mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
0a9a1968f9
Don't try to generate large PIC code for non-ELF targets. Neither COFF nor MachO have relocations for large position independent code, and users have been using "large PIC" code models to JIT 64-bit code for a while now. With this change, if they are generating ELF code, their JITed code will truly be PIC, but if they target MachO or COFF, it will contain 64-bit immediates that directly reference external symbols. For a JIT, that's perfectly fine. llvm-svn: 337740
2261 lines
82 KiB
C++
2261 lines
82 KiB
C++
//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains code to lower X86 MachineInstrs to their corresponding
|
|
// MCInst records.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstPrinter/X86ATTInstPrinter.h"
|
|
#include "InstPrinter/X86InstComments.h"
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "MCTargetDesc/X86TargetStreamer.h"
|
|
#include "Utils/X86ShuffleDecode.h"
|
|
#include "X86AsmPrinter.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86ShuffleDecodeConstantPool.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixup.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCSymbolELF.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
|
|
class X86MCInstLower {
|
|
MCContext &Ctx;
|
|
const MachineFunction &MF;
|
|
const TargetMachine &TM;
|
|
const MCAsmInfo &MAI;
|
|
X86AsmPrinter &AsmPrinter;
|
|
|
|
public:
|
|
X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
|
|
|
|
Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
|
|
const MachineOperand &MO) const;
|
|
void Lower(const MachineInstr *MI, MCInst &OutMI) const;
|
|
|
|
MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
|
|
MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
|
|
|
|
private:
|
|
MachineModuleInfoMachO &getMachOMMI() const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Emit a minimal sequence of nops spanning NumBytes bytes.
|
|
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
|
|
const MCSubtargetInfo &STI);
|
|
|
|
void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
|
|
const MCSubtargetInfo &STI,
|
|
MCCodeEmitter *CodeEmitter) {
|
|
if (InShadow) {
|
|
SmallString<256> Code;
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
raw_svector_ostream VecOS(Code);
|
|
CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
|
|
CurrentShadowSize += Code.size();
|
|
if (CurrentShadowSize >= RequiredShadowSize)
|
|
InShadow = false; // The shadow is big enough. Stop counting.
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
|
|
MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
|
|
if (InShadow && CurrentShadowSize < RequiredShadowSize) {
|
|
InShadow = false;
|
|
EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
|
|
MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
|
|
OutStreamer->EmitInstruction(Inst, getSubtargetInfo(),
|
|
EnablePrintSchedInfo &&
|
|
!(Inst.getFlags() & X86::NO_SCHED_INFO));
|
|
SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
|
|
}
|
|
|
|
X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
|
|
X86AsmPrinter &asmprinter)
|
|
: Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
|
|
AsmPrinter(asmprinter) {}
|
|
|
|
MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
|
|
return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
|
|
}
|
|
|
|
/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
|
|
/// operand to an MCSymbol.
|
|
MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
|
|
"Isn't a symbol reference");
|
|
|
|
MCSymbol *Sym = nullptr;
|
|
SmallString<128> Name;
|
|
StringRef Suffix;
|
|
|
|
switch (MO.getTargetFlags()) {
|
|
case X86II::MO_DLLIMPORT:
|
|
// Handle dllimport linkage.
|
|
Name += "__imp_";
|
|
break;
|
|
case X86II::MO_DARWIN_NONLAZY:
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
|
|
Suffix = "$non_lazy_ptr";
|
|
break;
|
|
}
|
|
|
|
if (!Suffix.empty())
|
|
Name += DL.getPrivateGlobalPrefix();
|
|
|
|
if (MO.isGlobal()) {
|
|
const GlobalValue *GV = MO.getGlobal();
|
|
AsmPrinter.getNameWithPrefix(Name, GV);
|
|
} else if (MO.isSymbol()) {
|
|
Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
|
|
} else if (MO.isMBB()) {
|
|
assert(Suffix.empty());
|
|
Sym = MO.getMBB()->getSymbol();
|
|
}
|
|
|
|
Name += Suffix;
|
|
if (!Sym)
|
|
Sym = Ctx.getOrCreateSymbol(Name);
|
|
|
|
// If the target flags on the operand changes the name of the symbol, do that
|
|
// before we return the symbol.
|
|
switch (MO.getTargetFlags()) {
|
|
default:
|
|
break;
|
|
case X86II::MO_DARWIN_NONLAZY:
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
|
|
MachineModuleInfoImpl::StubValueTy &StubSym =
|
|
getMachOMMI().getGVStubEntry(Sym);
|
|
if (!StubSym.getPointer()) {
|
|
assert(MO.isGlobal() && "Extern symbol not handled yet");
|
|
StubSym = MachineModuleInfoImpl::StubValueTy(
|
|
AsmPrinter.getSymbol(MO.getGlobal()),
|
|
!MO.getGlobal()->hasInternalLinkage());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Sym;
|
|
}
|
|
|
|
MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
|
|
MCSymbol *Sym) const {
|
|
// FIXME: We would like an efficient form for this, so we don't have to do a
|
|
// lot of extra uniquing.
|
|
const MCExpr *Expr = nullptr;
|
|
MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
|
|
|
|
switch (MO.getTargetFlags()) {
|
|
default:
|
|
llvm_unreachable("Unknown target flag on GV operand");
|
|
case X86II::MO_NO_FLAG: // No flag.
|
|
// These affect the name of the symbol, not any suffix.
|
|
case X86II::MO_DARWIN_NONLAZY:
|
|
case X86II::MO_DLLIMPORT:
|
|
break;
|
|
|
|
case X86II::MO_TLVP:
|
|
RefKind = MCSymbolRefExpr::VK_TLVP;
|
|
break;
|
|
case X86II::MO_TLVP_PIC_BASE:
|
|
Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
|
|
// Subtract the pic base.
|
|
Expr = MCBinaryExpr::createSub(
|
|
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
|
|
break;
|
|
case X86II::MO_SECREL:
|
|
RefKind = MCSymbolRefExpr::VK_SECREL;
|
|
break;
|
|
case X86II::MO_TLSGD:
|
|
RefKind = MCSymbolRefExpr::VK_TLSGD;
|
|
break;
|
|
case X86II::MO_TLSLD:
|
|
RefKind = MCSymbolRefExpr::VK_TLSLD;
|
|
break;
|
|
case X86II::MO_TLSLDM:
|
|
RefKind = MCSymbolRefExpr::VK_TLSLDM;
|
|
break;
|
|
case X86II::MO_GOTTPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
|
|
break;
|
|
case X86II::MO_INDNTPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
|
|
break;
|
|
case X86II::MO_TPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_TPOFF;
|
|
break;
|
|
case X86II::MO_DTPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_DTPOFF;
|
|
break;
|
|
case X86II::MO_NTPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_NTPOFF;
|
|
break;
|
|
case X86II::MO_GOTNTPOFF:
|
|
RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
|
|
break;
|
|
case X86II::MO_GOTPCREL:
|
|
RefKind = MCSymbolRefExpr::VK_GOTPCREL;
|
|
break;
|
|
case X86II::MO_GOT:
|
|
RefKind = MCSymbolRefExpr::VK_GOT;
|
|
break;
|
|
case X86II::MO_GOTOFF:
|
|
RefKind = MCSymbolRefExpr::VK_GOTOFF;
|
|
break;
|
|
case X86II::MO_PLT:
|
|
RefKind = MCSymbolRefExpr::VK_PLT;
|
|
break;
|
|
case X86II::MO_ABS8:
|
|
RefKind = MCSymbolRefExpr::VK_X86_ABS8;
|
|
break;
|
|
case X86II::MO_PIC_BASE_OFFSET:
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
|
|
Expr = MCSymbolRefExpr::create(Sym, Ctx);
|
|
// Subtract the pic base.
|
|
Expr = MCBinaryExpr::createSub(
|
|
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
|
|
if (MO.isJTI()) {
|
|
assert(MAI.doesSetDirectiveSuppressReloc());
|
|
// If .set directive is supported, use it to reduce the number of
|
|
// relocations the assembler will generate for differences between
|
|
// local labels. This is only safe when the symbols are in the same
|
|
// section so we are restricting it to jumptable references.
|
|
MCSymbol *Label = Ctx.createTempSymbol();
|
|
AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
|
|
Expr = MCSymbolRefExpr::create(Label, Ctx);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!Expr)
|
|
Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
|
|
|
|
if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
|
|
Expr = MCBinaryExpr::createAdd(
|
|
Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
|
|
return MCOperand::createExpr(Expr);
|
|
}
|
|
|
|
/// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
|
|
/// a short fixed-register form.
|
|
static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
|
|
unsigned ImmOp = Inst.getNumOperands() - 1;
|
|
assert(Inst.getOperand(0).isReg() &&
|
|
(Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
|
|
((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
|
|
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
|
|
Inst.getNumOperands() == 2) &&
|
|
"Unexpected instruction!");
|
|
|
|
// Check whether the destination register can be fixed.
|
|
unsigned Reg = Inst.getOperand(0).getReg();
|
|
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
|
|
return;
|
|
|
|
// If so, rewrite the instruction.
|
|
MCOperand Saved = Inst.getOperand(ImmOp);
|
|
Inst = MCInst();
|
|
Inst.setOpcode(Opcode);
|
|
Inst.addOperand(Saved);
|
|
}
|
|
|
|
/// If a movsx instruction has a shorter encoding for the used register
|
|
/// simplify the instruction to use it instead.
