPtr : VectorizableTree)
Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
// Ensure the roots of the vectorizable tree don't form a cycle. They must
// have a single external user that is not in the vectorizable tree.
for (auto *Root : TreeRoot)
if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
return;
// Conservatively determine if we can actually truncate the roots of the
// expression. Collect the values that can be demoted in ToDemote and
// additional roots that require investigating in Roots.
SmallVector<Value *, 32> ToDemote;
SmallVector<Value *, 4> Roots;
for (auto *Root : TreeRoot)
if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
return;
// The maximum bit width required to represent all the values that can be
// demoted without loss of precision. It would be safe to truncate the roots
// of the expression to this width.
auto MaxBitWidth = 8u;
// We first check if all the bits of the roots are demanded. If they're not,
// we can truncate the roots to this narrower type.
for (auto *Root : TreeRoot) {
auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
MaxBitWidth = std::max<unsigned>(
Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
}
// True if the roots can be zero-extended back to their original type, rather
// than sign-extended. We know that if the leading bits are not demanded, we
// can safely zero-extend. So we initialize IsKnownPositive to True.
bool IsKnownPositive = true;
// If all the bits of the roots are demanded, we can try a little harder to
// compute a narrower type. This can happen, for example, if the roots are
// getelementptr indices. InstCombine promotes these indices to the pointer
// width. Thus, all their bits are technically demanded even though the
// address computation might be vectorized in a smaller type.
//
// We start by looking at each entry that can be demoted. We compute the
// maximum bit width required to store the scalar by using ValueTracking to
// compute the number of high-order bits we can truncate.
if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
llvm::all_of(TreeRoot, [](Value *R) {
assert(R->hasOneUse() && "Root should have only one use!");
return isa<GetElementPtrInst>(R->user_back());
})) {
MaxBitWidth = 8u;
// Determine if the sign bit of all the roots is known to be zero. If not,
// IsKnownPositive is set to False.
IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
KnownBits Known = computeKnownBits(R, *DL);
return Known.isNonNegative();
});
// Determine the maximum number of bits required to store the scalar
// values.
for (auto *Scalar : ToDemote) {
auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
}
// If we can't prove that the sign bit is zero, we must add one to the
// maximum bit width to account for the unknown sign bit. This preserves
// the existing sign bit so we can safely sign-extend the root back to the
// original type. Otherwise, if we know the sign bit is zero, we will
// zero-extend the root instead.
//
// FIXME: This is somewhat suboptimal, as there will be cases where adding
// one to the maximum bit width will yield a larger-than-necessary
// type. In general, we need to add an extra bit only if we can't
// prove that the upper bit of the original type is equal to the
// upper bit of the proposed smaller type. If these two bits are the
// same (either zero or one) we know that sign-extending from the
// smaller type will result in the same value. Here, since we can't
// yet prove this, we are just making the proposed smaller type
// larger to ensure correctness.
if (!IsKnownPositive)
++MaxBitWidth;
}
// Round MaxBitWidth up to the next power-of-two.
if (!isPowerOf2_64(MaxBitWidth))
MaxBitWidth = NextPowerOf2(MaxBitWidth);
// If the maximum bit width we compute is less than the with of the roots'
// type, we can proceed with the narrowing. Otherwise, do nothing.
if (MaxBitWidth >= TreeRootIT->getBitWidth())
return;
// If we can truncate the root, we must collect additional values that might
// be demoted as a result. That is, those seeded by truncations we will
// modify.
while (!Roots.empty())
collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
// Finally, map the values we can demote to the maximum bit with we computed.
for (auto *Scalar : ToDemote)
MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
}
namespace {
/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
SLPVectorizerPass Impl;
/// Pass identification, replacement for typeid
static char ID;
explicit SLPVectorizer() : FunctionPass(ID) {
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override {
return false;
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<InjectTLIMappingsLegacy>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
};
} // end anonymous namespace
PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
auto *AA = &AM.getResult<AAManager>(F);
auto *LI = &AM.getResult<LoopAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
TargetTransformInfo *TTI_,
TargetLibraryInfo *TLI_, AAResults *AA_,
LoopInfo *LI_, DominatorTree *DT_,
AssumptionCache *AC_, DemandedBits *DB_,
OptimizationRemarkEmitter *ORE_) {
if (!RunSLPVectorization)
return false;
SE = SE_;
TTI = TTI_;
TLI = TLI_;
AA = AA_;
LI = LI_;
DT = DT_;
AC = AC_;
DB = DB_;
DL = &F.getParent()->getDataLayout();
Stores.clear();
GEPs.clear();
bool Changed = false;
// If the target claims to have no vector registers don't attempt
// vectorization.
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
return false;
// Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
// Use the bottom up slp vectorizer to construct chains that start with
// store instructions.
BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
// A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
// delete instructions.
// Update DFS numbers now so that we can use them for ordering.
DT->updateDFSNumbers();
// Scan the blocks in the function in post order.
for (auto BB : post_order(&F.getEntryBlock())) {
collectSeedInstructions(BB);
// Vectorize trees that end at stores.
if (!Stores.empty()) {
LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
<< " underlying objects.\n");
Changed |= vectorizeStoreChains(R);
}
// Vectorize trees that end at reductions.
Changed |= vectorizeChainsInBlock(BB, R);
// Vectorize the index computations of getelementptr instructions. This
// is primarily intended to catch gather-like idioms ending at
// non-consecutive loads.
if (!GEPs.empty()) {
LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
<< " underlying objects.\n");
Changed |= vectorizeGEPIndices(BB, R);
}
}
if (Changed) {
R.optimizeGatherSequence();
LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
}
return Changed;
}
/// Order may have elements assigned special value (size) which is out of
/// bounds. Such indices only appear on places which correspond to undef values
/// (see canReuseExtract for details) and used in order to avoid undef values
/// have effect on operands ordering.
/// The first loop below simply finds all unused indices and then the next loop
/// nest assigns these indices for undef values positions.
/// As an example below Order has two undef positions and they have assigned
/// values 3 and 7 respectively:
/// before: 6 9 5 4 9 2 1 0
/// after: 6 3 5 4 7 2 1 0
/// \returns Fixed ordering.
static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
const unsigned Sz = NewOrder.size();
SmallBitVector UsedIndices(Sz);
SmallVector<int> MaskedIndices;
for (int I = 0, E = NewOrder.size(); I < E; ++I) {
if (NewOrder[I] < Sz)
UsedIndices.set(NewOrder[I]);
else
MaskedIndices.push_back(I);
}
if (MaskedIndices.empty())
return NewOrder;
SmallVector<int> AvailableIndices(MaskedIndices.size());
unsigned Cnt = 0;
int Idx = UsedIndices.find_first();
do {
AvailableIndices[Cnt] = Idx;
Idx = UsedIndices.find_next(Idx);
++Cnt;
} while (Idx > 0);
assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
NewOrder[MaskedIndices[I]] = AvailableIndices[I];
return NewOrder;
}
bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
unsigned Idx) {
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
<< "\n");
const unsigned Sz = R.getVectorElementSize(Chain[0]);
const unsigned MinVF = R.getMinVecRegSize() / Sz;
unsigned VF = Chain.size();
if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
return false;
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
<< "\n");
R.buildTree(Chain);
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
// TODO: Handle orders of size less than number of elements in the vector.
if (Order && Order->size() == Chain.size()) {
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(Chain.size());
transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
[Chain](const unsigned Idx) { return Chain[Idx]; });
R.buildTree(ReorderedOps);
}
if (R.isTreeTinyAndNotFullyVectorizable())
return false;
if (R.isLoadCombineCandidate())
return false;
R.computeMinimumValueSizes();
InstructionCost Cost = R.getTreeCost();
LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
if (Cost < -SLPCostThreshold) {
LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
using namespace ore;
R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
cast<StoreInst>(Chain[0]))
<< "Stores SLP vectorized with cost " << NV("Cost", Cost)
<< " and with tree size "
<< NV("TreeSize", R.getTreeSize()));
R.vectorizeTree();
return true;
}
return false;
}
bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
BoUpSLP &R) {
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we vectorized so that we don't visit the same store twice.
BoUpSLP::ValueSet VectorizedStores;
bool Changed = false;
int E = Stores.size();
SmallBitVector Tails(E, false);
int MaxIter = MaxStoreLookup.getValue();
SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
E, std::make_pair(E, INT_MAX));
SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
int IterCnt;
auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
&CheckedPairs,
&ConsecutiveChain](int K, int Idx) {
if (IterCnt >= MaxIter)
return true;
if (CheckedPairs[Idx].test(K))
return ConsecutiveChain[K].second == 1 &&
ConsecutiveChain[K].first == Idx;
++IterCnt;
CheckedPairs[Idx].set(K);
CheckedPairs[K].set(Idx);
Optional<int> Diff = getPointersDiff(
Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
Stores[Idx]->getValueOperand()->getType(),
Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
if (!Diff || *Diff == 0)
return false;
int Val = *Diff;
if (Val < 0) {
if (ConsecutiveChain[Idx].second > -Val) {
Tails.set(K);
ConsecutiveChain[Idx] = std::make_pair(K, -Val);
}
return false;
}
if (ConsecutiveChain[K].second <= Val)
return false;
Tails.set(Idx);
ConsecutiveChain[K] = std::make_pair(Idx, Val);
return Val == 1;
};
// Do a quadratic search on all of the given stores in reverse order and find
// all of the pairs of stores that follow each other.
for (int Idx = E - 1; Idx >= 0; --Idx) {
// If a store has multiple consecutive store candidates, search according
// to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
// This is because usually pairing with immediate succeeding or preceding
// candidate create the best chance to find slp vectorization opportunity.
const int MaxLookDepth = std::max(E - Idx, Idx + 1);
IterCnt = 0;
for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
(Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
break;
}
// Tracks if we tried to vectorize stores starting from the given tail
// already.
SmallBitVector TriedTails(E, false);
// For stores that start but don't end a link in the chain:
for (int Cnt = E; Cnt > 0; --Cnt) {
int I = Cnt - 1;
if (ConsecutiveChain[I].first == E || Tails.test(I))
continue;
// We found a store instr that starts a chain. Now follow the chain and try
// to vectorize it.
BoUpSLP::ValueList Operands;
// Collect the chain into a list.
while (I != E && !VectorizedStores.count(Stores[I])) {
Operands.push_back(Stores[I]);
Tails.set(I);
if (ConsecutiveChain[I].second != 1) {
// Mark the new end in the chain and go back, if required. It might be
// required if the original stores come in reversed order, for example.
if (ConsecutiveChain[I].first != E &&
Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
!VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
TriedTails.set(I);
Tails.reset(ConsecutiveChain[I].first);
if (Cnt < ConsecutiveChain[I].first + 2)
Cnt = ConsecutiveChain[I].first + 2;
}
break;
}
// Move to the next value in the chain.
I = ConsecutiveChain[I].first;
}
assert(!Operands.empty() && "Expected non-empty list of stores.");
unsigned MaxVecRegSize = R.getMaxVecRegSize();
unsigned EltSize = R.getVectorElementSize(Operands[0]);
unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
MaxElts);
// FIXME: Is division-by-2 the correct step? Should we assert that the
// register size is a power-of-2?
unsigned StartIdx = 0;
for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
if (!VectorizedStores.count(Slice.front()) &&
!VectorizedStores.count(Slice.back()) &&
vectorizeStoreChain(Slice, R, Cnt)) {
// Mark the vectorized stores so that we don't vectorize them again.
VectorizedStores.insert(Slice.begin(), Slice.end());
Changed = true;
// If we vectorized initial block, no need to try to vectorize it
// again.
if (Cnt == StartIdx)
StartIdx += Size;
Cnt += Size;
continue;
}
++Cnt;
}
// Check if the whole array was vectorized already - exit.
if (StartIdx >= Operands.size())
break;
}
}
return Changed;
}
void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
// Initialize the collections. We will make a single pass over the block.
Stores.clear();
GEPs.clear();
// Visit the store and getelementptr instructions in BB and organize them in
// Stores and GEPs according to the underlying objects of their pointer
// operands.
for (Instruction &I : *BB) {
// Ignore store instructions that are volatile or have a pointer operand
// that doesn't point to a scalar type.
if (auto *SI = dyn_cast<StoreInst>(&I)) {
if (!SI->isSimple())
continue;
if (!isValidElementType(SI->getValueOperand()->getType()))
continue;
Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
}
// Ignore getelementptr instructions that have more than one index, a
// constant index, or a pointer operand that doesn't point to a scalar
// type.
else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
auto Idx = GEP->idx_begin()->get();
if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
continue;
if (!isValidElementType(Idx->getType()))
continue;
if (GEP->getType()->isVectorTy())
continue;
GEPs[GEP->getPointerOperand()].push_back(GEP);
}
}
}
bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B)
return false;
Value *VL[] = {A, B};
return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
}
bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
bool AllowReorder) {
if (VL.size() < 2)
return false;
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n");
// Check that all of the parts are instructions of the same type,
// we permit an alternate opcode via InstructionsState.
InstructionsState S = getSameOpcode(VL);
if (!S.getOpcode())
return false;
Instruction *I0 = cast<Instruction>(S.OpValue);
// Make sure invalid types (including vector type) are rejected before
// determining vectorization factor for scalar instructions.
for (Value *V : VL) {
Type *Ty = V->getType();
if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
// NOTE: the following will give user internal llvm type name, which may
// not be useful.
R.getORE()->emit([&]() {
std::string type_str;
llvm::raw_string_ostream rso(type_str);
Ty->print(rso);
return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
<< "Cannot SLP vectorize list: type "
<< rso.str() + " is unsupported by vectorizer";
});
return false;
}
}
unsigned Sz = R.getVectorElementSize(I0);
unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
if (MaxVF < 2) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
<< "Cannot SLP vectorize list: vectorization factor "
<< "less than 2 is not supported";
});
return false;
}
bool Changed = false;
bool CandidateFound = false;
InstructionCost MinCost = SLPCostThreshold.getValue();
Type *ScalarTy = VL[0]->getType();
if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
ScalarTy = IE->getOperand(1)->getType();
unsigned NextInst = 0, MaxInst = VL.size();
for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
// No actual vectorization should happen, if number of parts is the same as
// provided vectorization factor (i.e. the scalar type is used for vector
// code during codegen).
auto *VecTy = FixedVectorType::get(ScalarTy, VF);
if (TTI->getNumberOfParts(VecTy) == VF)
continue;
for (unsigned I = NextInst; I < MaxInst; ++I) {
unsigned OpsWidth = 0;
if (I + VF > MaxInst)
OpsWidth = MaxInst - I;
else
OpsWidth = VF;
if (!isPowerOf2_32(OpsWidth))
continue;
if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
break;
ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
// Check that a previous iteration of this loop did not delete the Value.