|
|
static void SimplifyMOVSX(MCInst &Inst) {
|
|
unsigned NewOpcode = 0;
|
|
unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction!");
|
|
case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
|
|
if (Op0 == X86::AX && Op1 == X86::AL)
|
|
NewOpcode = X86::CBW;
|
|
break;
|
|
case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
|
|
if (Op0 == X86::EAX && Op1 == X86::AX)
|
|
NewOpcode = X86::CWDE;
|
|
break;
|
|
case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
|
|
if (Op0 == X86::RAX && Op1 == X86::EAX)
|
|
NewOpcode = X86::CDQE;
|
|
break;
|
|
}
|
|
|
|
if (NewOpcode != 0) {
|
|
Inst = MCInst();
|
|
Inst.setOpcode(NewOpcode);
|
|
}
|
|
}
|
|
|
|
/// Simplify things like MOV32rm to MOV32o32a.
|
|
static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
|
|
unsigned Opcode) {
|
|
// Don't make these simplifications in 64-bit mode; other assemblers don't
|
|
// perform them because they make the code larger.
|
|
if (Printer.getSubtarget().is64Bit())
|
|
return;
|
|
|
|
bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
|
|
unsigned AddrBase = IsStore;
|
|
unsigned RegOp = IsStore ? 0 : 5;
|
|
unsigned AddrOp = AddrBase + 3;
|
|
assert(
|
|
Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
|
|
Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
|
|
Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
|
|
Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
|
|
Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
|
|
(Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
|
|
"Unexpected instruction!");
|
|
|
|
// Check whether the destination register can be fixed.
|
|
unsigned Reg = Inst.getOperand(RegOp).getReg();
|
|
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
|
|
return;
|
|
|
|
// Check whether this is an absolute address.
|
|
// FIXME: We know TLVP symbol refs aren't, but there should be a better way
|
|
// to do this here.
|
|
bool Absolute = true;
|
|
if (Inst.getOperand(AddrOp).isExpr()) {
|
|
const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
|
|
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
|
|
if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
|
|
Absolute = false;
|
|
}
|
|
|
|
if (Absolute &&
|
|
(Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
|
|
Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
|
|
Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
|
|
return;
|
|
|
|
// If so, rewrite the instruction.
|
|
MCOperand Saved = Inst.getOperand(AddrOp);
|
|
MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
|
|
Inst = MCInst();
|
|
Inst.setOpcode(Opcode);
|
|
Inst.addOperand(Saved);
|
|
Inst.addOperand(Seg);
|
|
}
|
|
|
|
static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
|
|
return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
|
|
}
|
|
|
|
Optional<MCOperand>
|
|
X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
|
|
const MachineOperand &MO) const {
|
|
switch (MO.getType()) {
|
|
default:
|
|
MI->print(errs());
|
|
llvm_unreachable("unknown operand type");
|
|
case MachineOperand::MO_Register:
|
|
// Ignore all implicit register operands.
|
|
if (MO.isImplicit())
|
|
return None;
|
|
return MCOperand::createReg(MO.getReg());
|
|
case MachineOperand::MO_Immediate:
|
|
return MCOperand::createImm(MO.getImm());
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
|
|
case MachineOperand::MO_MCSymbol:
|
|
return LowerSymbolOperand(MO, MO.getMCSymbol());
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
|
|
case MachineOperand::MO_BlockAddress:
|
|
return LowerSymbolOperand(
|
|
MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
|
|
case MachineOperand::MO_RegisterMask:
|
|
// Ignore call clobbers.
|
|
return None;
|
|
}
|
|
}
|
|
|
|
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
|
|
OutMI.setOpcode(MI->getOpcode());
|
|
|
|
for (const MachineOperand &MO : MI->operands())
|
|
if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
|
|
OutMI.addOperand(MaybeMCOp.getValue());
|
|
|
|
// Handle a few special cases to eliminate operand modifiers.
|
|
ReSimplify:
|
|
switch (OutMI.getOpcode()) {
|
|
case X86::LEA64_32r:
|
|
case X86::LEA64r:
|
|
case X86::LEA16r:
|
|
case X86::LEA32r:
|
|
// LEA should have a segment register, but it must be empty.
|
|
assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
|
|
"Unexpected # of LEA operands");
|
|
assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
|
|
"LEA has segment specified!");
|
|
break;
|
|
|
|
// Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
|
|
// if one of the registers is extended, but other isn't.
|
|
case X86::VMOVZPQILo2PQIrr:
|
|
case X86::VMOVAPDrr:
|
|
case X86::VMOVAPDYrr:
|
|
case X86::VMOVAPSrr:
|
|
case X86::VMOVAPSYrr:
|
|
case X86::VMOVDQArr:
|
|
case X86::VMOVDQAYrr:
|
|
case X86::VMOVDQUrr:
|
|
case X86::VMOVDQUYrr:
|
|
case X86::VMOVUPDrr:
|
|
case X86::VMOVUPDYrr:
|
|
case X86::VMOVUPSrr:
|
|
case X86::VMOVUPSYrr: {
|
|
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
|
|
X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
|
|
unsigned NewOpc;
|
|
switch (OutMI.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
|
|
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
|
|
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
|
|
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
|
|
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
|
|
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
|
|
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
|
|
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
|
|
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
|
|
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
|
|
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
|
|
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
|
|
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
|
|
}
|
|
OutMI.setOpcode(NewOpc);
|
|
}
|
|
break;
|
|
}
|
|
case X86::VMOVSDrr:
|
|
case X86::VMOVSSrr: {
|
|
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
|
|
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
|
|
unsigned NewOpc;
|
|
switch (OutMI.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
|
|
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
|
|
}
|
|
OutMI.setOpcode(NewOpc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
|
|
// inputs modeled as normal uses instead of implicit uses. As such, truncate
|
|
// off all but the first operand (the callee). FIXME: Change isel.
|
|
case X86::TAILJMPr64:
|
|
case X86::TAILJMPr64_REX:
|
|
case X86::CALL64r:
|
|
case X86::CALL64pcrel32: {
|
|
unsigned Opcode = OutMI.getOpcode();
|
|
MCOperand Saved = OutMI.getOperand(0);
|
|
OutMI = MCInst();
|
|
OutMI.setOpcode(Opcode);
|
|
OutMI.addOperand(Saved);
|
|
break;
|
|
}
|
|
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64: {
|
|
OutMI = MCInst();
|
|
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
|
|
break;
|
|
}
|
|
|
|
case X86::CLEANUPRET: {
|
|
// Replace CATCHRET with the appropriate RET.
|
|
OutMI = MCInst();
|
|
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
|
|
break;
|
|
}
|
|
|
|
case X86::CATCHRET: {
|
|
// Replace CATCHRET with the appropriate RET.
|
|
const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
|
|
unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
|
|
OutMI = MCInst();
|
|
OutMI.setOpcode(getRetOpcode(Subtarget));
|
|
OutMI.addOperand(MCOperand::createReg(ReturnReg));
|
|
break;
|
|
}
|
|
|
|
// TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
|
|
// instruction.
|
|
{
|
|
unsigned Opcode;
|
|
case X86::TAILJMPr:
|
|
Opcode = X86::JMP32r;
|
|
goto SetTailJmpOpcode;
|
|
case X86::TAILJMPd:
|
|
case X86::TAILJMPd64:
|
|
Opcode = X86::JMP_1;
|
|
goto SetTailJmpOpcode;
|
|
case X86::TAILJMPd_CC:
|
|
case X86::TAILJMPd64_CC:
|
|
Opcode = X86::GetCondBranchFromCond(
|
|
static_cast<X86::CondCode>(MI->getOperand(1).getImm()));
|
|
goto SetTailJmpOpcode;
|
|
|
|
SetTailJmpOpcode:
|
|
MCOperand Saved = OutMI.getOperand(0);
|
|
OutMI = MCInst();
|
|
OutMI.setOpcode(Opcode);
|
|
OutMI.addOperand(Saved);
|
|
break;
|
|
}
|
|
|
|
case X86::DEC16r:
|
|
case X86::DEC32r:
|
|
case X86::INC16r:
|
|
case X86::INC32r:
|
|
// If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
|
|
if (!AsmPrinter.getSubtarget().is64Bit()) {
|
|
unsigned Opcode;
|
|
switch (OutMI.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
|
|
case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
|
|
case X86::INC16r: Opcode = X86::INC16r_alt; break;
|
|
case X86::INC32r: Opcode = X86::INC32r_alt; break;
|
|
}
|
|
OutMI.setOpcode(Opcode);
|
|
}
|
|
break;
|
|
|
|
// These are pseudo-ops for OR to help with the OR->ADD transformation. We do
|
|
// this with an ugly goto in case the resultant OR uses EAX and needs the
|
|
// short form.