if (llvm::any_of(Ops, [&R](Value *V) {
auto *I = dyn_cast<Instruction>(V);
return I && R.isDeleted(I);
}))
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
<< "\n");
R.buildTree(Ops);
if (AllowReorder) {
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
if (Order) {
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(Ops.size());
transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
[Ops](const unsigned Idx) { return Ops[Idx]; });
R.buildTree(ReorderedOps);
}
}
if (R.isTreeTinyAndNotFullyVectorizable())
continue;
R.computeMinimumValueSizes();
InstructionCost Cost = R.getTreeCost();
CandidateFound = true;
MinCost = std::min(MinCost, Cost);
if (Cost < -SLPCostThreshold) {
LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
cast<Instruction>(Ops[0]))
<< "SLP vectorized with cost " << ore::NV("Cost", Cost)
<< " and with tree size "
<< ore::NV("TreeSize", R.getTreeSize()));
R.vectorizeTree();
// Move to the next bundle.
I += VF - 1;
NextInst = I + 1;
Changed = true;
}
}
}
if (!Changed && CandidateFound) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
<< "List vectorization was possible but not beneficial with cost "
<< ore::NV("Cost", MinCost) << " >= "
<< ore::NV("Treshold", -SLPCostThreshold);
});
} else if (!Changed) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
<< "Cannot SLP vectorize list: vectorization was impossible"
<< " with available vectorization factors";
});
}
return Changed;
}
bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
if (!I)
return false;
if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
return false;
Value *P = I->getParent();
// Vectorize in current basic block only.
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
return false;
// Try to vectorize V.
if (tryToVectorizePair(Op0, Op1, R))
return true;
auto *A = dyn_cast<BinaryOperator>(Op0);
auto *B = dyn_cast<BinaryOperator>(Op1);
// Try to skip B.
if (B && B->hasOneUse()) {
auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
return true;
if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
return true;
}
// Try to skip A.
if (A && A->hasOneUse()) {
auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
return true;
if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
return true;
}
return false;
}
namespace {
/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction instructions that has values
/// that can be put into a vector as its leaves. For example:
///
/// mul mul mul mul
/// \ / \ /
/// + +
/// \ /
/// +
/// This tree has "mul" as its leaf values and "+" as its reduction
/// instructions. A reduction can feed into a store or a binary operation
/// feeding a phi.
/// ...
/// \ /
/// +
/// |
/// phi +=
///
/// Or:
/// ...
/// \ /
/// +
/// |
/// *p =
///
class HorizontalReduction {
using ReductionOpsType = SmallVector<Value *, 16>;
using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
ReductionOpsListType ReductionOps;
SmallVector<Value *, 32> ReducedVals;
// Use map vector to make stable output.
MapVector<Instruction *, Value *> ExtraArgs;
WeakTrackingVH ReductionRoot;
/// The type of reduction operation.
RecurKind RdxKind;
const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
static bool isCmpSelMinMax(Instruction *I) {
return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
}
// And/or are potentially poison-safe logical patterns like:
// select x, y, false
// select x, true, y
static bool isBoolLogicOp(Instruction *I) {
return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
match(I, m_LogicalOr(m_Value(), m_Value()));
}
/// Checks if instruction is associative and can be vectorized.
static bool isVectorizable(RecurKind Kind, Instruction *I) {
if (Kind == RecurKind::None)
return false;
// Integer ops that map to select instructions or intrinsics are fine.
if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
isBoolLogicOp(I))
return true;
if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
// FP min/max are associative except for NaN and -0.0. We do not
// have to rule out -0.0 here because the intrinsic semantics do not
// specify a fixed result for it.
return I->getFastMathFlags().noNaNs();
}
return I->isAssociative();
}
static Value *getRdxOperand(Instruction *I, unsigned Index) {
// Poison-safe 'or' takes the form: select X, true, Y
// To make that work with the normal operand processing, we skip the
// true value operand.
// TODO: Change the code and data structures to handle this without a hack.
if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
return I->getOperand(2);
return I->getOperand(Index);
}
/// Checks if the ParentStackElem.first should be marked as a reduction
/// operation with an extra argument or as extra argument itself.
void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
Value *ExtraArg) {
if (ExtraArgs.count(ParentStackElem.first)) {
ExtraArgs[ParentStackElem.first] = nullptr;
// We ran into something like:
// ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
// The whole ParentStackElem.first should be considered as an extra value
// in this case.
// Do not perform analysis of remaining operands of ParentStackElem.first
// instruction, this whole instruction is an extra argument.
ParentStackElem.second = INVALID_OPERAND_INDEX;
} else {
// We ran into something like:
// ParentStackElem.first += ... + ExtraArg + ...
ExtraArgs[ParentStackElem.first] = ExtraArg;
}
}
/// Creates reduction operation with the current opcode.
static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
Value *RHS, const Twine &Name, bool UseSelect) {
unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
switch (Kind) {
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::Or:
case RecurKind::And:
case RecurKind::Xor:
case RecurKind::FAdd:
case RecurKind::FMul:
return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
Name);
case RecurKind::FMax:
return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
case RecurKind::FMin:
return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
case RecurKind::SMax:
if (UseSelect) {
Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
}
return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
case RecurKind::SMin:
if (UseSelect) {
Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
}
return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
case RecurKind::UMax:
if (UseSelect) {
Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
}
return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
case RecurKind::UMin:
if (UseSelect) {
Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
}
return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
default:
llvm_unreachable("Unknown reduction operation.");
}
}
/// Creates reduction operation with the current opcode with the IR flags
/// from \p ReductionOps.
static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
Value *RHS, const Twine &Name,
const ReductionOpsListType &ReductionOps) {
bool UseSelect = ReductionOps.size() == 2;
assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction");
Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
if (auto *Sel = dyn_cast<SelectInst>(Op)) {
propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
propagateIRFlags(Op, ReductionOps[1]);
return Op;
}
}
propagateIRFlags(Op, ReductionOps[0]);
return Op;
}
/// Creates reduction operation with the current opcode with the IR flags
/// from \p I.
static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
Value *RHS, const Twine &Name, Instruction *I) {
auto *SelI = dyn_cast<SelectInst>(I);
Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
if (auto *Sel = dyn_cast<SelectInst>(Op))
propagateIRFlags(Sel->getCondition(), SelI->getCondition());
}
propagateIRFlags(Op, I);
return Op;
}
static RecurKind getRdxKind(Instruction *I) {
assert(I && "Expected instruction for reduction matching");
TargetTransformInfo::ReductionFlags RdxFlags;
if (match(I, m_Add(m_Value(), m_Value())))
return RecurKind::Add;
if (match(I, m_Mul(m_Value(), m_Value())))
return RecurKind::Mul;
if (match(I, m_And(m_Value(), m_Value())) ||
match(I, m_LogicalAnd(m_Value(), m_Value())))
return RecurKind::And;
if (match(I, m_Or(m_Value(), m_Value())) ||
match(I, m_LogicalOr(m_Value(), m_Value())))
return RecurKind::Or;
if (match(I, m_Xor(m_Value(), m_Value())))
return RecurKind::Xor;
if (match(I, m_FAdd(m_Value(), m_Value())))
return RecurKind::FAdd;
if (match(I, m_FMul(m_Value(), m_Value())))
return RecurKind::FMul;
if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
return RecurKind::FMax;
if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
return RecurKind::FMin;
// This matches either cmp+select or intrinsics. SLP is expected to handle
// either form.
// TODO: If we are canonicalizing to intrinsics, we can remove several
// special-case paths that deal with selects.
if (match(I, m_SMax(m_Value(), m_Value())))
return RecurKind::SMax;
if (match(I, m_SMin(m_Value(), m_Value())))
return RecurKind::SMin;
if (match(I, m_UMax(m_Value(), m_Value())))
return RecurKind::UMax;
if (match(I, m_UMin(m_Value(), m_Value())))
return RecurKind::UMin;
if (auto *Select = dyn_cast<SelectInst>(I)) {
// Try harder: look for min/max pattern based on instructions producing
// same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
// During the intermediate stages of SLP, it's very common to have
// pattern like this (since optimizeGatherSequence is run only once
// at the end):
// %1 = extractelement <2 x i32> %a, i32 0
// %2 = extractelement <2 x i32> %a, i32 1
// %cond = icmp sgt i32 %1, %2
// %3 = extractelement <2 x i32> %a, i32 0
// %4 = extractelement <2 x i32> %a, i32 1
// %select = select i1 %cond, i32 %3, i32 %4
CmpInst::Predicate Pred;
Instruction *L1;
Instruction *L2;
Value *LHS = Select->getTrueValue();
Value *RHS = Select->getFalseValue();
Value *Cond = Select->getCondition();
// TODO: Support inverse predicates.
if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
if (!isa<ExtractElementInst>(RHS) ||
!L2->isIdenticalTo(cast<Instruction>(RHS)))
return RecurKind::None;
} else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
if (!isa<ExtractElementInst>(LHS) ||
!L1->isIdenticalTo(cast<Instruction>(LHS)))
return RecurKind::None;
} else {
if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
return RecurKind::None;
if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
!L1->isIdenticalTo(cast<Instruction>(LHS)) ||
!L2->isIdenticalTo(cast<Instruction>(RHS)))
return RecurKind::None;
}
TargetTransformInfo::ReductionFlags RdxFlags;
switch (Pred) {
default:
return RecurKind::None;
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE:
return RecurKind::SMax;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return RecurKind::SMin;
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
return RecurKind::UMax;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
return RecurKind::UMin;
}
}
return RecurKind::None;
}
/// Get the index of the first operand.
static unsigned getFirstOperandIndex(Instruction *I) {
return isCmpSelMinMax(I) ? 1 : 0;
}
/// Total number of operands in the reduction operation.
static unsigned getNumberOfOperands(Instruction *I) {
return isCmpSelMinMax(I) ? 3 : 2;
}
/// Checks if the instruction is in basic block \p BB.
/// For a cmp+sel min/max reduction check that both ops are in \p BB.
static bool hasSameParent(Instruction *I, BasicBlock *BB) {
if (isCmpSelMinMax(I)) {
auto *Sel = cast<SelectInst>(I);
auto *Cmp = cast<Instruction>(Sel->getCondition());
return Sel->getParent() == BB && Cmp->getParent() == BB;
}
return I->getParent() == BB;
}
/// Expected number of uses for reduction operations/reduced values.
static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
if (IsCmpSelMinMax) {
// SelectInst must be used twice while the condition op must have single
// use only.
if (auto *Sel = dyn_cast<SelectInst>(I))
return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
return I->hasNUses(2);
}
// Arithmetic reduction operation must be used once only.
return I->hasOneUse();
}
/// Initializes the list of reduction operations.
void initReductionOps(Instruction *I) {
if (isCmpSelMinMax(I))
ReductionOps.assign(2, ReductionOpsType());
else
ReductionOps.assign(1, ReductionOpsType());
}
/// Add all reduction operations for the reduction instruction \p I.
void addReductionOps(Instruction *I) {
if (isCmpSelMinMax(I)) {
ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
ReductionOps[1].emplace_back(I);
} else {
ReductionOps[0].emplace_back(I);
}
}
static Value *getLHS(RecurKind Kind, Instruction *I) {
if (Kind == RecurKind::None)
return nullptr;
return I->getOperand(getFirstOperandIndex(I));
}
static Value *getRHS(RecurKind Kind, Instruction *I) {
if (Kind == RecurKind::None)
return nullptr;
return I->getOperand(getFirstOperandIndex(I) + 1);
}
public:
HorizontalReduction() = default;
/// Try to find a reduction tree.
bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
assert((!Phi || is_contained(Phi->operands(), Inst)) &&
"Phi needs to use the binary operator");
assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
isa<IntrinsicInst>(Inst)) &&
"Expected binop, select, or intrinsic for reduction matching");
RdxKind = getRdxKind(Inst);
// We could have a initial reductions that is not an add.
// r *= v1 + v2 + v3 + v4
// In such a case start looking for a tree rooted in the first '+'.
if (Phi) {
if (getLHS(RdxKind, Inst) == Phi) {
Phi = nullptr;
Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
if (!Inst)
return false;
RdxKind = getRdxKind(Inst);
} else if (getRHS(RdxKind, Inst) == Phi) {
Phi = nullptr;
Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
if (!Inst)
return false;
RdxKind = getRdxKind(Inst);
}
}
if (!isVectorizable(RdxKind, Inst))
return false;
// Analyze "regular" integer/FP types for reductions - no target-specific
// types or pointers.
Type *Ty = Inst->getType();
if (!isValidElementType(Ty) || Ty->isPointerTy())
return false;
// Though the ultimate reduction may have multiple uses, its condition must
// have only single use.
if (auto *Sel = dyn_cast<SelectInst>(Inst))
if (!Sel->getCondition()->hasOneUse())
return false;
ReductionRoot = Inst;
// The opcode for leaf values that we perform a reduction on.
// For example: load(x) + load(y) + load(z) + fptoui(w)
// The leaf opcode for 'w' does not match, so we don't include it as a
// potential candidate for the reduction.
unsigned LeafOpcode = 0;
// Post-order traverse the reduction tree starting at Inst. We only handle
// true trees containing binary operators or selects.
SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
initReductionOps(Inst);
while (!Stack.empty()) {
Instruction *TreeN = Stack.back().first;
unsigned EdgeToVisit = Stack.back().second++;
const RecurKind TreeRdxKind = getRdxKind(TreeN);
bool IsReducedValue = TreeRdxKind != RdxKind;
// Postorder visit.
if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
if (IsReducedValue)
ReducedVals.push_back(TreeN);
else {
auto ExtraArgsIter = ExtraArgs.find(TreeN);
if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
// Check if TreeN is an extra argument of its parent operation.
if (Stack.size() <= 1) {
// TreeN can't be an extra argument as it is a root reduction
// operation.
return false;
}
// Yes, TreeN is an extra argument, do not add it to a list of
// reduction operations.
// Stack[Stack.size() - 2] always points to the parent operation.
markExtraArg(Stack[Stack.size() - 2], TreeN);
ExtraArgs.erase(TreeN);
} else
addReductionOps(TreeN);
}
// Retract.
Stack.pop_back();
continue;
}
// Visit operands.
Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
if (!EdgeInst) {
// Edge value is not a reduction instruction or a leaf instruction.