|
|
case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
|
|
case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
|
|
case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
|
|
case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
|
|
case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
|
|
case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
|
|
case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
|
|
case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
|
|
case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
|
|
|
|
// Atomic load and store require a separate pseudo-inst because Acquire
|
|
// implies mayStore and Release implies mayLoad; fix these to regular MOV
|
|
// instructions here
|
|
case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
|
|
case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
|
|
case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
|
|
case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
|
|
case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
|
|
case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
|
|
case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
|
|
case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
|
|
case X86::RELEASE_MOV8mi: OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
|
|
case X86::RELEASE_MOV16mi: OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
|
|
case X86::RELEASE_MOV32mi: OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
|
|
case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
|
|
case X86::RELEASE_ADD8mi: OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
|
|
case X86::RELEASE_ADD8mr: OutMI.setOpcode(X86::ADD8mr); goto ReSimplify;
|
|
case X86::RELEASE_ADD32mi: OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
|
|
case X86::RELEASE_ADD32mr: OutMI.setOpcode(X86::ADD32mr); goto ReSimplify;
|
|
case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
|
|
case X86::RELEASE_ADD64mr: OutMI.setOpcode(X86::ADD64mr); goto ReSimplify;
|
|
case X86::RELEASE_AND8mi: OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
|
|
case X86::RELEASE_AND8mr: OutMI.setOpcode(X86::AND8mr); goto ReSimplify;
|
|
case X86::RELEASE_AND32mi: OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
|
|
case X86::RELEASE_AND32mr: OutMI.setOpcode(X86::AND32mr); goto ReSimplify;
|
|
case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
|
|
case X86::RELEASE_AND64mr: OutMI.setOpcode(X86::AND64mr); goto ReSimplify;
|
|
case X86::RELEASE_OR8mi: OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
|
|
case X86::RELEASE_OR8mr: OutMI.setOpcode(X86::OR8mr); goto ReSimplify;
|
|
case X86::RELEASE_OR32mi: OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
|
|
case X86::RELEASE_OR32mr: OutMI.setOpcode(X86::OR32mr); goto ReSimplify;
|
|
case X86::RELEASE_OR64mi32: OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
|
|
case X86::RELEASE_OR64mr: OutMI.setOpcode(X86::OR64mr); goto ReSimplify;
|
|
case X86::RELEASE_XOR8mi: OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
|
|
case X86::RELEASE_XOR8mr: OutMI.setOpcode(X86::XOR8mr); goto ReSimplify;
|
|
case X86::RELEASE_XOR32mi: OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
|
|
case X86::RELEASE_XOR32mr: OutMI.setOpcode(X86::XOR32mr); goto ReSimplify;
|
|
case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
|
|
case X86::RELEASE_XOR64mr: OutMI.setOpcode(X86::XOR64mr); goto ReSimplify;
|
|
case X86::RELEASE_INC8m: OutMI.setOpcode(X86::INC8m); goto ReSimplify;
|
|
case X86::RELEASE_INC16m: OutMI.setOpcode(X86::INC16m); goto ReSimplify;
|
|
case X86::RELEASE_INC32m: OutMI.setOpcode(X86::INC32m); goto ReSimplify;
|
|
case X86::RELEASE_INC64m: OutMI.setOpcode(X86::INC64m); goto ReSimplify;
|
|
case X86::RELEASE_DEC8m: OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
|
|
case X86::RELEASE_DEC16m: OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
|
|
case X86::RELEASE_DEC32m: OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
|
|
case X86::RELEASE_DEC64m: OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
|
|
|
|
// We don't currently select the correct instruction form for instructions
|
|
// which have a short %eax, etc. form. Handle this by custom lowering, for
|
|
// now.
|
|
//
|
|
// Note, we are currently not handling the following instructions:
|
|
// MOV64ao8, MOV64o8a
|
|
// XCHG16ar, XCHG32ar, XCHG64ar
|
|
case X86::MOV8mr_NOREX:
|
|
case X86::MOV8mr:
|
|
case X86::MOV8rm_NOREX:
|
|
case X86::MOV8rm:
|
|
case X86::MOV16mr:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32mr:
|
|
case X86::MOV32rm: {
|
|
unsigned NewOpc;
|
|
switch (OutMI.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::MOV8mr_NOREX:
|
|
case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
|
|
case X86::MOV8rm_NOREX:
|
|
case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
|
|
case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
|
|
case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
|
|
case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
|
|
case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
|
|
}
|
|
SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
|
|
break;
|
|
}
|
|
|
|
case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
|
|
case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
|
|
case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
|
|
case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
|
|
case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
|
|
case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
|
|
case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
|
|
case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
|
|
case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
|
|
unsigned NewOpc;
|
|
switch (OutMI.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
|
|
case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
|
|
case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
|
|
case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
|
|
case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
|
|
case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
|
|
case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
|
|
case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
|
|
case X86::AND8ri: NewOpc = X86::AND8i8; break;
|
|
case X86::AND16ri: NewOpc = X86::AND16i16; break;
|
|
case X86::AND32ri: NewOpc = X86::AND32i32; break;
|
|
case X86::AND64ri32: NewOpc = X86::AND64i32; break;
|
|
case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
|
|
case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
|
|
case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
|
|
case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
|
|
case X86::OR8ri: NewOpc = X86::OR8i8; break;
|
|
case X86::OR16ri: NewOpc = X86::OR16i16; break;
|
|
case X86::OR32ri: NewOpc = X86::OR32i32; break;
|
|
case X86::OR64ri32: NewOpc = X86::OR64i32; break;
|
|
case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
|
|
case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
|
|
case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
|
|
case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
|
|
case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
|
|
case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
|
|
case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
|
|
case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
|
|
case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
|
|
case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
|
|
case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
|
|
case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
|
|
case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
|
|
case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
|
|
case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
|
|
case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
|
|
}
|
|
SimplifyShortImmForm(OutMI, NewOpc);
|
|
break;
|
|
}
|
|
|
|
// Try to shrink some forms of movsx.
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVSX64rr32:
|
|
SimplifyMOVSX(OutMI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
|
|
const MachineInstr &MI) {
|
|
|
|
bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
|
|
MI.getOpcode() == X86::TLS_base_addr64;
|
|
|
|
bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
|
|
|
|
MCContext &context = OutStreamer->getContext();
|
|
|
|
if (needsPadding)
|
|
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
|
|
|
|
MCSymbolRefExpr::VariantKind SRVK;
|
|
switch (MI.getOpcode()) {
|
|
case X86::TLS_addr32:
|
|
case X86::TLS_addr64:
|
|
SRVK = MCSymbolRefExpr::VK_TLSGD;
|
|
break;
|
|
case X86::TLS_base_addr32:
|
|
SRVK = MCSymbolRefExpr::VK_TLSLDM;
|
|
break;
|
|
case X86::TLS_base_addr64:
|
|
SRVK = MCSymbolRefExpr::VK_TLSLD;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected opcode");
|
|
}
|
|
|
|
MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
|
|
const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);
|
|
|
|
MCInst LEA;
|
|
if (is64Bits) {
|
|
LEA.setOpcode(X86::LEA64r);
|
|
LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
|
|
LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
|
|
LEA.addOperand(MCOperand::createImm(1)); // scale
|
|
LEA.addOperand(MCOperand::createReg(0)); // index
|
|
LEA.addOperand(MCOperand::createExpr(symRef)); // disp
|
|
LEA.addOperand(MCOperand::createReg(0)); // seg
|
|
} else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
|
|
LEA.setOpcode(X86::LEA32r);
|
|
LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
|
|
LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
|
|
LEA.addOperand(MCOperand::createImm(1)); // scale
|
|
LEA.addOperand(MCOperand::createReg(0)); // index
|
|
LEA.addOperand(MCOperand::createExpr(symRef)); // disp
|
|
LEA.addOperand(MCOperand::createReg(0)); // seg
|
|
} else {
|
|
LEA.setOpcode(X86::LEA32r);
|
|
LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
|
|
LEA.addOperand(MCOperand::createReg(0)); // base
|
|
LEA.addOperand(MCOperand::createImm(1)); // scale
|
|
LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
|
|
LEA.addOperand(MCOperand::createExpr(symRef)); // disp
|
|
LEA.addOperand(MCOperand::createReg(0)); // seg
|
|
}
|
|
EmitAndCountInstruction(LEA);
|
|
|
|
if (needsPadding) {
|
|
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
|
|
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
|
|
EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
|
|
}
|
|
|
|
StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
|
|
MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
|
|
const MCSymbolRefExpr *tlsRef =
|
|
MCSymbolRefExpr::create(tlsGetAddr, MCSymbolRefExpr::VK_PLT, context);
|
|
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
|
|
.addExpr(tlsRef));
|
|
}
|
|
|
|
/// Emit the largest nop instruction smaller than or equal to \p NumBytes
|
|
/// bytes. Return the size of nop emitted.
|
|
static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
|
|
const MCSubtargetInfo &STI) {
|
|
// This works only for 64bit. For 32bit we have to do additional checking if
|
|
// the CPU supports multi-byte nops.
|
|
assert(Is64Bit && "EmitNops only supports X86-64");
|
|
|
|
unsigned NopSize;
|
|
unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
|
|
Opc = IndexReg = Displacement = SegmentReg = 0;
|
|
BaseReg = X86::RAX;
|
|
ScaleVal = 1;
|
|
switch (NumBytes) {
|
|
case 0:
|
|
llvm_unreachable("Zero nops?");
|
|
break;
|
|
case 1:
|
|
NopSize = 1;
|
|
Opc = X86::NOOP;
|
|
break;
|
|
case 2:
|
|
NopSize = 2;
|
|
Opc = X86::XCHG16ar;
|
|
break;
|
|
case 3:
|
|
NopSize = 3;
|
|
Opc = X86::NOOPL;
|
|
break;
|
|
case 4:
|
|
NopSize = 4;
|
|
Opc = X86::NOOPL;
|
|
Displacement = 8;
|
|
break;
|
|
case 5:
|
|
NopSize = 5;
|
|
Opc = X86::NOOPL;
|
|
Displacement = 8;
|
|
IndexReg = X86::RAX;
|
|
break;
|
|
case 6:
|
|
NopSize = 6;
|
|
Opc = X86::NOOPW;
|
|
Displacement = 8;
|
|
IndexReg = X86::RAX;
|
|
break;
|
|
case 7:
|
|
NopSize = 7;
|
|
Opc = X86::NOOPL;
|
|
Displacement = 512;
|
|
break;
|
|
case 8:
|
|
NopSize = 8;
|
|
Opc = X86::NOOPL;
|
|
Displacement = 512;
|
|
IndexReg = X86::RAX;
|
|
break;
|
|
case 9:
|
|
NopSize = 9;
|
|
Opc = X86::NOOPW;
|
|
Displacement = 512;
|
|
IndexReg = X86::RAX;
|
|
break;
|
|
default:
|
|
NopSize = 10;
|
|
Opc = X86::NOOPW;
|
|
Displacement = 512;
|
|
IndexReg = X86::RAX;
|
|
SegmentReg = X86::CS;
|
|
break;
|
|
}
|
|
|
|
unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
|
|
NopSize += NumPrefixes;
|
|
for (unsigned i = 0; i != NumPrefixes; ++i)
|
|
OS.EmitBytes("\x66");
|
|
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unexpected opcode");
|
|
case X86::NOOP:
|
|
OS.EmitInstruction(MCInstBuilder(Opc), STI);
|
|
break;
|
|
case X86::XCHG16ar:
|
|
OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
|
|
break;
|
|
case X86::NOOPL:
|
|
case X86::NOOPW:
|
|
OS.EmitInstruction(MCInstBuilder(Opc)
|
|
.addReg(BaseReg)
|
|
.addImm(ScaleVal)
|
|
.addReg(IndexReg)
|
|
.addImm(Displacement)
|
|
.addReg(SegmentReg),
|
|
STI);
|
|
break;
|
|
}
|
|
assert(NopSize <= NumBytes && "We overemitted?");
|
|
return NopSize;
|
|
}
|
|
|
|
/// Emit the optimal amount of multi-byte nops on X86.