// (It may be a constant, function argument, or something else.)
markExtraArg(Stack.back(), EdgeVal);
continue;
}
RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
// Continue analysis if the next operand is a reduction operation or
// (possibly) a leaf value. If the leaf value opcode is not set,
// the first met operation != reduction operation is considered as the
// leaf opcode.
// Only handle trees in the current basic block.
// Each tree node needs to have minimal number of users except for the
// ultimate reduction.
const bool IsRdxInst = EdgeRdxKind == RdxKind;
if (EdgeInst != Phi && EdgeInst != Inst &&
hasSameParent(EdgeInst, Inst->getParent()) &&
hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
(!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
if (IsRdxInst) {
// We need to be able to reassociate the reduction operations.
if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), EdgeInst);
continue;
}
} else if (!LeafOpcode) {
LeafOpcode = EdgeInst->getOpcode();
}
Stack.push_back(
std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
continue;
}
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), EdgeInst);
}
return true;
}
/// Attempt to vectorize the tree found by matchAssociativeReduction.
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
// If there are a sufficient number of reduction values, reduce
// to a nearby power-of-2. We can safely generate oversized
// vectors and rely on the backend to split them to legal sizes.
unsigned NumReducedVals = ReducedVals.size();
if (NumReducedVals < 4)
return false;
// Intersect the fast-math-flags from all reduction operations.
FastMathFlags RdxFMF;
RdxFMF.set();
for (ReductionOpsType &RdxOp : ReductionOps) {
for (Value *RdxVal : RdxOp) {
if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
RdxFMF &= FPMO->getFastMathFlags();
}
}
IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
Builder.setFastMathFlags(RdxFMF);
BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
// The same extra argument may be used several times, so log each attempt
// to use it.
for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
assert(Pair.first && "DebugLoc must be set.");
ExternallyUsedValues[Pair.second].push_back(Pair.first);
}
// The compare instruction of a min/max is the insertion point for new
// instructions and may be replaced with a new compare instruction.
auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
assert(isa<SelectInst>(RdxRootInst) &&
"Expected min/max reduction to have select root instruction");
Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
assert(isa<Instruction>(ScalarCond) &&
"Expected min/max reduction to have compare condition");
return cast<Instruction>(ScalarCond);
};
// The reduction root is used as the insertion point for new instructions,
// so set it as externally used to prevent it from being deleted.
ExternallyUsedValues[ReductionRoot];
SmallVector<Value *, 16> IgnoreList;
for (ReductionOpsType &RdxOp : ReductionOps)
IgnoreList.append(RdxOp.begin(), RdxOp.end());
unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
if (NumReducedVals > ReduxWidth) {
// In the loop below, we are building a tree based on a window of
// 'ReduxWidth' values.
// If the operands of those values have common traits (compare predicate,
// constant operand, etc), then we want to group those together to
// minimize the cost of the reduction.
// TODO: This should be extended to count common operands for
// compares and binops.
// Step 1: Count the number of times each compare predicate occurs.
SmallDenseMap<unsigned, unsigned> PredCountMap;
for (Value *RdxVal : ReducedVals) {
CmpInst::Predicate Pred;
if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
++PredCountMap[Pred];
}
// Step 2: Sort the values so the most common predicates come first.
stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
CmpInst::Predicate PredA, PredB;
if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
return PredCountMap[PredA] > PredCountMap[PredB];
}
return false;
});
}
Value *VectorizedTree = nullptr;
unsigned i = 0;
while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
V.buildTree(VL, ExternallyUsedValues, IgnoreList);
Optional<ArrayRef<unsigned>> Order = V.bestOrder();
if (Order) {
assert(Order->size() == VL.size() &&
"Order size must be the same as number of vectorized "
"instructions.");
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(VL.size());
transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
[VL](const unsigned Idx) { return VL[Idx]; });
V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
}
if (V.isTreeTinyAndNotFullyVectorizable())
break;
if (V.isLoadCombineReductionCandidate(RdxKind))
break;
// For a poison-safe boolean logic reduction, do not replace select
// instructions with logic ops. All reduced values will be frozen (see
// below) to prevent leaking poison.
if (isa<SelectInst>(ReductionRoot) &&
isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
NumReducedVals != ReduxWidth)
break;
V.computeMinimumValueSizes();
// Estimate cost.
InstructionCost TreeCost =
V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
InstructionCost ReductionCost =
getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
InstructionCost Cost = TreeCost + ReductionCost;
if (!Cost.isValid()) {
LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
return false;
}
if (Cost >= -SLPCostThreshold) {
V.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
cast<Instruction>(VL[0]))
<< "Vectorizing horizontal reduction is possible"
<< "but not beneficial with cost " << ore::NV("Cost", Cost)
<< " and threshold "
<< ore::NV("Threshold", -SLPCostThreshold);
});
break;
}
LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n");
V.getORE()->emit([&]() {
return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
cast<Instruction>(VL[0]))
<< "Vectorized horizontal reduction with cost "
<< ore::NV("Cost", Cost) << " and with tree size "
<< ore::NV("TreeSize", V.getTreeSize());
});
// Vectorize a tree.
DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
// Emit a reduction. If the root is a select (min/max idiom), the insert
// point is the compare condition of that select.
Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
if (isCmpSelMinMax(RdxRootInst))
Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
else
Builder.SetInsertPoint(RdxRootInst);
// To prevent poison from leaking across what used to be sequential, safe,
// scalar boolean logic operations, the reduction operand must be frozen.
if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
Value *ReducedSubTree =
emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
if (!VectorizedTree) {
// Initialize the final value in the reduction.
VectorizedTree = ReducedSubTree;
} else {
// Update the final value in the reduction.
Builder.SetCurrentDebugLocation(Loc);
VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
ReducedSubTree, "op.rdx", ReductionOps);
}
i += ReduxWidth;
ReduxWidth = PowerOf2Floor(NumReducedVals - i);
}
if (VectorizedTree) {
// Finish the reduction.
for (; i < NumReducedVals; ++i) {
auto *I = cast<Instruction>(ReducedVals[i]);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
VectorizedTree =
createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
}
for (auto &Pair : ExternallyUsedValues) {
// Add each externally used value to the final reduction.
for (auto *I : Pair.second) {
Builder.SetCurrentDebugLocation(I->getDebugLoc());
VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
Pair.first, "op.extra", I);
}
}
ReductionRoot->replaceAllUsesWith(VectorizedTree);
// Mark all scalar reduction ops for deletion, they are replaced by the
// vector reductions.
V.eraseInstructions(IgnoreList);
}
return VectorizedTree != nullptr;
}
unsigned numReductionValues() const { return ReducedVals.size(); }
private:
/// Calculate the cost of a reduction.
InstructionCost getReductionCost(TargetTransformInfo *TTI,
Value *FirstReducedVal, unsigned ReduxWidth,
FastMathFlags FMF) {
Type *ScalarTy = FirstReducedVal->getType();
FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
InstructionCost VectorCost, ScalarCost;
switch (RdxKind) {
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::Or:
case RecurKind::And:
case RecurKind::Xor:
case RecurKind::FAdd:
case RecurKind::FMul: {
unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF);
ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
break;
}
case RecurKind::FMax:
case RecurKind::FMin: {
auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
/*unsigned=*/false);
ScalarCost =
TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
break;
}
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin: {
auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
bool IsUnsigned =
RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned);
ScalarCost =
TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
break;
}
default:
llvm_unreachable("Expected arithmetic or min/max reduction operation");
}
// Scalar cost is repeated for N-1 elements.