|
|
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
|
|
const MCSubtargetInfo &STI) {
|
|
unsigned NopsToEmit = NumBytes;
|
|
(void)NopsToEmit;
|
|
while (NumBytes) {
|
|
NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
|
|
assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
|
|
|
|
StatepointOpers SOpers(&MI);
|
|
if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
|
|
EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
|
|
getSubtargetInfo());
|
|
} else {
|
|
// Lower call target and choose correct opcode
|
|
const MachineOperand &CallTarget = SOpers.getCallTarget();
|
|
MCOperand CallTargetMCOp;
|
|
unsigned CallOpcode;
|
|
switch (CallTarget.getType()) {
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
CallTargetMCOp = MCIL.LowerSymbolOperand(
|
|
CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
|
|
CallOpcode = X86::CALL64pcrel32;
|
|
// Currently, we only support relative addressing with statepoints.
|
|
// Otherwise, we'll need a scratch register to hold the target
|
|
// address. You'll fail asserts during load & relocation if this
|
|
// symbol is to far away. (TODO: support non-relative addressing)
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
|
|
CallOpcode = X86::CALL64pcrel32;
|
|
// Currently, we only support relative addressing with statepoints.
|
|
// Otherwise, we'll need a scratch register to hold the target
|
|
// immediate. You'll fail asserts during load & relocation if this
|
|
// address is to far away. (TODO: support non-relative addressing)
|
|
break;
|
|
case MachineOperand::MO_Register:
|
|
// FIXME: Add retpoline support and remove this.
|
|
if (Subtarget->useRetpoline())
|
|
report_fatal_error("Lowering register statepoints with retpoline not "
|
|
"yet implemented.");
|
|
CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
|
|
CallOpcode = X86::CALL64r;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported operand type in statepoint call target");
|
|
break;
|
|
}
|
|
|
|
// Emit call
|
|
MCInst CallInst;
|
|
CallInst.setOpcode(CallOpcode);
|
|
CallInst.addOperand(CallTargetMCOp);
|
|
OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
|
|
}
|
|
|
|
// Record our statepoint node in the same section used by STACKMAP
|
|
// and PATCHPOINT
|
|
SM.recordStatepoint(MI);
|
|
}
|
|
|
|
void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
|
|
X86MCInstLower &MCIL) {
|
|
// FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
|
|
// <opcode>, <operands>
|
|
|
|
unsigned DefRegister = FaultingMI.getOperand(0).getReg();
|
|
FaultMaps::FaultKind FK =
|
|
static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
|
|
MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
|
|
unsigned Opcode = FaultingMI.getOperand(3).getImm();
|
|
unsigned OperandsBeginIdx = 4;
|
|
|
|
assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
|
|
FM.recordFaultingOp(FK, HandlerLabel);
|
|
|
|
MCInst MI;
|
|
MI.setOpcode(Opcode);
|
|
|
|
if (DefRegister != X86::NoRegister)
|
|
MI.addOperand(MCOperand::createReg(DefRegister));
|
|
|
|
for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
|
|
E = FaultingMI.operands_end();
|
|
I != E; ++I)
|
|
if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
|
|
MI.addOperand(MaybeOperand.getValue());
|
|
|
|
OutStreamer->EmitInstruction(MI, getSubtargetInfo());
|
|
}
|
|
|
|
void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
bool Is64Bits = Subtarget->is64Bit();
|
|
MCContext &Ctx = OutStreamer->getContext();
|
|
MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
|
|
const MCSymbolRefExpr *Op =
|
|
MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
|
|
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
|
|
.addExpr(Op));
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
// PATCHABLE_OP minsize, opcode, operands
|
|
|
|
unsigned MinSize = MI.getOperand(0).getImm();
|
|
unsigned Opcode = MI.getOperand(1).getImm();
|
|
|
|
MCInst MCI;
|
|
MCI.setOpcode(Opcode);
|
|
for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
|
|
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
|
|
MCI.addOperand(MaybeOperand.getValue());
|
|
|
|
SmallString<256> Code;
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
raw_svector_ostream VecOS(Code);
|
|
CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
|
|
|
|
if (Code.size() < MinSize) {
|
|
if (MinSize == 2 && Opcode == X86::PUSH64r) {
|
|
// This is an optimization that lets us get away without emitting a nop in
|
|
// many cases.
|
|
//
|
|
// NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
|
|
// bytes too, so the check on MinSize is important.
|
|
MCI.setOpcode(X86::PUSH64rmr);
|
|
} else {
|
|
unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
|
|
getSubtargetInfo());
|
|
assert(NopSize == MinSize && "Could not implement MinSize!");
|
|
(void)NopSize;
|
|
}
|
|
}
|
|
|
|
OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
|
|
}
|
|
|
|
// Lower a stackmap of the form:
|
|
// <id>, <shadowBytes>, ...
|
|
void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
|
|
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
|
|
SM.recordStackMap(MI);
|
|
unsigned NumShadowBytes = MI.getOperand(1).getImm();
|
|
SMShadowTracker.reset(NumShadowBytes);
|
|
}
|
|
|
|
// Lower a patchpoint of the form:
|
|
// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
|
|
void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
|
|
|
|
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
|
|
|
|
SM.recordPatchPoint(MI);
|
|
|
|
PatchPointOpers opers(&MI);
|
|
unsigned ScratchIdx = opers.getNextScratchIdx();
|
|
unsigned EncodedBytes = 0;
|
|
const MachineOperand &CalleeMO = opers.getCallTarget();
|
|
|
|
// Check for null target. If target is non-null (i.e. is non-zero or is
|
|
// symbolic) then emit a call.
|
|
if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
|
|
MCOperand CalleeMCOp;
|
|
switch (CalleeMO.getType()) {
|
|
default:
|
|
/// FIXME: Add a verifier check for bad callee types.
|
|
llvm_unreachable("Unrecognized callee operand type.");
|
|
case MachineOperand::MO_Immediate:
|
|
if (CalleeMO.getImm())
|
|
CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
case MachineOperand::MO_GlobalAddress:
|
|
CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
|
|
MCIL.GetSymbolFromOperand(CalleeMO));
|
|
break;
|
|
}
|
|
|
|
// Emit MOV to materialize the target address and the CALL to target.
|
|
// This is encoded with 12-13 bytes, depending on which register is used.
|
|
unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
|
|
if (X86II::isX86_64ExtendedReg(ScratchReg))
|
|
EncodedBytes = 13;
|
|
else
|
|
EncodedBytes = 12;
|
|
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
|
|
// FIXME: Add retpoline support and remove this.
|
|
if (Subtarget->useRetpoline())
|
|
report_fatal_error(
|
|
"Lowering patchpoint with retpoline not yet implemented.");
|
|
EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
|
|
}
|
|
|
|
// Emit padding.
|
|
unsigned NumBytes = opers.getNumPatchBytes();
|
|
assert(NumBytes >= EncodedBytes &&
|
|
"Patchpoint can't request size less than the length of a call.");
|
|
|
|
EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
|
|
getSubtargetInfo());
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
|
|
|
|
// We want to emit the following pattern, which follows the x86 calling
|
|
// convention to prepare for the trampoline call to be patched in.
|
|
//
|
|
// .p2align 1, ...
|
|
// .Lxray_event_sled_N:
|
|
// jmp +N // jump across the instrumentation sled
|
|
// ... // set up arguments in register
|
|
// callq __xray_CustomEvent@plt // force dependency to symbol
|
|
// ...
|
|
// <jump here>
|
|
//
|
|
// After patching, it would look something like:
|
|
//
|
|
// nopw (2-byte nop)
|
|
// ...
|
|
// callq __xrayCustomEvent // already lowered
|
|
// ...
|
|
//
|
|
// ---
|
|
// First we emit the label and the jump.
|
|
auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
|
|
OutStreamer->AddComment("# XRay Custom Event Log");
|
|
OutStreamer->EmitCodeAlignment(2);
|
|
OutStreamer->EmitLabel(CurSled);
|
|
|
|
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
|
|
// an operand (computed as an offset from the jmp instruction).
|
|
// FIXME: Find another less hacky way do force the relative jump.
|
|
OutStreamer->EmitBinaryData("\xeb\x0f");
|
|
|
|
// The default C calling convention will place two arguments into %rcx and
|
|
// %rdx -- so we only work with those.
|
|
unsigned DestRegs[] = {X86::RDI, X86::RSI};
|
|
bool UsedMask[] = {false, false};
|
|
// Filled out in loop.
|
|
unsigned SrcRegs[] = {0, 0};
|
|
|
|
// Then we put the operands in the %rdi and %rsi registers. We spill the
|
|
// values in the register before we clobber them, and mark them as used in
|
|
// UsedMask. In case the arguments are already in the correct register, we use
|
|
// emit nops appropriately sized to keep the sled the same size in every
|
|
// situation.