ScalarCost *= (ReduxWidth - 1);
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
<< " for reduction that starts with " << *FirstReducedVal
<< " (It is a splitting reduction)\n");
return VectorCost - ScalarCost;
}
/// Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
unsigned ReduxWidth, const TargetTransformInfo *TTI) {
assert(VectorizedValue && "Need to have a vectorized tree node");
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
ReductionOps.back());
}
};
} // end anonymous namespace
static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
return cast<FixedVectorType>(IE->getType())->getNumElements();
unsigned AggregateSize = 1;
auto *IV = cast<InsertValueInst>(InsertInst);
Type *CurrentType = IV->getType();
do {
if (auto *ST = dyn_cast<StructType>(CurrentType)) {
for (auto *Elt : ST->elements())
if (Elt != ST->getElementType(0)) // check homogeneity
return None;
AggregateSize *= ST->getNumElements();
CurrentType = ST->getElementType(0);
} else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
AggregateSize *= AT->getNumElements();
CurrentType = AT->getElementType();
} else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
AggregateSize *= VT->getNumElements();
return AggregateSize;
} else if (CurrentType->isSingleValueType()) {
return AggregateSize;
} else {
return None;
}
} while (true);
}
static bool findBuildAggregate_rec(Instruction *LastInsertInst,
TargetTransformInfo *TTI,
SmallVectorImpl<Value *> &BuildVectorOpds,
SmallVectorImpl<Value *> &InsertElts,
unsigned OperandOffset) {
do {
Value *InsertedOperand = LastInsertInst->getOperand(1);
Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
if (!OperandIndex)
return false;
if (isa<InsertElementInst>(InsertedOperand) ||
isa<InsertValueInst>(InsertedOperand)) {
if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
BuildVectorOpds, InsertElts, *OperandIndex))
return false;
} else {
BuildVectorOpds[*OperandIndex] = InsertedOperand;
InsertElts[*OperandIndex] = LastInsertInst;
}
LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
} while (LastInsertInst != nullptr &&
(isa<InsertValueInst>(LastInsertInst) ||
isa<InsertElementInst>(LastInsertInst)) &&
LastInsertInst->hasOneUse());
return true;
}
/// Recognize construction of vectors like
/// %ra = insertelement <4 x float> poison, float %s0, i32 0
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
/// starting from the last insertelement or insertvalue instruction.
///
/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
///
/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
///
/// \return true if it matches.
static bool findBuildAggregate(Instruction *LastInsertInst,
TargetTransformInfo *TTI,
SmallVectorImpl<Value *> &BuildVectorOpds,
SmallVectorImpl<Value *> &InsertElts) {
assert((isa<InsertElementInst>(LastInsertInst) ||
isa<InsertValueInst>(LastInsertInst)) &&
"Expected insertelement or insertvalue instruction!");
assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!");
Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
if (!AggregateSize)
return false;
BuildVectorOpds.resize(*AggregateSize);
InsertElts.resize(*AggregateSize);
if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
0)) {
llvm::erase_value(BuildVectorOpds, nullptr);
llvm::erase_value(InsertElts, nullptr);
if (BuildVectorOpds.size() >= 2)
return true;
}
return false;
}
/// Try and get a reduction value from a phi node.
///
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
/// if they come from either \p ParentBB or a containing loop latch.
///
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
/// if not possible.
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
BasicBlock *ParentBB, LoopInfo *LI) {
// There are situations where the reduction value is not dominated by the
// reduction phi. Vectorizing such cases has been reported to cause
// miscompiles. See PR25787.
auto DominatedReduxValue = [&](Value *R) {
return isa<Instruction>(R) &&
DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
};
Value *Rdx = nullptr;
// Return the incoming value if it comes from the same BB as the phi node.
if (P->getIncomingBlock(0) == ParentBB) {
Rdx = P->getIncomingValue(0);
} else if (P->getIncomingBlock(1) == ParentBB) {
Rdx = P->getIncomingValue(1);
}
if (Rdx && DominatedReduxValue(Rdx))
return Rdx;
// Otherwise, check whether we have a loop latch to look at.
Loop *BBL = LI->getLoopFor(ParentBB);
if (!BBL)
return nullptr;
BasicBlock *BBLatch = BBL->getLoopLatch();
if (!BBLatch)
return nullptr;
// There is a loop latch, return the incoming value if it comes from
// that. This reduction pattern occasionally turns up.
if (P->getIncomingBlock(0) == BBLatch) {
Rdx = P->getIncomingValue(0);
} else if (P->getIncomingBlock(1) == BBLatch) {
Rdx = P->getIncomingValue(1);
}
if (Rdx && DominatedReduxValue(Rdx))
return Rdx;
return nullptr;
}
static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
return true;
if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
return true;
return false;
}
/// Attempt to reduce a horizontal reduction.
/// If it is legal to match a horizontal reduction feeding the phi node \a P
/// with reduction operators \a Root (or one of its operands) in a basic block
/// \a BB, then check if it can be done. If horizontal reduction is not found
/// and root instruction is a binary operation, vectorization of the operands is
/// attempted.
/// \returns true if a horizontal reduction was matched and reduced or operands
/// of one of the binary instruction were vectorized.
/// \returns false if a horizontal reduction was not matched (or not possible)
/// or no vectorization of any binary operation feeding \a Root instruction was
/// performed.
static bool tryToVectorizeHorReductionOrInstOperands(
PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
TargetTransformInfo *TTI,
const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
if (!ShouldVectorizeHor)
return false;
if (!Root)
return false;
if (Root->getParent() != BB || isa<PHINode>(Root))
return false;
// Start analysis starting from Root instruction. If horizontal reduction is
// found, try to vectorize it. If it is not a horizontal reduction or
// vectorization is not possible or not effective, and currently analyzed
// instruction is a binary operation, try to vectorize the operands, using
// pre-order DFS traversal order. If the operands were not vectorized, repeat
// the same procedure considering each operand as a possible root of the
// horizontal reduction.
// Interrupt the process if the Root instruction itself was vectorized or all
// sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
// Skip the analysis of CmpInsts.Compiler implements postanalysis of the
// CmpInsts so we can skip extra attempts in
// tryToVectorizeHorReductionOrInstOperands and save compile time.
SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
SmallPtrSet<Value *, 8> VisitedInstrs;
bool Res = false;
while (!Stack.empty()) {
Instruction *Inst;
unsigned Level;
std::tie(Inst, Level) = Stack.pop_back_val();
// Do not try to analyze instruction that has already been vectorized.
// This may happen when we vectorize instruction operands on a previous
// iteration while stack was populated before that happened.
if (R.isDeleted(Inst))
continue;
Value *B0, *B1;
bool IsBinop = matchRdxBop(Inst, B0, B1);
bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
if (IsBinop || IsSelect) {
HorizontalReduction HorRdx;
if (HorRdx.matchAssociativeReduction(P, Inst)) {
if (HorRdx.tryToReduce(R, TTI)) {
Res = true;
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
continue;
}
}
if (P && IsBinop) {
Inst = dyn_cast<Instruction>(B0);
if (Inst == P)
Inst = dyn_cast<Instruction>(B1);
if (!Inst) {
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
continue;
}
}
}
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
// Do not try to vectorize CmpInst operands, this is done separately.
if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
Res = true;
continue;
}
// Try to vectorize operands.