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
|
|
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
|
|
assert(Op->isReg() && "Only support arguments in registers");
|
|
SrcRegs[I] = Op->getReg();
|
|
if (SrcRegs[I] != DestRegs[I]) {
|
|
UsedMask[I] = true;
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
|
|
} else {
|
|
EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
|
|
}
|
|
}
|
|
|
|
// Now that the register values are stashed, mov arguments into place.
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
|
|
if (SrcRegs[I] != DestRegs[I])
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
|
|
|
|
// We emit a hard dependency on the __xray_CustomEvent symbol, which is the
|
|
// name of the trampoline to be implemented by the XRay runtime.
|
|
auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
|
|
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
|
|
if (isPositionIndependent())
|
|
TOp.setTargetFlags(X86II::MO_PLT);
|
|
|
|
// Emit the call instruction.
|
|
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
|
|
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
|
|
|
|
// Restore caller-saved and used registers.
|
|
for (unsigned I = sizeof UsedMask; I-- > 0;)
|
|
if (UsedMask[I])
|
|
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
|
|
else
|
|
EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
|
|
|
|
OutStreamer->AddComment("xray custom event end.");
|
|
|
|
// Record the sled version. Older versions of this sled were spelled
|
|
// differently, so we let the runtime handle the different offsets we're
|
|
// using.
|
|
recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
|
|
|
|
// We want to emit the following pattern, which follows the x86 calling
|
|
// convention to prepare for the trampoline call to be patched in.
|
|
//
|
|
// .p2align 1, ...
|
|
// .Lxray_event_sled_N:
|
|
// jmp +N // jump across the instrumentation sled
|
|
// ... // set up arguments in register
|
|
// callq __xray_TypedEvent@plt // force dependency to symbol
|
|
// ...
|
|
// <jump here>
|
|
//
|
|
// After patching, it would look something like:
|
|
//
|
|
// nopw (2-byte nop)
|
|
// ...
|
|
// callq __xrayTypedEvent // already lowered
|
|
// ...
|
|
//
|
|
// ---
|
|
// First we emit the label and the jump.
|
|
auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
|
|
OutStreamer->AddComment("# XRay Typed Event Log");
|
|
OutStreamer->EmitCodeAlignment(2);
|
|
OutStreamer->EmitLabel(CurSled);
|
|
|
|
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
|
|
// an operand (computed as an offset from the jmp instruction).
|
|
// FIXME: Find another less hacky way do force the relative jump.
|
|
OutStreamer->EmitBinaryData("\xeb\x14");
|
|
|
|
// An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
|
|
// so we'll work with those. Or we may be called via SystemV, in which case
|
|
// we don't have to do any translation.
|
|
unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
|
|
bool UsedMask[] = {false, false, false};
|
|
|
|
// Will fill out src regs in the loop.
|
|
unsigned SrcRegs[] = {0, 0, 0};
|
|
|
|
// Then we put the operands in the SystemV registers. We spill the values in
|
|
// the registers before we clobber them, and mark them as used in UsedMask.
|
|
// In case the arguments are already in the correct register, we emit nops
|
|
// appropriately sized to keep the sled the same size in every situation.
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
|
|
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
|
|
// TODO: Is register only support adequate?
|
|
assert(Op->isReg() && "Only supports arguments in registers");
|
|
SrcRegs[I] = Op->getReg();
|
|
if (SrcRegs[I] != DestRegs[I]) {
|
|
UsedMask[I] = true;
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
|
|
} else {
|
|
EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
|
|
}
|
|
}
|
|
|
|
// In the above loop we only stash all of the destination registers or emit
|
|
// nops if the arguments are already in the right place. Doing the actually
|
|
// moving is postponed until after all the registers are stashed so nothing
|
|
// is clobbers. We've already added nops to account for the size of mov and
|
|
// push if the register is in the right place, so we only have to worry about
|
|
// emitting movs.
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
|
|
if (UsedMask[I])
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
|
|
|
|
// We emit a hard dependency on the __xray_TypedEvent symbol, which is the
|
|
// name of the trampoline to be implemented by the XRay runtime.
|
|
auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
|
|
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
|
|
if (isPositionIndependent())
|
|
TOp.setTargetFlags(X86II::MO_PLT);
|
|
|
|
// Emit the call instruction.
|
|
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
|
|
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
|
|
|
|
// Restore caller-saved and used registers.
|
|
for (unsigned I = sizeof UsedMask; I-- > 0;)
|
|
if (UsedMask[I])
|
|
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
|
|
else
|
|
EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
|
|
|
|
OutStreamer->AddComment("xray typed event end.");
|
|
|
|
// Record the sled version.
|
|
recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
// We want to emit the following pattern:
|
|
//
|
|
// .p2align 1, ...
|
|
// .Lxray_sled_N:
|
|
// jmp .tmpN
|
|
// # 9 bytes worth of noops
|
|
//
|
|
// We need the 9 bytes because at runtime, we'd be patching over the full 11
|
|
// bytes with the following pattern:
|
|
//
|
|
// mov %r10, <function id, 32-bit> // 6 bytes
|
|
// call <relative offset, 32-bits> // 5 bytes
|
|
//
|
|
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
|
|
OutStreamer->EmitCodeAlignment(2);
|
|
OutStreamer->EmitLabel(CurSled);
|
|
|
|
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
|
|
// an operand (computed as an offset from the jmp instruction).
|
|
// FIXME: Find another less hacky way do force the relative jump.
|
|
OutStreamer->EmitBytes("\xeb\x09");
|
|
EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
|
|
recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
// Since PATCHABLE_RET takes the opcode of the return statement as an
|
|
// argument, we use that to emit the correct form of the RET that we want.
|
|
// i.e. when we see this:
|
|
//
|
|
// PATCHABLE_RET X86::RET ...
|
|
//
|
|
// We should emit the RET followed by sleds.
|
|
//
|
|
// .p2align 1, ...
|
|
// .Lxray_sled_N:
|
|
// ret # or equivalent instruction
|
|
// # 10 bytes worth of noops
|
|
//
|
|
// This just makes sure that the alignment for the next instruction is 2.
|
|
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
|
|
OutStreamer->EmitCodeAlignment(2);
|
|
OutStreamer->EmitLabel(CurSled);
|
|
unsigned OpCode = MI.getOperand(0).getImm();
|
|
MCInst Ret;
|
|
Ret.setOpcode(OpCode);
|
|
for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
|
|
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
|
|
Ret.addOperand(MaybeOperand.getValue());
|
|
OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
|
|
EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
|
|
recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
|
|
}
|
|
|
|
void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
|
|
X86MCInstLower &MCIL) {
|
|
// Like PATCHABLE_RET, we have the actual instruction in the operands to this
|
|
// instruction so we lower that particular instruction and its operands.
|
|
// Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
|
|
// we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
|
|
// the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
|
|
// tail call much like how we have it in PATCHABLE_RET.
|
|
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
|
|
OutStreamer->EmitCodeAlignment(2);
|
|
OutStreamer->EmitLabel(CurSled);
|
|
auto Target = OutContext.createTempSymbol();
|
|
|
|
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
|
|
// an operand (computed as an offset from the jmp instruction).
|
|
// FIXME: Find another less hacky way do force the relative jump.
|
|
OutStreamer->EmitBytes("\xeb\x09");
|
|
EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
|
|
OutStreamer->EmitLabel(Target);
|
|
recordSled(CurSled, MI, SledKind::TAIL_CALL);
|
|
|
|
unsigned OpCode = MI.getOperand(0).getImm();
|
|
MCInst TC;
|
|
TC.setOpcode(OpCode);
|
|
|
|
// Before emitting the instruction, add a comment to indicate that this is
|
|
// indeed a tail call.
|
|
OutStreamer->AddComment("TAILCALL");
|
|
for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
|
|
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
|
|
TC.addOperand(MaybeOperand.getValue());
|
|
OutStreamer->EmitInstruction(TC, getSubtargetInfo());
|
|
}
|
|
|
|
// Returns instruction preceding MBBI in MachineFunction.
|
|
// If MBBI is the first instruction of the first basic block, returns null.
|
|
static MachineBasicBlock::const_iterator
|
|
PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
|
|
const MachineBasicBlock *MBB = MBBI->getParent();
|
|
while (MBBI == MBB->begin()) {
|
|
if (MBB == &MBB->getParent()->front())
|
|
return MachineBasicBlock::const_iterator();
|
|
MBB = MBB->getPrevNode();
|
|
MBBI = MBB->end();
|
|
}
|
|
return --MBBI;
|
|
}
|
|
|
|
static const Constant *getConstantFromPool(const MachineInstr &MI,
|
|
const MachineOperand &Op) {
|
|
if (!Op.isCPI())
|
|
return nullptr;
|
|
|
|
ArrayRef<MachineConstantPoolEntry> Constants =
|
|
MI.getParent()->getParent()->getConstantPool()->getConstants();
|
|
const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
|
|
|
|
// Bail if this is a machine constant pool entry, we won't be able to dig out
|
|
// anything useful.
|
|
if (ConstantEntry.isMachineConstantPoolEntry())
|
|
return nullptr;
|
|
|
|
auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
|
|
assert((!C || ConstantEntry.getType() == C->getType()) &&
|
|
"Expected a constant of the same type!");
|
|
return C;
|
|
}
|
|
|
|
static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
|
|
unsigned SrcOp2Idx, ArrayRef<int> Mask) {
|
|
std::string Comment;
|
|
|
|
// Compute the name for a register. This is really goofy because we have
|
|
// multiple instruction printers that could (in theory) use different
|
|
// names. Fortunately most people use the ATT style (outside of Windows)
|
|
// and they actually agree on register naming here. Ultimately, this is
|
|
// a comment, and so its OK if it isn't perfect.
|
|
auto GetRegisterName = [](unsigned RegNum) -> StringRef {
|
|
return X86ATTInstPrinter::getRegisterName(RegNum);
|
|
};
|
|
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
|
|
const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
|
|
|
|
StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
|
|
StringRef Src1Name =
|
|
SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
|
|
StringRef Src2Name =
|
|
SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
|
|
|
|
// One source operand, fix the mask to print all elements in one span.