// Continue analysis for the instruction from the same basic block only to
// save compile time.
if (++Level < RecursionMaxDepth)
for (auto *Op : Inst->operand_values())
if (VisitedInstrs.insert(Op).second)
if (auto *I = dyn_cast<Instruction>(Op))
// Do not try to vectorize CmpInst operands, this is done
// separately.
if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
I->getParent() == BB)
Stack.emplace_back(I, Level);
}
return Res;
}
bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
BasicBlock *BB, BoUpSLP &R,
TargetTransformInfo *TTI) {
auto *I = dyn_cast_or_null<Instruction>(V);
if (!I)
return false;
if (!isa<BinaryOperator>(I))
P = nullptr;
// Try to match and vectorize a horizontal reduction.
auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
return tryToVectorize(I, R);
};
return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
ExtraVectorization);
}
bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
BasicBlock *BB, BoUpSLP &R) {
const DataLayout &DL = BB->getModule()->getDataLayout();
if (!R.canMapToVector(IVI->getType(), DL))
return false;
SmallVector<Value *, 16> BuildVectorOpds;
SmallVector<Value *, 16> BuildVectorInsts;
if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
return false;
LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
// Aggregate value is unlikely to be processed in vector register, we need to
// extract scalars into scalar registers, so NeedExtraction is set true.
return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
}
bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
BasicBlock *BB, BoUpSLP &R) {
SmallVector<Value *, 16> BuildVectorInsts;
SmallVector<Value *, 16> BuildVectorOpds;
SmallVector<int> Mask;
if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
(llvm::all_of(BuildVectorOpds,
[](Value *V) { return isa<ExtractElementInst>(V); }) &&
isShuffle(BuildVectorOpds, Mask)))
return false;
LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
}
bool SLPVectorizerPass::vectorizeSimpleInstructions(
SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
bool AtTerminator) {
bool OpsChanged = false;
SmallVector<Instruction *, 4> PostponedCmps;
for (auto *I : reverse(Instructions)) {
if (R.isDeleted(I))
continue;
if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
else if (isa<CmpInst>(I))
PostponedCmps.push_back(I);
}
if (AtTerminator) {
// Try to find reductions first.
for (Instruction *I : PostponedCmps) {
if (R.isDeleted(I))
continue;
for (Value *Op : I->operands())
OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
}
// Try to vectorize operands as vector bundles.
for (Instruction *I : PostponedCmps) {
if (R.isDeleted(I))
continue;
OpsChanged |= tryToVectorize(I, R);
}
Instructions.clear();
} else {
// Insert in reverse order since the PostponedCmps vector was filled in
// reverse order.
Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
}
return OpsChanged;
}
bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
SmallVector<Value *, 4> Incoming;
SmallPtrSet<Value *, 16> VisitedInstrs;
// Maps phi nodes to the non-phi nodes found in the use tree for each phi
// node. Allows better to identify the chains that can be vectorized in the
// better way.
DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
bool HaveVectorizedPhiNodes = true;
while (HaveVectorizedPhiNodes) {
HaveVectorizedPhiNodes = false;
// Collect the incoming values from the PHIs.
Incoming.clear();
for (Instruction &I : *BB) {
PHINode *P = dyn_cast<PHINode>(&I);
if (!P)
break;
// No need to analyze deleted, vectorized and non-vectorizable
// instructions.
if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
isValidElementType(P->getType()))
Incoming.push_back(P);
}
// Find the corresponding non-phi nodes for better matching when trying to
// build the tree.
for (Value *V : Incoming) {
SmallVectorImpl<Value *> &Opcodes =
PHIToOpcodes.try_emplace(V).first->getSecond();
if (!Opcodes.empty())
continue;
SmallVector<Value *, 4> Nodes(1, V);
SmallPtrSet<Value *, 4> Visited;
while (!Nodes.empty()) {
auto *PHI = cast<PHINode>(Nodes.pop_back_val());
if (!Visited.insert(PHI).second)
continue;
for (Value *V : PHI->incoming_values()) {
if (auto *PHI1 = dyn_cast<PHINode>((V))) {
Nodes.push_back(PHI1);
continue;
}
Opcodes.emplace_back(V);
}
}
}
// Sort by type, parent, operands.
stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) {
assert(isValidElementType(V1->getType()) &&
isValidElementType(V2->getType()) &&
"Expected vectorizable types only.");
// It is fine to compare type IDs here, since we expect only vectorizable
// types, like ints, floats and pointers, we don't care about other type.
if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
return true;
if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
return false;
ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
if (Opcodes1.size() < Opcodes2.size())
return true;
if (Opcodes1.size() > Opcodes2.size())
return false;
for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
// Undefs are compatible with any other value.
if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
continue;
if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
if (!NodeI1)
return NodeI2 != nullptr;
if (!NodeI2)
return false;
assert((NodeI1 == NodeI2) ==
(NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
"Different nodes should have different DFS numbers");
if (NodeI1 != NodeI2)
return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
InstructionsState S = getSameOpcode({I1, I2});
if (S.getOpcode())
continue;
return I1->getOpcode() < I2->getOpcode();
}
if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
continue;
if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
return true;
if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
return false;
}
return false;
});
auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
if (V1 == V2)
return true;
if (V1->getType() != V2->getType())
return false;
ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
if (Opcodes1.size() != Opcodes2.size())
return false;
for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
// Undefs are compatible with any other value.
if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
continue;
if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
if (I1->getParent() != I2->getParent())
return false;
InstructionsState S = getSameOpcode({I1, I2});
if (S.getOpcode())
continue;
return false;
}
if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
continue;
if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
return false;
}
return true;
};
// Try to vectorize elements base on their type.
SmallVector<Value *, 4> Candidates;
for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
E = Incoming.end();
IncIt != E;) {
// Look for the next elements with the same type, parent and operand
// kinds.
SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
VisitedInstrs.insert(*SameTypeIt);
++SameTypeIt;
}
// Try to vectorize them.
unsigned NumElts = (SameTypeIt - IncIt);
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n");
// The order in which the phi nodes appear in the program does not matter.
// So allow tryToVectorizeList to reorder them if it is beneficial. This
// is done when there are exactly two elements since tryToVectorizeList
// asserts that there are only two values when AllowReorder is true.
if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
/*AllowReorder=*/true)) {
// Success start over because instructions might have been changed.
HaveVectorizedPhiNodes = true;
Changed = true;
} else if (NumElts < 4 &&
(Candidates.empty() ||
Candidates.front()->getType() == (*IncIt)->getType())) {
Candidates.append(IncIt, std::next(IncIt, NumElts));
}
// Final attempt to vectorize phis with the same types.
if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
if (Candidates.size() > 1 &&
tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
// Success start over because instructions might have been changed.
HaveVectorizedPhiNodes = true;
Changed = true;
}
Candidates.clear();
}
// Start over at the next instruction of a different type (or the end).