|
|
SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
|
|
if (Src1Name == Src2Name)
|
|
for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
|
|
if (ShuffleMask[i] >= e)
|
|
ShuffleMask[i] -= e;
|
|
|
|
raw_string_ostream CS(Comment);
|
|
CS << DstName;
|
|
|
|
// Handle AVX512 MASK/MASXZ write mask comments.
|
|
// MASK: zmmX {%kY}
|
|
// MASKZ: zmmX {%kY} {z}
|
|
if (SrcOp1Idx > 1) {
|
|
assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
|
|
|
|
const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
|
|
if (WriteMaskOp.isReg()) {
|
|
CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
|
|
|
|
if (SrcOp1Idx == 2) {
|
|
CS << " {z}";
|
|
}
|
|
}
|
|
}
|
|
|
|
CS << " = ";
|
|
|
|
for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
|
|
if (i != 0)
|
|
CS << ",";
|
|
if (ShuffleMask[i] == SM_SentinelZero) {
|
|
CS << "zero";
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, it must come from src1 or src2. Print the span of elements
|
|
// that comes from this src.
|
|
bool isSrc1 = ShuffleMask[i] < (int)e;
|
|
CS << (isSrc1 ? Src1Name : Src2Name) << '[';
|
|
|
|
bool IsFirst = true;
|
|
while (i != e && ShuffleMask[i] != SM_SentinelZero &&
|
|
(ShuffleMask[i] < (int)e) == isSrc1) {
|
|
if (!IsFirst)
|
|
CS << ',';
|
|
else
|
|
IsFirst = false;
|
|
if (ShuffleMask[i] == SM_SentinelUndef)
|
|
CS << "u";
|
|
else
|
|
CS << ShuffleMask[i] % (int)e;
|
|
++i;
|
|
}
|
|
CS << ']';
|
|
--i; // For loop increments element #.
|
|
}
|
|
CS.flush();
|
|
|
|
return Comment;
|
|
}
|
|
|
|
static void printConstant(const Constant *COp, raw_ostream &CS) {
|
|
if (isa<UndefValue>(COp)) {
|
|
CS << "u";
|
|
} else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
|
|
if (CI->getBitWidth() <= 64) {
|
|
CS << CI->getZExtValue();
|
|
} else {
|
|
// print multi-word constant as (w0,w1)
|
|
const auto &Val = CI->getValue();
|
|
CS << "(";
|
|
for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
|
|
if (i > 0)
|
|
CS << ",";
|
|
CS << Val.getRawData()[i];
|
|
}
|
|
CS << ")";
|
|
}
|
|
} else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
|
|
SmallString<32> Str;
|
|
CF->getValueAPF().toString(Str);
|
|
CS << Str;
|
|
} else {
|
|
CS << "?";
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
|
|
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
|
|
assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
|
|
const X86RegisterInfo *RI =
|
|
MF->getSubtarget<X86Subtarget>().getRegisterInfo();
|
|
|
|
// Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
|
|
if (EmitFPOData) {
|
|
X86TargetStreamer *XTS =
|
|
static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
switch (MI->getOpcode()) {
|
|
case X86::SEH_PushReg:
|
|
XTS->emitFPOPushReg(MI->getOperand(0).getImm());
|
|
break;
|
|
case X86::SEH_StackAlloc:
|
|
XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
|
|
break;
|
|
case X86::SEH_SetFrame:
|
|
assert(MI->getOperand(1).getImm() == 0 &&
|
|
".cv_fpo_setframe takes no offset");
|
|
XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
|
|
break;
|
|
case X86::SEH_EndPrologue:
|
|
XTS->emitFPOEndPrologue();
|
|
break;
|
|
case X86::SEH_SaveReg:
|
|
case X86::SEH_SaveXMM:
|
|
case X86::SEH_PushFrame:
|
|
llvm_unreachable("SEH_ directive incompatible with FPO");
|
|
break;
|
|
default:
|
|
llvm_unreachable("expected SEH_ instruction");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, use the .seh_ directives for all other Windows platforms.
|
|
switch (MI->getOpcode()) {
|
|
case X86::SEH_PushReg:
|
|
OutStreamer->EmitWinCFIPushReg(
|
|
RI->getSEHRegNum(MI->getOperand(0).getImm()));
|
|
break;
|
|
|
|
case X86::SEH_SaveReg:
|
|
OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
|
|
MI->getOperand(1).getImm());
|
|
break;
|
|
|
|
case X86::SEH_SaveXMM:
|
|
OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
|
|
MI->getOperand(1).getImm());
|
|
break;
|
|
|
|
case X86::SEH_StackAlloc:
|
|
OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
|
|
break;
|
|
|
|
case X86::SEH_SetFrame:
|
|
OutStreamer->EmitWinCFISetFrame(
|
|
RI->getSEHRegNum(MI->getOperand(0).getImm()),
|
|
MI->getOperand(1).getImm());
|
|
break;
|
|
|
|
case X86::SEH_PushFrame:
|
|
OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
|
|
break;
|
|
|
|
case X86::SEH_EndPrologue:
|
|
OutStreamer->EmitWinCFIEndProlog();
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("expected SEH_ instruction");
|
|
}
|
|
}
|
|
|
|
void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
|
|
X86MCInstLower MCInstLowering(*MF, *this);
|
|
const X86RegisterInfo *RI =
|
|
MF->getSubtarget<X86Subtarget>().getRegisterInfo();
|
|
|
|
// Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
|
|
// are compressed from EVEX encoding to VEX encoding.
|
|
if (TM.Options.MCOptions.ShowMCEncoding) {
|
|
if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
|
|
OutStreamer->AddComment("EVEX TO VEX Compression ", false);
|
|
}
|
|
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::DBG_VALUE:
|
|
llvm_unreachable("Should be handled target independently");
|
|
|
|
// Emit nothing here but a comment if we can.
|
|
case X86::Int_MemBarrier:
|
|
OutStreamer->emitRawComment("MEMBARRIER");
|
|
return;
|
|
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64: {
|
|
// Lower these as normal, but add some comments.
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
OutStreamer->AddComment(StringRef("eh_return, addr: %") +
|
|
X86ATTInstPrinter::getRegisterName(Reg));
|
|
break;
|
|
}
|
|
case X86::CLEANUPRET: {
|
|
// Lower these as normal, but add some comments.
|
|
OutStreamer->AddComment("CLEANUPRET");
|
|
break;
|
|
}
|
|
|
|
case X86::CATCHRET: {
|
|
// Lower these as normal, but add some comments.
|
|
OutStreamer->AddComment("CATCHRET");
|
|
break;
|
|
}
|
|
|
|
case X86::TAILJMPr:
|
|
case X86::TAILJMPm:
|
|
case X86::TAILJMPd:
|
|
case X86::TAILJMPd_CC:
|
|
case X86::TAILJMPr64:
|
|
case X86::TAILJMPm64:
|
|
case X86::TAILJMPd64:
|
|
case X86::TAILJMPd64_CC:
|
|
case X86::TAILJMPr64_REX:
|
|
case X86::TAILJMPm64_REX:
|
|
// Lower these as normal, but add some comments.
|
|
OutStreamer->AddComment("TAILCALL");
|
|
break;
|
|
|
|
case X86::TLS_addr32:
|
|
case X86::TLS_addr64:
|
|
case X86::TLS_base_addr32:
|
|
case X86::TLS_base_addr64:
|
|
return LowerTlsAddr(MCInstLowering, *MI);
|
|
|
|
case X86::MOVPC32r: {
|
|
// This is a pseudo op for a two instruction sequence with a label, which
|
|
// looks like:
|
|
// call "L1$pb"
|
|
// "L1$pb":
|
|
// popl %esi
|
|
|
|
// Emit the call.
|
|
MCSymbol *PICBase = MF->getPICBaseSymbol();
|
|
// FIXME: We would like an efficient form for this, so we don't have to do a
|
|
// lot of extra uniquing.
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::CALLpcrel32)
|
|
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
|
|
|
|
const X86FrameLowering *FrameLowering =
|
|
MF->getSubtarget<X86Subtarget>().getFrameLowering();
|
|
bool hasFP = FrameLowering->hasFP(*MF);
|
|
|
|
// TODO: This is needed only if we require precise CFA.
|
|
bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
|
|
!OutStreamer->getDwarfFrameInfos().back().End;
|
|
|
|
int stackGrowth = -RI->getSlotSize();
|
|
|
|
if (HasActiveDwarfFrame && !hasFP) {
|
|
OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
|
|
}
|
|
|
|
// Emit the label.
|
|
OutStreamer->EmitLabel(PICBase);
|
|
|
|
// popl $reg
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
|
|
|
|
if (HasActiveDwarfFrame && !hasFP) {
|
|
OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case X86::MOVGOT64r: {
|
|
// Materializes the GOT for the 64-bit large code model.
|
|
MCSymbol *DotSym = OutContext.createTempSymbol();
|
|
OutStreamer->EmitLabel(DotSym);
|
|
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned ScratchReg = MI->getOperand(1).getReg();
|
|
MCSymbol *GOTSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
|
|
|
|
// .LtmpN: leaq .LtmpN(%rip), %dst
|
|
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
|
|
EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
|
|
.addReg(DstReg) // dest
|
|
.addReg(X86::RIP) // base
|
|
.addImm(1) // scale
|
|
.addReg(0) // index
|
|
.addExpr(DotExpr) // disp
|
|
.addReg(0)); // seg
|
|
|
|
// movq $_GLOBAL_OFFSET_TABLE_ - .LtmpN, %scratch
|
|
const MCExpr *GOTSymExpr = MCSymbolRefExpr::create(GOTSym, OutContext);
|
|
const MCExpr *GOTDiffExpr =
|
|
MCBinaryExpr::createSub(GOTSymExpr, DotExpr, OutContext);
|
|
EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri)
|
|
.addReg(ScratchReg) // dest
|
|
.addExpr(GOTDiffExpr)); // disp
|
|
|
|
// addq %scratch, %dst
|
|
EmitAndCountInstruction(MCInstBuilder(X86::ADD64rr)
|
|
.addReg(DstReg) // dest
|
|
.addReg(DstReg) // dest
|
|
.addReg(ScratchReg)); // src
|
|
return;
|
|
}
|
|
|
|
case X86::ADD32ri: {
|
|
// Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
|
|
if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
|
|
break;
|
|
|
|
// Okay, we have something like:
|
|
// EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
|
|
|
|
// For this, we want to print something like:
|
|
// MYGLOBAL + (. - PICBASE)
|
|
// However, we can't generate a ".", so just emit a new label here and refer
|
|
// to it.
|
|
MCSymbol *DotSym = OutContext.createTempSymbol();
|
|
OutStreamer->EmitLabel(DotSym);
|
|
|
|
// Now that we have emitted the label, lower the complex operand expression.
|
|
MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
|
|
|
|
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
|
|
const MCExpr *PICBase =
|
|
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
|
|
DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
|
|
|
|
DotExpr = MCBinaryExpr::createAdd(
|
|
MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
|
|
|
|
EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(DotExpr));
|
|
return;
|
|
}
|
|
case TargetOpcode::STATEPOINT:
|
|
return LowerSTATEPOINT(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::FAULTING_OP:
|
|
return LowerFAULTING_OP(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::FENTRY_CALL:
|
|
return LowerFENTRY_CALL(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_OP:
|
|
return LowerPATCHABLE_OP(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::STACKMAP:
|
|
return LowerSTACKMAP(*MI);
|
|
|
|
case TargetOpcode::PATCHPOINT:
|
|
return LowerPATCHPOINT(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
|
|
return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_RET:
|
|
return LowerPATCHABLE_RET(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_TAIL_CALL:
|
|
return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_EVENT_CALL:
|
|
return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
|
|
|
|
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
|
|
return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
|
|
|
|
case X86::MORESTACK_RET:
|
|
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
|
|
return;
|
|
|
|
case X86::MORESTACK_RET_RESTORE_R10:
|
|
// Return, then restore R10.
|
|
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
|
|
EmitAndCountInstruction(
|
|
MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
|
|
return;
|
|
|
|
case X86::SEH_PushReg:
|
|
case X86::SEH_SaveReg:
|
|
case X86::SEH_SaveXMM:
|
|
case X86::SEH_StackAlloc:
|
|
case X86::SEH_SetFrame:
|
|
case X86::SEH_PushFrame:
|
|
case X86::SEH_EndPrologue:
|
|
EmitSEHInstruction(MI);
|
|
return;
|
|
|
|
case X86::SEH_Epilogue: {
|
|
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
|
|
MachineBasicBlock::const_iterator MBBI(MI);
|
|
// Check if preceded by a call and emit nop if so.
|
|
for (MBBI = PrevCrossBBInst(MBBI);
|
|
MBBI != MachineBasicBlock::const_iterator();
|
|
MBBI = PrevCrossBBInst(MBBI)) {
|
|
// Conservatively assume that pseudo instructions don't emit code and keep
|
|
// looking for a call. We may emit an unnecessary nop in some cases.
|
|
if (!MBBI->isPseudo()) {
|
|
if (MBBI->isCall())
|
|
EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Lower PSHUFB and VPERMILP normally but add a comment if we can find
|
|
// a constant shuffle mask. We won't be able to do this at the MC layer
|
|
// because the mask isn't an immediate.
|
|
case X86::PSHUFBrm:
|
|
case X86::VPSHUFBrm:
|
|
case X86::VPSHUFBYrm:
|
|
case X86::VPSHUFBZ128rm:
|
|
case X86::VPSHUFBZ128rmk:
|
|
case X86::VPSHUFBZ128rmkz:
|
|
case X86::VPSHUFBZ256rm:
|
|
case X86::VPSHUFBZ256rmk:
|
|
case X86::VPSHUFBZ256rmkz:
|
|
case X86::VPSHUFBZrm:
|
|
case X86::VPSHUFBZrmk:
|
|
case X86::VPSHUFBZrmkz: {
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
unsigned SrcIdx, MaskIdx;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::PSHUFBrm:
|
|
case X86::VPSHUFBrm:
|
|
case X86::VPSHUFBYrm:
|
|
case X86::VPSHUFBZ128rm:
|
|
case X86::VPSHUFBZ256rm:
|
|
case X86::VPSHUFBZrm:
|
|
SrcIdx = 1; MaskIdx = 5; break;
|
|
case X86::VPSHUFBZ128rmkz:
|
|
case X86::VPSHUFBZ256rmkz:
|
|
case X86::VPSHUFBZrmkz:
|
|
SrcIdx = 2; MaskIdx = 6; break;
|
|
case X86::VPSHUFBZ128rmk:
|
|
case X86::VPSHUFBZ256rmk:
|
|
case X86::VPSHUFBZrmk:
|
|
SrcIdx = 3; MaskIdx = 7; break;
|
|
}
|
|
|
|
assert(MI->getNumOperands() >= 6 &&
|
|
"We should always have at least 6 operands!");
|
|
|
|
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
|
|
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
|
|
SmallVector<int, 64> Mask;
|
|
DecodePSHUFBMask(C, Mask);
|
|
if (!Mask.empty())
|
|
OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask),
|
|
!EnablePrintSchedInfo);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86::VPERMILPSrm:
|
|
case X86::VPERMILPSYrm:
|
|
case X86::VPERMILPSZ128rm:
|
|
case X86::VPERMILPSZ128rmk:
|
|
case X86::VPERMILPSZ128rmkz:
|
|
case X86::VPERMILPSZ256rm:
|
|
case X86::VPERMILPSZ256rmk:
|
|
case X86::VPERMILPSZ256rmkz:
|
|
case X86::VPERMILPSZrm:
|
|
case X86::VPERMILPSZrmk:
|
|
case X86::VPERMILPSZrmkz:
|
|
case X86::VPERMILPDrm:
|
|
case X86::VPERMILPDYrm:
|
|
case X86::VPERMILPDZ128rm:
|
|
case X86::VPERMILPDZ128rmk:
|
|
case X86::VPERMILPDZ128rmkz:
|
|
case X86::VPERMILPDZ256rm:
|
|
case X86::VPERMILPDZ256rmk:
|
|
case X86::VPERMILPDZ256rmkz:
|
|
case X86::VPERMILPDZrm:
|
|
case X86::VPERMILPDZrmk:
|
|
case X86::VPERMILPDZrmkz: {
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
unsigned SrcIdx, MaskIdx;
|
|
unsigned ElSize;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VPERMILPSrm:
|
|
case X86::VPERMILPSYrm:
|
|
case X86::VPERMILPSZ128rm:
|
|
case X86::VPERMILPSZ256rm:
|
|
case X86::VPERMILPSZrm:
|
|
SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
|
|
case X86::VPERMILPSZ128rmkz:
|
|
case X86::VPERMILPSZ256rmkz:
|
|
case X86::VPERMILPSZrmkz:
|
|
SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
|
|
case X86::VPERMILPSZ128rmk:
|
|
case X86::VPERMILPSZ256rmk:
|
|
case X86::VPERMILPSZrmk:
|
|
SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
|
|
case X86::VPERMILPDrm:
|
|
case X86::VPERMILPDYrm:
|
|
case X86::VPERMILPDZ128rm:
|
|
case X86::VPERMILPDZ256rm:
|
|
case X86::VPERMILPDZrm:
|
|
SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
|
|
case X86::VPERMILPDZ128rmkz:
|
|
case X86::VPERMILPDZ256rmkz:
|
|
case X86::VPERMILPDZrmkz:
|
|
SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
|
|
case X86::VPERMILPDZ128rmk:
|
|
case X86::VPERMILPDZ256rmk:
|
|
case X86::VPERMILPDZrmk:
|
|
SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
|
|
}
|
|
|
|
assert(MI->getNumOperands() >= 6 &&
|
|
"We should always have at least 6 operands!");
|
|
|
|
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
|
|
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
|
|
SmallVector<int, 16> Mask;
|
|
DecodeVPERMILPMask(C, ElSize, Mask);
|
|
if (!Mask.empty())
|
|
OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask),
|
|
!EnablePrintSchedInfo);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86::VPERMIL2PDrm:
|
|
case X86::VPERMIL2PSrm:
|
|
case X86::VPERMIL2PDYrm:
|
|
case X86::VPERMIL2PSYrm: {
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
assert(MI->getNumOperands() >= 8 &&
|
|
"We should always have at least 8 operands!");
|
|
|
|
const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
|
|
if (!CtrlOp.isImm())
|
|
break;
|
|
|
|
unsigned ElSize;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
|
|
case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
|
|
}
|
|
|
|
const MachineOperand &MaskOp = MI->getOperand(6);
|
|
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
|
|
SmallVector<int, 16> Mask;
|
|
DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Mask);
|
|
if (!Mask.empty())
|
|
OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask),
|
|
!EnablePrintSchedInfo);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86::VPPERMrrm: {
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
assert(MI->getNumOperands() >= 7 &&
|
|
"We should always have at least 7 operands!");
|
|
|
|
const MachineOperand &MaskOp = MI->getOperand(6);
|
|
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
|
|
SmallVector<int, 16> Mask;
|
|
DecodeVPPERMMask(C, Mask);
|
|
if (!Mask.empty())
|
|
OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask),
|
|
!EnablePrintSchedInfo);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86::MMX_MOVQ64rm: {
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
if (MI->getNumOperands() <= 4)
|
|
break;
|
|
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
|
|
std::string Comment;
|
|
raw_string_ostream CS(Comment);
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
|
|
if (auto *CF = dyn_cast<ConstantFP>(C)) {
|
|
CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
|
|
OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
#define MOV_CASE(Prefix, Suffix) \
|
|
case X86::Prefix##MOVAPD##Suffix##rm: \
|
|
case X86::Prefix##MOVAPS##Suffix##rm: \
|
|
case X86::Prefix##MOVUPD##Suffix##rm: \
|
|
case X86::Prefix##MOVUPS##Suffix##rm: \
|
|
case X86::Prefix##MOVDQA##Suffix##rm: \
|
|
case X86::Prefix##MOVDQU##Suffix##rm:
|
|
|
|
#define MOV_AVX512_CASE(Suffix) \
|
|
case X86::VMOVDQA64##Suffix##rm: \
|
|
case X86::VMOVDQA32##Suffix##rm: \
|
|
case X86::VMOVDQU64##Suffix##rm: \
|
|
case X86::VMOVDQU32##Suffix##rm: \
|
|
case X86::VMOVDQU16##Suffix##rm: \
|
|
case X86::VMOVDQU8##Suffix##rm: \
|
|
case X86::VMOVAPS##Suffix##rm: \
|
|
case X86::VMOVAPD##Suffix##rm: \
|
|
case X86::VMOVUPS##Suffix##rm: \
|
|
case X86::VMOVUPD##Suffix##rm:
|
|
|
|
#define CASE_ALL_MOV_RM() \
|
|
MOV_CASE(, ) /* SSE */ \
|
|
MOV_CASE(V, ) /* AVX-128 */ \
|
|
MOV_CASE(V, Y) /* AVX-256 */ \
|
|
MOV_AVX512_CASE(Z) \
|
|
MOV_AVX512_CASE(Z256) \
|
|
MOV_AVX512_CASE(Z128)
|
|
|
|
// For loads from a constant pool to a vector register, print the constant
|
|
// loaded.
|
|
CASE_ALL_MOV_RM()
|
|
case X86::VBROADCASTF128:
|
|
case X86::VBROADCASTI128:
|
|
case X86::VBROADCASTF32X4Z256rm:
|
|
case X86::VBROADCASTF32X4rm:
|
|
case X86::VBROADCASTF32X8rm:
|
|
case X86::VBROADCASTF64X2Z128rm:
|
|
case X86::VBROADCASTF64X2rm:
|
|
case X86::VBROADCASTF64X4rm:
|
|
case X86::VBROADCASTI32X4Z256rm:
|
|
case X86::VBROADCASTI32X4rm:
|
|
case X86::VBROADCASTI32X8rm:
|
|
case X86::VBROADCASTI64X2Z128rm:
|
|
case X86::VBROADCASTI64X2rm:
|
|
case X86::VBROADCASTI64X4rm:
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
if (MI->getNumOperands() <= 4)
|
|
break;
|
|
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
|
|
int NumLanes = 1;
|
|
// Override NumLanes for the broadcast instructions.
|
|
switch (MI->getOpcode()) {
|
|
case X86::VBROADCASTF128: NumLanes = 2; break;
|
|
case X86::VBROADCASTI128: NumLanes = 2; break;
|
|
case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
|
|
case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
|
|
case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
|
|
case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
|
|
case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
|
|
case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
|
|
}
|
|
|
|
std::string Comment;
|
|
raw_string_ostream CS(Comment);
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
|
|
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
|
|
CS << "[";
|
|
for (int l = 0; l != NumLanes; ++l) {
|
|
for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
|
|
++i) {
|
|
if (i != 0 || l != 0)
|
|
CS << ",";
|
|
if (CDS->getElementType()->isIntegerTy())
|
|
CS << CDS->getElementAsInteger(i);
|
|
else if (CDS->getElementType()->isFloatTy())
|
|
CS << CDS->getElementAsFloat(i);
|
|
else if (CDS->getElementType()->isDoubleTy())
|
|
CS << CDS->getElementAsDouble(i);
|
|
else
|
|
CS << "?";
|
|
}
|
|
}
|
|
CS << "]";
|
|
OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
|
|
} else if (auto *CV = dyn_cast<ConstantVector>(C)) {
|
|
CS << "<";
|
|
for (int l = 0; l != NumLanes; ++l) {
|
|
for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
|
|
++i) {
|
|
if (i != 0 || l != 0)
|
|
CS << ",";
|
|
printConstant(CV->getOperand(i), CS);
|
|
}
|
|
}
|
|
CS << ">";
|
|
OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
|
|
}
|
|
}
|
|
break;
|
|
case X86::VBROADCASTSSrm:
|
|
case X86::VBROADCASTSSYrm:
|
|
case X86::VBROADCASTSSZ128m:
|
|
case X86::VBROADCASTSSZ256m:
|
|
case X86::VBROADCASTSSZm:
|
|
case X86::VBROADCASTSDYrm:
|
|
case X86::VBROADCASTSDZ256m:
|
|
case X86::VBROADCASTSDZm:
|
|
case X86::VPBROADCASTBrm:
|
|
case X86::VPBROADCASTBYrm:
|
|
case X86::VPBROADCASTBZ128m:
|
|
case X86::VPBROADCASTBZ256m:
|
|
case X86::VPBROADCASTBZm:
|
|
case X86::VPBROADCASTDrm:
|
|
case X86::VPBROADCASTDYrm:
|
|
case X86::VPBROADCASTDZ128m:
|
|
case X86::VPBROADCASTDZ256m:
|
|
case X86::VPBROADCASTDZm:
|
|
case X86::VPBROADCASTQrm:
|
|
case X86::VPBROADCASTQYrm:
|
|
case X86::VPBROADCASTQZ128m:
|
|
case X86::VPBROADCASTQZ256m:
|
|
case X86::VPBROADCASTQZm:
|
|
case X86::VPBROADCASTWrm:
|
|
case X86::VPBROADCASTWYrm:
|
|
case X86::VPBROADCASTWZ128m:
|
|
case X86::VPBROADCASTWZ256m:
|
|
case X86::VPBROADCASTWZm:
|
|
if (!OutStreamer->isVerboseAsm())
|
|
break;
|
|
if (MI->getNumOperands() <= 4)
|
|
break;
|
|
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
|
|
int NumElts;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VBROADCASTSSrm: NumElts = 4; break;
|
|
case X86::VBROADCASTSSYrm: NumElts = 8; break;
|
|
case X86::VBROADCASTSSZ128m: NumElts = 4; break;
|
|
case X86::VBROADCASTSSZ256m: NumElts = 8; break;
|
|
case X86::VBROADCASTSSZm: NumElts = 16; break;
|
|
case X86::VBROADCASTSDYrm: NumElts = 4; break;
|
|
case X86::VBROADCASTSDZ256m: NumElts = 4; break;
|
|
case X86::VBROADCASTSDZm: NumElts = 8; break;
|
|
case X86::VPBROADCASTBrm: NumElts = 16; break;
|
|
case X86::VPBROADCASTBYrm: NumElts = 32; break;
|
|
case X86::VPBROADCASTBZ128m: NumElts = 16; break;
|
|
case X86::VPBROADCASTBZ256m: NumElts = 32; break;
|
|
case X86::VPBROADCASTBZm: NumElts = 64; break;
|
|
case X86::VPBROADCASTDrm: NumElts = 4; break;
|
|
case X86::VPBROADCASTDYrm: NumElts = 8; break;
|
|
case X86::VPBROADCASTDZ128m: NumElts = 4; break;
|
|
case X86::VPBROADCASTDZ256m: NumElts = 8; break;
|
|
case X86::VPBROADCASTDZm: NumElts = 16; break;
|
|
case X86::VPBROADCASTQrm: NumElts = 2; break;
|
|
case X86::VPBROADCASTQYrm: NumElts = 4; break;
|
|
case X86::VPBROADCASTQZ128m: NumElts = 2; break;
|
|
case X86::VPBROADCASTQZ256m: NumElts = 4; break;
|
|
case X86::VPBROADCASTQZm: NumElts = 8; break;
|
|
case X86::VPBROADCASTWrm: NumElts = 8; break;
|
|
case X86::VPBROADCASTWYrm: NumElts = 16; break;
|
|
case X86::VPBROADCASTWZ128m: NumElts = 8; break;
|
|
case X86::VPBROADCASTWZ256m: NumElts = 16; break;
|
|
case X86::VPBROADCASTWZm: NumElts = 32; break;
|
|
}
|
|
|
|
std::string Comment;
|
|
raw_string_ostream CS(Comment);
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
|
|
CS << "[";
|
|
for (int i = 0; i != NumElts; ++i) {
|
|
if (i != 0)
|
|
CS << ",";
|
|
printConstant(C, CS);
|
|
}
|
|
CS << "]";
|
|
OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
|
|
}
|
|
}
|
|
|
|
MCInst TmpInst;
|
|
MCInstLowering.Lower(MI, TmpInst);
|
|
if (MI->getAsmPrinterFlag(MachineInstr::NoSchedComment))
|
|
TmpInst.setFlags(TmpInst.getFlags() | X86::NO_SCHED_INFO);
|
|
|
|
// Stackmap shadows cannot include branch targets, so we can count the bytes
|
|
// in a call towards the shadow, but must ensure that the no thread returns
|
|
// in to the stackmap shadow. The only way to achieve this is if the call
|
|
// is at the end of the shadow.
|
|
if (MI->isCall()) {
|
|
// Count then size of the call towards the shadow
|
|
SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
|
|
// Then flush the shadow so that we fill with nops before the call, not
|
|
// after it.
|
|
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
|
|
// Then emit the call
|
|
OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
|
|
return;
|
|
}
|
|
|
|
EmitAndCountInstruction(TmpInst);
|
|
}
|