IncIt = SameTypeIt;
}
}
VisitedInstrs.clear();
SmallVector<Instruction *, 8> PostProcessInstructions;
SmallDenseSet<Instruction *, 4> KeyNodes;
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
// Skip instructions with scalable type. The num of elements is unknown at
// compile-time for scalable type.
if (isa<ScalableVectorType>(it->getType()))
continue;
// Skip instructions marked for the deletion.
if (R.isDeleted(&*it))
continue;
// We may go through BB multiple times so skip the one we have checked.
if (!VisitedInstrs.insert(&*it).second) {
if (it->use_empty() && KeyNodes.contains(&*it) &&
vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
it->isTerminator())) {
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
Changed = true;
it = BB->begin();
e = BB->end();
}
continue;
}
if (isa<DbgInfoIntrinsic>(it))
continue;
// Try to vectorize reductions that use PHINodes.
if (PHINode *P = dyn_cast<PHINode>(it)) {
// Check that the PHI is a reduction PHI.
if (P->getNumIncomingValues() == 2) {
// Try to match and vectorize a horizontal reduction.
if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
TTI)) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
}
// Try to vectorize the incoming values of the PHI, to catch reductions
// that feed into PHIs.
for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
// Skip if the incoming block is the current BB for now. Also, bypass
// unreachable IR for efficiency and to avoid crashing.
// TODO: Collect the skipped incoming values and try to vectorize them
// after processing BB.
if (BB == P->getIncomingBlock(I) ||
!DT->isReachableFromEntry(P->getIncomingBlock(I)))
continue;
Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
P->getIncomingBlock(I), R, TTI);
}
continue;
}
// Ran into an instruction without users, like terminator, or function call
// with ignored return value, store. Ignore unused instructions (basing on
// instruction type, except for CallInst and InvokeInst).
if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
isa<InvokeInst>(it))) {
KeyNodes.insert(&*it);
bool OpsChanged = false;
if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
for (auto *V : it->operand_values()) {
// Try to match and vectorize a horizontal reduction.
OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
}
}
// Start vectorization of post-process list of instructions from the
// top-tree instructions to try to vectorize as many instructions as
// possible.
OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
it->isTerminator());
if (OpsChanged) {
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
}
if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
isa<InsertValueInst>(it))
PostProcessInstructions.push_back(&*it);
}
return Changed;
}
bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
auto Changed = false;
for (auto &Entry : GEPs) {
// If the getelementptr list has fewer than two elements, there's nothing
// to do.
if (Entry.second.size() < 2)
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n");
// Process the GEP list in chunks suitable for the target's supported
// vector size. If a vector register can't hold 1 element, we are done. We
// are trying to vectorize the index computations, so the maximum number of
// elements is based on the size of the index expression, rather than the
// size of the GEP itself (the target's pointer size).
unsigned MaxVecRegSize = R.getMaxVecRegSize();
unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
if (MaxVecRegSize < EltSize)
continue;
unsigned MaxElts = MaxVecRegSize / EltSize;
for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
auto Len = std::min<unsigned>(BE - BI, MaxElts);
ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
// Initialize a set a candidate getelementptrs. Note that we use a
// SetVector here to preserve program order. If the index computations
// are vectorizable and begin with loads, we want to minimize the chance
// of having to reorder them later.
SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
// Some of the candidates may have already been vectorized after we
// initially collected them. If so, they are marked as deleted, so remove
// them from the set of candidates.
Candidates.remove_if(
[&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
// Remove from the set of candidates all pairs of getelementptrs with
// constant differences. Such getelementptrs are likely not good
// candidates for vectorization in a bottom-up phase since one can be
// computed from the other. We also ensure all candidate getelementptr
// indices are unique.
for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
auto *GEPI = GEPList[I];
if (!Candidates.count(GEPI))
continue;
auto *SCEVI = SE->getSCEV(GEPList[I]);
for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
auto *GEPJ = GEPList[J];
auto *SCEVJ = SE->getSCEV(GEPList[J]);
if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
Candidates.remove(GEPI);
Candidates.remove(GEPJ);
} else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
Candidates.remove(GEPJ);
}
}
}
// We break out of the above computation as soon as we know there are
// fewer than two candidates remaining.
if (Candidates.size() < 2)
continue;
// Add the single, non-constant index of each candidate to the bundle. We
// ensured the indices met these constraints when we originally collected
// the getelementptrs.
SmallVector<Value *, 16> Bundle(Candidates.size());
auto BundleIndex = 0u;
for (auto *V : Candidates) {
auto *GEP = cast<GetElementPtrInst>(V);
auto *GEPIdx = GEP->idx_begin()->get();
assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
Bundle[BundleIndex++] = GEPIdx;
}
// Try and vectorize the indices. We are currently only interested in
// gather-like cases of the form:
//
// ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
//
// where the loads of "a", the loads of "b", and the subtractions can be
// performed in parallel. It's likely that detecting this pattern in a
// bottom-up phase will be simpler and less costly than building a
// full-blown top-down phase beginning at the consecutive loads.
Changed |= tryToVectorizeList(Bundle, R);
}
}
return Changed;
}
bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Sort by type, base pointers and values operand. Value operands must be
// compatible (have the same opcode, same parent), otherwise it is
// definitely not profitable to try to vectorize them.
auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
if (V->getPointerOperandType()->getTypeID() <
V2->getPointerOperandType()->getTypeID())
return true;
if (V->getPointerOperandType()->getTypeID() >
V2->getPointerOperandType()->getTypeID())
return false;
// UndefValues are compatible with all other values.
if (isa<UndefValue>(V->getValueOperand()) ||
isa<UndefValue>(V2->getValueOperand()))
return false;
if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
DT->getNode(I1->getParent());
DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
DT->getNode(I2->getParent());
assert(NodeI1 && "Should only process reachable instructions");
assert(NodeI1 && "Should only process reachable instructions");
assert((NodeI1 == NodeI2) ==
(NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
"Different nodes should have different DFS numbers");
if (NodeI1 != NodeI2)
return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
InstructionsState S = getSameOpcode({I1, I2});
if (S.getOpcode())
return false;
return I1->getOpcode() < I2->getOpcode();
}
if (isa<Constant>(V->getValueOperand()) &&
isa<Constant>(V2->getValueOperand()))
return false;
return V->getValueOperand()->getValueID() <
V2->getValueOperand()->getValueID();
};
auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
if (V1 == V2)
return true;
if (V1->getPointerOperandType() != V2->getPointerOperandType())
return false;
// Undefs are compatible with any other value.
if (isa<UndefValue>(V1->getValueOperand()) ||
isa<UndefValue>(V2->getValueOperand()))
return true;
if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
if (I1->getParent() != I2->getParent())
return false;
InstructionsState S = getSameOpcode({I1, I2});
return S.getOpcode() > 0;
}
if (isa<Constant>(V1->getValueOperand()) &&
isa<Constant>(V2->getValueOperand()))
return true;
return V1->getValueOperand()->getValueID() ==
V2->getValueOperand()->getValueID();
};
// Attempt to sort and vectorize each of the store-groups.
for (auto &Pair : Stores) {
if (Pair.second.size() < 2)
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
<< Pair.second.size() << ".\n");
stable_sort(Pair.second, StoreSorter);
// Try to vectorize elements based on their compatibility.
for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(),
E = Pair.second.end();
IncIt != E;) {
// Look for the next elements with the same type.
ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt;
Type *EltTy = (*IncIt)->getPointerOperand()->getType();
while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt))
++SameTypeIt;
// Try to vectorize them.
unsigned NumElts = (SameTypeIt - IncIt);
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores ("
<< NumElts << ")\n");
if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() &&
vectorizeStores(makeArrayRef(IncIt, NumElts), R)) {
// Success start over because instructions might have been changed.
Changed = true;
}
// Start over at the next instruction of a different type (or the end).
IncIt = SameTypeIt;
}
}
return Changed;
}
char SLPVectorizer::ID = 0;
static const char lv_name[] = "SLP Vectorizer";
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }