mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 12:43:36 +01:00
ba4b6a66c6
... even on targets preferring RELA. The section is only consumed by ld.lld which can handle REL. Follow-up to D104080 as I explained in the review. There are two advantages: * The D104080 code only handles RELA, so arm/i386/mips32 etc may warn for -fprofile-use=/-fprofile-sample-use= usage. * Decrease object file size for RELA targets While here, change the relocation to relocate weights, instead of 0,1,2,3,.. I failed to catch the issue during review.
7159 lines
257 KiB
C++
7159 lines
257 KiB
C++
//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the ELF-specific dumper for llvm-readobj.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMEHABIPrinter.h"
|
|
#include "DwarfCFIEHPrinter.h"
|
|
#include "ObjDumper.h"
|
|
#include "StackMapPrinter.h"
|
|
#include "llvm-readobj.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ELFTypes.h"
|
|
#include "llvm/Object/Error.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Object/RelocationResolver.h"
|
|
#include "llvm/Object/StackMapParser.h"
|
|
#include "llvm/Support/AMDGPUMetadata.h"
|
|
#include "llvm/Support/ARMAttributeParser.h"
|
|
#include "llvm/Support/ARMBuildAttributes.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MipsABIFlags.h"
|
|
#include "llvm/Support/RISCVAttributeParser.h"
|
|
#include "llvm/Support/RISCVAttributes.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace ELF;
|
|
|
|
#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
|
|
case ns::enum: \
|
|
return #enum;
|
|
|
|
#define ENUM_ENT(enum, altName) \
|
|
{ #enum, altName, ELF::enum }
|
|
|
|
#define ENUM_ENT_1(enum) \
|
|
{ #enum, #enum, ELF::enum }
|
|
|
|
namespace {
|
|
|
|
template <class ELFT> struct RelSymbol {
|
|
RelSymbol(const typename ELFT::Sym *S, StringRef N)
|
|
: Sym(S), Name(N.str()) {}
|
|
const typename ELFT::Sym *Sym;
|
|
std::string Name;
|
|
};
|
|
|
|
/// Represents a contiguous uniform range in the file. We cannot just create a
|
|
/// range directly because when creating one of these from the .dynamic table
|
|
/// the size, entity size and virtual address are different entries in arbitrary
|
|
/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
|
|
struct DynRegionInfo {
|
|
DynRegionInfo(const Binary &Owner, const ObjDumper &D)
|
|
: Obj(&Owner), Dumper(&D) {}
|
|
DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
|
|
uint64_t S, uint64_t ES)
|
|
: Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
|
|
|
|
/// Address in current address space.
|
|
const uint8_t *Addr = nullptr;
|
|
/// Size in bytes of the region.
|
|
uint64_t Size = 0;
|
|
/// Size of each entity in the region.
|
|
uint64_t EntSize = 0;
|
|
|
|
/// Owner object. Used for error reporting.
|
|
const Binary *Obj;
|
|
/// Dumper used for error reporting.
|
|
const ObjDumper *Dumper;
|
|
/// Error prefix. Used for error reporting to provide more information.
|
|
std::string Context;
|
|
/// Region size name. Used for error reporting.
|
|
StringRef SizePrintName = "size";
|
|
/// Entry size name. Used for error reporting. If this field is empty, errors
|
|
/// will not mention the entry size.
|
|
StringRef EntSizePrintName = "entry size";
|
|
|
|
template <typename Type> ArrayRef<Type> getAsArrayRef() const {
|
|
const Type *Start = reinterpret_cast<const Type *>(Addr);
|
|
if (!Start)
|
|
return {Start, Start};
|
|
|
|
const uint64_t Offset =
|
|
Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
|
|
const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
|
|
|
|
if (Size > ObjSize - Offset) {
|
|
Dumper->reportUniqueWarning(
|
|
"unable to read data at 0x" + Twine::utohexstr(Offset) +
|
|
" of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
|
|
"): it goes past the end of the file of size 0x" +
|
|
Twine::utohexstr(ObjSize));
|
|
return {Start, Start};
|
|
}
|
|
|
|
if (EntSize == sizeof(Type) && (Size % EntSize == 0))
|
|
return {Start, Start + (Size / EntSize)};
|
|
|
|
std::string Msg;
|
|
if (!Context.empty())
|
|
Msg += Context + " has ";
|
|
|
|
Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
|
|
.str();
|
|
if (!EntSizePrintName.empty())
|
|
Msg +=
|
|
(" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
|
|
.str();
|
|
|
|
Dumper->reportUniqueWarning(Msg);
|
|
return {Start, Start};
|
|
}
|
|
};
|
|
|
|
struct GroupMember {
|
|
StringRef Name;
|
|
uint64_t Index;
|
|
};
|
|
|
|
struct GroupSection {
|
|
StringRef Name;
|
|
std::string Signature;
|
|
uint64_t ShName;
|
|
uint64_t Index;
|
|
uint32_t Link;
|
|
uint32_t Info;
|
|
uint32_t Type;
|
|
std::vector<GroupMember> Members;
|
|
};
|
|
|
|
namespace {
|
|
|
|
struct NoteType {
|
|
uint32_t ID;
|
|
StringRef Name;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template <class ELFT> class Relocation {
|
|
public:
|
|
Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
|
|
: Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
|
|
Offset(R.r_offset), Info(R.r_info) {}
|
|
|
|
Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
|
|
: Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
|
|
Addend = R.r_addend;
|
|
}
|
|
|
|
uint32_t Type;
|
|
uint32_t Symbol;
|
|
typename ELFT::uint Offset;
|
|
typename ELFT::uint Info;
|
|
Optional<int64_t> Addend;
|
|
};
|
|
|
|
template <class ELFT> class MipsGOTParser;
|
|
|
|
template <typename ELFT> class ELFDumper : public ObjDumper {
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
|
|
public:
|
|
ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
|
|
|
|
void printUnwindInfo() override;
|
|
void printNeededLibraries() override;
|
|
void printHashTable() override;
|
|
void printGnuHashTable() override;
|
|
void printLoadName() override;
|
|
void printVersionInfo() override;
|
|
void printArchSpecificInfo() override;
|
|
void printStackMap() const override;
|
|
|
|
const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
|
|
|
|
std::string describe(const Elf_Shdr &Sec) const;
|
|
|
|
unsigned getHashTableEntSize() const {
|
|
// EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
|
|
// sections. This violates the ELF specification.
|
|
if (Obj.getHeader().e_machine == ELF::EM_S390 ||
|
|
Obj.getHeader().e_machine == ELF::EM_ALPHA)
|
|
return 8;
|
|
return 4;
|
|
}
|
|
|
|
Elf_Dyn_Range dynamic_table() const {
|
|
// A valid .dynamic section contains an array of entries terminated
|
|
// with a DT_NULL entry. However, sometimes the section content may
|
|
// continue past the DT_NULL entry, so to dump the section correctly,
|
|
// we first find the end of the entries by iterating over them.
|
|
Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
|
|
|
|
size_t Size = 0;
|
|
while (Size < Table.size())
|
|
if (Table[Size++].getTag() == DT_NULL)
|
|
break;
|
|
|
|
return Table.slice(0, Size);
|
|
}
|
|
|
|
Elf_Sym_Range dynamic_symbols() const {
|
|
if (!DynSymRegion)
|
|
return Elf_Sym_Range();
|
|
return DynSymRegion->template getAsArrayRef<Elf_Sym>();
|
|
}
|
|
|
|
const Elf_Shdr *findSectionByName(StringRef Name) const;
|
|
|
|
StringRef getDynamicStringTable() const { return DynamicStringTable; }
|
|
|
|
protected:
|
|
virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
|
|
virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
|
|
virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
|
|
|
|
void
|
|
printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
|
|
function_ref<void(StringRef, uint64_t)> OnLibEntry);
|
|
|
|
virtual void printRelRelaReloc(const Relocation<ELFT> &R,
|
|
const RelSymbol<ELFT> &RelSym) = 0;
|
|
virtual void printRelrReloc(const Elf_Relr &R) = 0;
|
|
virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
|
|
const DynRegionInfo &Reg) {}
|
|
void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
|
|
const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
|
|
void printDynamicReloc(const Relocation<ELFT> &R);
|
|
void printDynamicRelocationsHelper();
|
|
void printRelocationsHelper(const Elf_Shdr &Sec);
|
|
void forEachRelocationDo(
|
|
const Elf_Shdr &Sec, bool RawRelr,
|
|
llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
|
|
const Elf_Shdr &, const Elf_Shdr *)>
|
|
RelRelaFn,
|
|
llvm::function_ref<void(const Elf_Relr &)> RelrFn);
|
|
|
|
virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
|
|
bool NonVisibilityBitsUsed) const {};
|
|
virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable, bool IsDynamic,
|
|
bool NonVisibilityBitsUsed) const = 0;
|
|
|
|
virtual void printMipsABIFlags() = 0;
|
|
virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
|
|
virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
|
|
|
|
Expected<ArrayRef<Elf_Versym>>
|
|
getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
|
|
StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
|
|
StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
|
|
|
|
std::vector<GroupSection> getGroups();
|
|
|
|
// Returns the function symbol index for the given address. Matches the
|
|
// symbol's section with FunctionSec when specified.
|
|
// Returns None if no function symbol can be found for the address or in case
|
|
// it is not defined in the specified section.
|
|
Optional<uint32_t>
|
|
getSymbolIndexForFunctionAddress(uint64_t SymValue,
|
|
Optional<const Elf_Shdr *> FunctionSec);
|
|
bool printFunctionStackSize(uint64_t SymValue,
|
|
Optional<const Elf_Shdr *> FunctionSec,
|
|
const Elf_Shdr &StackSizeSec, DataExtractor Data,
|
|
uint64_t *Offset);
|
|
void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
|
|
unsigned Ndx, const Elf_Shdr *SymTab,
|
|
const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
|
|
const RelocationResolver &Resolver, DataExtractor Data);
|
|
virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
|
|
|
|
void printRelocatableStackSizes(std::function<void()> PrintHeader);
|
|
void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
|
|
|
|
/// Retrieves sections with corresponding relocation sections based on
|
|
/// IsMatch.
|
|
void getSectionAndRelocations(
|
|
std::function<bool(const Elf_Shdr &)> IsMatch,
|
|
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
|
|
|
|
const object::ELFObjectFile<ELFT> &ObjF;
|
|
const ELFFile<ELFT> &Obj;
|
|
StringRef FileName;
|
|
|
|
Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
|
|
uint64_t EntSize) {
|
|
if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
|
|
return createError("offset (0x" + Twine::utohexstr(Offset) +
|
|
") + size (0x" + Twine::utohexstr(Size) +
|
|
") is greater than the file size (0x" +
|
|
Twine::utohexstr(Obj.getBufSize()) + ")");
|
|
return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
|
|
}
|
|
|
|
void printAttributes();
|
|
void printMipsReginfo();
|
|
void printMipsOptions();
|
|
|
|
std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
|
|
void loadDynamicTable();
|
|
void parseDynamicTable();
|
|
|
|
Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
|
|
bool &IsDefault) const;
|
|
Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
|
|
|
|
DynRegionInfo DynRelRegion;
|
|
DynRegionInfo DynRelaRegion;
|
|
DynRegionInfo DynRelrRegion;
|
|
DynRegionInfo DynPLTRelRegion;
|
|
Optional<DynRegionInfo> DynSymRegion;
|
|
DynRegionInfo DynSymTabShndxRegion;
|
|
DynRegionInfo DynamicTable;
|
|
StringRef DynamicStringTable;
|
|
const Elf_Hash *HashTable = nullptr;
|
|
const Elf_GnuHash *GnuHashTable = nullptr;
|
|
const Elf_Shdr *DotSymtabSec = nullptr;
|
|
const Elf_Shdr *DotDynsymSec = nullptr;
|
|
const Elf_Shdr *DotAddrsigSec = nullptr;
|
|
DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
|
|
Optional<uint64_t> SONameOffset;
|
|
Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
|
|
|
|
const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
|
|
const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
|
|
const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
|
|
|
|
std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable,
|
|
bool IsDynamic) const;
|
|
Expected<unsigned>
|
|
getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const;
|
|
Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
|
|
unsigned SectionIndex) const;
|
|
std::string getStaticSymbolName(uint32_t Index) const;
|
|
StringRef getDynamicString(uint64_t Value) const;
|
|
|
|
void printSymbolsHelper(bool IsDynamic) const;
|
|
std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
|
|
|
|
Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
|
|
const Elf_Shdr *SymTab) const;
|
|
|
|
ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
|
|
|
|
private:
|
|
mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
|
|
};
|
|
|
|
template <class ELFT>
|
|
std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
|
|
return ::describe(Obj, Sec);
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <class ELFT> struct SymtabLink {
|
|
typename ELFT::SymRange Symbols;
|
|
StringRef StringTable;
|
|
const typename ELFT::Shdr *SymTab;
|
|
};
|
|
|
|
// Returns the linked symbol table, symbols and associated string table for a
|
|
// given section.
|
|
template <class ELFT>
|
|
Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
|
|
const typename ELFT::Shdr &Sec,
|
|
unsigned ExpectedType) {
|
|
Expected<const typename ELFT::Shdr *> SymtabOrErr =
|
|
Obj.getSection(Sec.sh_link);
|
|
if (!SymtabOrErr)
|
|
return createError("invalid section linked to " + describe(Obj, Sec) +
|
|
": " + toString(SymtabOrErr.takeError()));
|
|
|
|
if ((*SymtabOrErr)->sh_type != ExpectedType)
|
|
return createError(
|
|
"invalid section linked to " + describe(Obj, Sec) + ": expected " +
|
|
object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
|
|
", but got " +
|
|
object::getELFSectionTypeName(Obj.getHeader().e_machine,
|
|
(*SymtabOrErr)->sh_type));
|
|
|
|
Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
|
|
if (!StrTabOrErr)
|
|
return createError(
|
|
"can't get a string table for the symbol table linked to " +
|
|
describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
|
|
|
|
Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
|
|
if (!SymsOrErr)
|
|
return createError("unable to read symbols from the " + describe(Obj, Sec) +
|
|
": " + toString(SymsOrErr.takeError()));
|
|
|
|
return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <class ELFT>
|
|
Expected<ArrayRef<typename ELFT::Versym>>
|
|
ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
|
|
StringRef *StrTab,
|
|
const Elf_Shdr **SymTabSec) const {
|
|
assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
|
|
if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
|
|
sizeof(uint16_t) !=
|
|
0)
|
|
return createError("the " + describe(Sec) + " is misaligned");
|
|
|
|
Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
|
|
Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
|
|
if (!VersionsOrErr)
|
|
return createError("cannot read content of " + describe(Sec) + ": " +
|
|
toString(VersionsOrErr.takeError()));
|
|
|
|
Expected<SymtabLink<ELFT>> SymTabOrErr =
|
|
getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
|
|
if (!SymTabOrErr) {
|
|
reportUniqueWarning(SymTabOrErr.takeError());
|
|
return *VersionsOrErr;
|
|
}
|
|
|
|
if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
|
|
reportUniqueWarning(describe(Sec) + ": the number of entries (" +
|
|
Twine(VersionsOrErr->size()) +
|
|
") does not match the number of symbols (" +
|
|
Twine(SymTabOrErr->Symbols.size()) +
|
|
") in the symbol table with index " +
|
|
Twine(Sec.sh_link));
|
|
|
|
if (SymTab) {
|
|
*SymTab = SymTabOrErr->Symbols;
|
|
*StrTab = SymTabOrErr->StringTable;
|
|
*SymTabSec = SymTabOrErr->SymTab;
|
|
}
|
|
return *VersionsOrErr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
|
|
Optional<StringRef> StrTable;
|
|
size_t Entries = 0;
|
|
Elf_Sym_Range Syms(nullptr, nullptr);
|
|
const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
|
|
|
|
if (IsDynamic) {
|
|
StrTable = DynamicStringTable;
|
|
Syms = dynamic_symbols();
|
|
Entries = Syms.size();
|
|
} else if (DotSymtabSec) {
|
|
if (Expected<StringRef> StrTableOrErr =
|
|
Obj.getStringTableForSymtab(*DotSymtabSec))
|
|
StrTable = *StrTableOrErr;
|
|
else
|
|
reportUniqueWarning(
|
|
"unable to get the string table for the SHT_SYMTAB section: " +
|
|
toString(StrTableOrErr.takeError()));
|
|
|
|
if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
|
|
Syms = *SymsOrErr;
|
|
else
|
|
reportUniqueWarning(
|
|
"unable to read symbols from the SHT_SYMTAB section: " +
|
|
toString(SymsOrErr.takeError()));
|
|
Entries = DotSymtabSec->getEntityCount();
|
|
}
|
|
if (Syms.empty())
|
|
return;
|
|
|
|
// The st_other field has 2 logical parts. The first two bits hold the symbol
|
|
// visibility (STV_*) and the remainder hold other platform-specific values.
|
|
bool NonVisibilityBitsUsed =
|
|
llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
|
|
|
|
DataRegion<Elf_Word> ShndxTable =
|
|
IsDynamic ? DataRegion<Elf_Word>(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr,
|
|
this->getElfObject().getELFFile().end())
|
|
: DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
|
|
|
|
printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
|
|
for (const Elf_Sym &Sym : Syms)
|
|
printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
|
|
NonVisibilityBitsUsed);
|
|
}
|
|
|
|
template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
|
|
formatted_raw_ostream &OS;
|
|
|
|
public:
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
|
|
GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
|
|
: ELFDumper<ELFT>(ObjF, Writer),
|
|
OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
|
|
assert(&this->W.getOStream() == &llvm::fouts());
|
|
}
|
|
|
|
void printFileHeaders() override;
|
|
void printGroupSections() override;
|
|
void printRelocations() override;
|
|
void printSectionHeaders() override;
|
|
void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
|
|
void printHashSymbols() override;
|
|
void printSectionDetails() override;
|
|
void printDependentLibs() override;
|
|
void printDynamicTable() override;
|
|
void printDynamicRelocations() override;
|
|
void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
|
|
bool NonVisibilityBitsUsed) const override;
|
|
void printProgramHeaders(bool PrintProgramHeaders,
|
|
cl::boolOrDefault PrintSectionMapping) override;
|
|
void printVersionSymbolSection(const Elf_Shdr *Sec) override;
|
|
void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
|
|
void printVersionDependencySection(const Elf_Shdr *Sec) override;
|
|
void printHashHistograms() override;
|
|
void printCGProfile() override;
|
|
void printBBAddrMaps() override;
|
|
void printAddrsig() override;
|
|
void printNotes() override;
|
|
void printELFLinkerOptions() override;
|
|
void printStackSizes() override;
|
|
|
|
private:
|
|
void printHashHistogram(const Elf_Hash &HashTable);
|
|
void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
|
|
void printHashTableSymbols(const Elf_Hash &HashTable);
|
|
void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
|
|
|
|
struct Field {
|
|
std::string Str;
|
|
unsigned Column;
|
|
|
|
Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
|
|
Field(unsigned Col) : Column(Col) {}
|
|
};
|
|
|
|
template <typename T, typename TEnum>
|
|
std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) const {
|
|
for (const EnumEntry<TEnum> &EnumItem : EnumValues)
|
|
if (EnumItem.Value == Value)
|
|
return std::string(EnumItem.AltName);
|
|
return to_hexString(Value, false);
|
|
}
|
|
|
|
template <typename T, typename TEnum>
|
|
std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
|
|
TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
|
|
TEnum EnumMask3 = {}) const {
|
|
std::string Str;
|
|
for (const EnumEntry<TEnum> &Flag : EnumValues) {
|
|
if (Flag.Value == 0)
|
|
continue;
|
|
|
|
TEnum EnumMask{};
|
|
if (Flag.Value & EnumMask1)
|
|
EnumMask = EnumMask1;
|
|
else if (Flag.Value & EnumMask2)
|
|
EnumMask = EnumMask2;
|
|
else if (Flag.Value & EnumMask3)
|
|
EnumMask = EnumMask3;
|
|
bool IsEnum = (Flag.Value & EnumMask) != 0;
|
|
if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
|
|
(IsEnum && (Value & EnumMask) == Flag.Value)) {
|
|
if (!Str.empty())
|
|
Str += ", ";
|
|
Str += Flag.AltName;
|
|
}
|
|
}
|
|
return Str;
|
|
}
|
|
|
|
formatted_raw_ostream &printField(struct Field F) const {
|
|
if (F.Column != 0)
|
|
OS.PadToColumn(F.Column);
|
|
OS << F.Str;
|
|
OS.flush();
|
|
return OS;
|
|
}
|
|
void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
|
|
uint32_t Bucket);
|
|
void printRelrReloc(const Elf_Relr &R) override;
|
|
void printRelRelaReloc(const Relocation<ELFT> &R,
|
|
const RelSymbol<ELFT> &RelSym) override;
|
|
void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable, bool IsDynamic,
|
|
bool NonVisibilityBitsUsed) const override;
|
|
void printDynamicRelocHeader(unsigned Type, StringRef Name,
|
|
const DynRegionInfo &Reg) override;
|
|
|
|
std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const;
|
|
void printProgramHeaders() override;
|
|
void printSectionMapping() override;
|
|
void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
|
|
const Twine &Label, unsigned EntriesNum);
|
|
|
|
void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
|
|
|
|
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
|
|
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
|
|
void printMipsABIFlags() override;
|
|
};
|
|
|
|
template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
|
|
public:
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
|
|
LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
|
|
: ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
|
|
|
|
void printFileHeaders() override;
|
|
void printGroupSections() override;
|
|
void printRelocations() override;
|
|
void printSectionHeaders() override;
|
|
void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
|
|
void printDependentLibs() override;
|
|
void printDynamicTable() override;
|
|
void printDynamicRelocations() override;
|
|
void printProgramHeaders(bool PrintProgramHeaders,
|
|
cl::boolOrDefault PrintSectionMapping) override;
|
|
void printVersionSymbolSection(const Elf_Shdr *Sec) override;
|
|
void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
|
|
void printVersionDependencySection(const Elf_Shdr *Sec) override;
|
|
void printHashHistograms() override;
|
|
void printCGProfile() override;
|
|
void printBBAddrMaps() override;
|
|
void printAddrsig() override;
|
|
void printNotes() override;
|
|
void printELFLinkerOptions() override;
|
|
void printStackSizes() override;
|
|
|
|
private:
|
|
void printRelrReloc(const Elf_Relr &R) override;
|
|
void printRelRelaReloc(const Relocation<ELFT> &R,
|
|
const RelSymbol<ELFT> &RelSym) override;
|
|
|
|
void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const;
|
|
void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable, bool IsDynamic,
|
|
bool /*NonVisibilityBitsUsed*/) const override;
|
|
void printProgramHeaders() override;
|
|
void printSectionMapping() override {}
|
|
void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
|
|
|
|
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
|
|
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
|
|
void printMipsABIFlags() override;
|
|
|
|
ScopedPrinter &W;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <class ELFT>
|
|
static std::unique_ptr<ObjDumper>
|
|
createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
|
|
if (opts::Output == opts::GNU)
|
|
return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
|
|
return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
|
|
}
|
|
|
|
std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
|
|
ScopedPrinter &Writer) {
|
|
// Little-endian 32-bit
|
|
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
|
|
return createELFDumper(*ELFObj, Writer);
|
|
|
|
// Big-endian 32-bit
|
|
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
|
|
return createELFDumper(*ELFObj, Writer);
|
|
|
|
// Little-endian 64-bit
|
|
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
|
|
return createELFDumper(*ELFObj, Writer);
|
|
|
|
// Big-endian 64-bit
|
|
return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
template <class ELFT>
|
|
Expected<SmallVector<Optional<VersionEntry>, 0> *>
|
|
ELFDumper<ELFT>::getVersionMap() const {
|
|
// If the VersionMap has already been loaded or if there is no dynamic symtab
|
|
// or version table, there is nothing to do.
|
|
if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
|
|
return &VersionMap;
|
|
|
|
Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
|
|
Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
|
|
if (MapOrErr)
|
|
VersionMap = *MapOrErr;
|
|
else
|
|
return MapOrErr.takeError();
|
|
|
|
return &VersionMap;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
|
|
bool &IsDefault) const {
|
|
// This is a dynamic symbol. Look in the GNU symbol version table.
|
|
if (!SymbolVersionSection) {
|
|
// No version table.
|
|
IsDefault = false;
|
|
return "";
|
|
}
|
|
|
|
assert(DynSymRegion && "DynSymRegion has not been initialised");
|
|
// Determine the position in the symbol table of this entry.
|
|
size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
|
|
reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
|
|
sizeof(Elf_Sym);
|
|
|
|
// Get the corresponding version index entry.
|
|
Expected<const Elf_Versym *> EntryOrErr =
|
|
Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
|
|
if (!EntryOrErr)
|
|
return EntryOrErr.takeError();
|
|
|
|
unsigned Version = (*EntryOrErr)->vs_index;
|
|
if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
|
|
IsDefault = false;
|
|
return "";
|
|
}
|
|
|
|
Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
|
|
getVersionMap();
|
|
if (!MapOrErr)
|
|
return MapOrErr.takeError();
|
|
|
|
return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
|
|
Sym.st_shndx == ELF::SHN_UNDEF);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Expected<RelSymbol<ELFT>>
|
|
ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
|
|
const Elf_Shdr *SymTab) const {
|
|
if (R.Symbol == 0)
|
|
return RelSymbol<ELFT>(nullptr, "");
|
|
|
|
Expected<const Elf_Sym *> SymOrErr =
|
|
Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
|
|
if (!SymOrErr)
|
|
return createError("unable to read an entry with index " + Twine(R.Symbol) +
|
|
" from " + describe(*SymTab) + ": " +
|
|
toString(SymOrErr.takeError()));
|
|
const Elf_Sym *Sym = *SymOrErr;
|
|
if (!Sym)
|
|
return RelSymbol<ELFT>(nullptr, "");
|
|
|
|
Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
|
|
if (!StrTableOrErr)
|
|
return StrTableOrErr.takeError();
|
|
|
|
const Elf_Sym *FirstSym =
|
|
cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
|
|
std::string SymbolName =
|
|
getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
|
|
*StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
|
|
return RelSymbol<ELFT>(Sym, SymbolName);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
ArrayRef<typename ELFT::Word>
|
|
ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
|
|
if (Symtab) {
|
|
auto It = ShndxTables.find(Symtab);
|
|
if (It != ShndxTables.end())
|
|
return It->second;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
static std::string maybeDemangle(StringRef Name) {
|
|
return opts::Demangle ? demangle(std::string(Name)) : Name.str();
|
|
}
|
|
|
|
template <typename ELFT>
|
|
std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
|
|
auto Warn = [&](Error E) -> std::string {
|
|
reportUniqueWarning("unable to read the name of symbol with index " +
|
|
Twine(Index) + ": " + toString(std::move(E)));
|
|
return "<?>";
|
|
};
|
|
|
|
Expected<const typename ELFT::Sym *> SymOrErr =
|
|
Obj.getSymbol(DotSymtabSec, Index);
|
|
if (!SymOrErr)
|
|
return Warn(SymOrErr.takeError());
|
|
|
|
Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
|
|
if (!StrTabOrErr)
|
|
return Warn(StrTabOrErr.takeError());
|
|
|
|
Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
|
|
if (!NameOrErr)
|
|
return Warn(NameOrErr.takeError());
|
|
return maybeDemangle(*NameOrErr);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
|
|
unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable,
|
|
bool IsDynamic) const {
|
|
if (!StrTable)
|
|
return "<?>";
|
|
|
|
std::string SymbolName;
|
|
if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
|
|
SymbolName = maybeDemangle(*NameOrErr);
|
|
} else {
|
|
reportUniqueWarning(NameOrErr.takeError());
|
|
return "<?>";
|
|
}
|
|
|
|
if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
|
|
Expected<unsigned> SectionIndex =
|
|
getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
|
|
if (!SectionIndex) {
|
|
reportUniqueWarning(SectionIndex.takeError());
|
|
return "<?>";
|
|
}
|
|
Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
|
|
if (!NameOrErr) {
|
|
reportUniqueWarning(NameOrErr.takeError());
|
|
return ("<section " + Twine(*SectionIndex) + ">").str();
|
|
}
|
|
return std::string(*NameOrErr);
|
|
}
|
|
|
|
if (!IsDynamic)
|
|
return SymbolName;
|
|
|
|
bool IsDefault;
|
|
Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
|
|
if (!VersionOrErr) {
|
|
reportUniqueWarning(VersionOrErr.takeError());
|
|
return SymbolName + "@<corrupt>";
|
|
}
|
|
|
|
if (!VersionOrErr->empty()) {
|
|
SymbolName += (IsDefault ? "@@" : "@");
|
|
SymbolName += *VersionOrErr;
|
|
}
|
|
return SymbolName;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Expected<unsigned>
|
|
ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const {
|
|
unsigned Ndx = Symbol.st_shndx;
|
|
if (Ndx == SHN_XINDEX)
|
|
return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
|
|
ShndxTable);
|
|
if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
|
|
return Ndx;
|
|
|
|
auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
|
|
std::string Desc;
|
|
if (Offset)
|
|
Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
|
|
else
|
|
Desc = Name.str();
|
|
return createError(
|
|
"unable to get section index for symbol with st_shndx = 0x" +
|
|
Twine::utohexstr(Ndx) + " (" + Desc + ")");
|
|
};
|
|
|
|
if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
|
|
return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
|
|
if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
|
|
return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
|
|
if (Ndx == ELF::SHN_UNDEF)
|
|
return CreateErr("SHN_UNDEF");
|
|
if (Ndx == ELF::SHN_ABS)
|
|
return CreateErr("SHN_ABS");
|
|
if (Ndx == ELF::SHN_COMMON)
|
|
return CreateErr("SHN_COMMON");
|
|
return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Expected<StringRef>
|
|
ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
|
|
unsigned SectionIndex) const {
|
|
Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
|
|
if (!SecOrErr)
|
|
return SecOrErr.takeError();
|
|
return Obj.getSectionName(**SecOrErr);
|
|
}
|
|
|
|
template <class ELFO>
|
|
static const typename ELFO::Elf_Shdr *
|
|
findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
|
|
uint64_t Addr) {
|
|
for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
|
|
if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
|
|
return &Shdr;
|
|
return nullptr;
|
|
}
|
|
|
|
static const EnumEntry<unsigned> ElfClass[] = {
|
|
{"None", "none", ELF::ELFCLASSNONE},
|
|
{"32-bit", "ELF32", ELF::ELFCLASS32},
|
|
{"64-bit", "ELF64", ELF::ELFCLASS64},
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfDataEncoding[] = {
|
|
{"None", "none", ELF::ELFDATANONE},
|
|
{"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
|
|
{"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfObjectFileType[] = {
|
|
{"None", "NONE (none)", ELF::ET_NONE},
|
|
{"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
|
|
{"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
|
|
{"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
|
|
{"Core", "CORE (Core file)", ELF::ET_CORE},
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfOSABI[] = {
|
|
{"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
|
|
{"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
|
|
{"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
|
|
{"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
|
|
{"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
|
|
{"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
|
|
{"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
|
|
{"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
|
|
{"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
|
|
{"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
|
|
{"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
|
|
{"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
|
|
{"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
|
|
{"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
|
|
{"AROS", "AROS", ELF::ELFOSABI_AROS},
|
|
{"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
|
|
{"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
|
|
{"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
|
|
{"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
|
|
{"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
|
|
{"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ARMElfOSABI[] = {
|
|
{"ARM", "ARM", ELF::ELFOSABI_ARM}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> C6000ElfOSABI[] = {
|
|
{"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
|
|
{"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMachineType[] = {
|
|
ENUM_ENT(EM_NONE, "None"),
|
|
ENUM_ENT(EM_M32, "WE32100"),
|
|
ENUM_ENT(EM_SPARC, "Sparc"),
|
|
ENUM_ENT(EM_386, "Intel 80386"),
|
|
ENUM_ENT(EM_68K, "MC68000"),
|
|
ENUM_ENT(EM_88K, "MC88000"),
|
|
ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
|
|
ENUM_ENT(EM_860, "Intel 80860"),
|
|
ENUM_ENT(EM_MIPS, "MIPS R3000"),
|
|
ENUM_ENT(EM_S370, "IBM System/370"),
|
|
ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
|
|
ENUM_ENT(EM_PARISC, "HPPA"),
|
|
ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
|
|
ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
|
|
ENUM_ENT(EM_960, "Intel 80960"),
|
|
ENUM_ENT(EM_PPC, "PowerPC"),
|
|
ENUM_ENT(EM_PPC64, "PowerPC64"),
|
|
ENUM_ENT(EM_S390, "IBM S/390"),
|
|
ENUM_ENT(EM_SPU, "SPU"),
|
|
ENUM_ENT(EM_V800, "NEC V800 series"),
|
|
ENUM_ENT(EM_FR20, "Fujistsu FR20"),
|
|
ENUM_ENT(EM_RH32, "TRW RH-32"),
|
|
ENUM_ENT(EM_RCE, "Motorola RCE"),
|
|
ENUM_ENT(EM_ARM, "ARM"),
|
|
ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
|
|
ENUM_ENT(EM_SH, "Hitachi SH"),
|
|
ENUM_ENT(EM_SPARCV9, "Sparc v9"),
|
|
ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
|
|
ENUM_ENT(EM_ARC, "ARC"),
|
|
ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
|
|
ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
|
|
ENUM_ENT(EM_H8S, "Hitachi H8S"),
|
|
ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
|
|
ENUM_ENT(EM_IA_64, "Intel IA-64"),
|
|
ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
|
|
ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
|
|
ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
|
|
ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
|
|
ENUM_ENT(EM_PCP, "Siemens PCP"),
|
|
ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
|
|
ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
|
|
ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
|
|
ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
|
|
ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
|
|
ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
|
|
ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
|
|
ENUM_ENT(EM_PDSP, "Sony DSP processor"),
|
|
ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
|
|
ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
|
|
ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
|
|
ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
|
|
ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
|
|
ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
|
|
ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
|
|
ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
|
|
ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
|
|
ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
|
|
ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
|
|
ENUM_ENT(EM_VAX, "Digital VAX"),
|
|
ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
|
|
ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
|
|
ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
|
|
ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
|
|
ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
|
|
ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
|
|
ENUM_ENT(EM_PRISM, "Vitesse Prism"),
|
|
ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
|
|
ENUM_ENT(EM_FR30, "Fujitsu FR30"),
|
|
ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
|
|
ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
|
|
ENUM_ENT(EM_V850, "NEC v850"),
|
|
ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
|
|
ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
|
|
ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
|
|
ENUM_ENT(EM_PJ, "picoJava"),
|
|
ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
|
|
ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
|
|
ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
|
|
ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
|
|
ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
|
|
ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
|
|
ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
|
|
ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
|
|
ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
|
|
ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
|
|
ENUM_ENT(EM_MAX, "MAX Processor"),
|
|
ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
|
|
ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
|
|
ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
|
|
ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
|
|
ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
|
|
ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
|
|
ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
|
|
ENUM_ENT(EM_UNICORE, "Unicore"),
|
|
ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
|
|
ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
|
|
ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
|
|
ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
|
|
ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
|
|
ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
|
|
ENUM_ENT(EM_M16C, "Renesas M16C"),
|
|
ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
|
|
ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
|
|
ENUM_ENT(EM_M32C, "Renesas M32C"),
|
|
ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
|
|
ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
|
|
ENUM_ENT(EM_SHARC, "EM_SHARC"),
|
|
ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
|
|
ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
|
|
ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
|
|
ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
|
|
ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
|
|
ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
|
|
ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
|
|
ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
|
|
ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
|
|
ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
|
|
ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
|
|
ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
|
|
ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
|
|
ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
|
|
ENUM_ENT(EM_8051, "Intel 8051 and variants"),
|
|
ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
|
|
ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
|
|
ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
|
|
// FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
|
|
// an identical number to EM_ECOG1.
|
|
ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
|
|
ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
|
|
ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
|
|
ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
|
|
ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
|
|
ENUM_ENT(EM_RX, "Renesas RX"),
|
|
ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
|
|
ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
|
|
ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
|
|
ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
|
|
ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
|
|
ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
|
|
ENUM_ENT(EM_L10M, "EM_L10M"),
|
|
ENUM_ENT(EM_K10M, "EM_K10M"),
|
|
ENUM_ENT(EM_AARCH64, "AArch64"),
|
|
ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
|
|
ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
|
|
ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
|
|
ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
|
|
ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
|
|
ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
|
|
ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
|
|
ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
|
|
ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
|
|
ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
|
|
ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
|
|
ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
|
|
ENUM_ENT(EM_RL78, "Renesas RL78"),
|
|
ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
|
|
ENUM_ENT(EM_78KOR, "EM_78KOR"),
|
|
ENUM_ENT(EM_56800EX, "EM_56800EX"),
|
|
ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
|
|
ENUM_ENT(EM_RISCV, "RISC-V"),
|
|
ENUM_ENT(EM_LANAI, "EM_LANAI"),
|
|
ENUM_ENT(EM_BPF, "EM_BPF"),
|
|
ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfSymbolBindings[] = {
|
|
{"Local", "LOCAL", ELF::STB_LOCAL},
|
|
{"Global", "GLOBAL", ELF::STB_GLOBAL},
|
|
{"Weak", "WEAK", ELF::STB_WEAK},
|
|
{"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
|
|
|
|
static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
|
|
{"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
|
|
{"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
|
|
{"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
|
|
{"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
|
|
|
|
static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
|
|
{ "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
|
|
};
|
|
|
|
static const char *getGroupType(uint32_t Flag) {
|
|
if (Flag & ELF::GRP_COMDAT)
|
|
return "COMDAT";
|
|
else
|
|
return "(unknown)";
|
|
}
|
|
|
|
static const EnumEntry<unsigned> ElfSectionFlags[] = {
|
|
ENUM_ENT(SHF_WRITE, "W"),
|
|
ENUM_ENT(SHF_ALLOC, "A"),
|
|
ENUM_ENT(SHF_EXECINSTR, "X"),
|
|
ENUM_ENT(SHF_MERGE, "M"),
|
|
ENUM_ENT(SHF_STRINGS, "S"),
|
|
ENUM_ENT(SHF_INFO_LINK, "I"),
|
|
ENUM_ENT(SHF_LINK_ORDER, "L"),
|
|
ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
|
|
ENUM_ENT(SHF_GROUP, "G"),
|
|
ENUM_ENT(SHF_TLS, "T"),
|
|
ENUM_ENT(SHF_COMPRESSED, "C"),
|
|
ENUM_ENT(SHF_GNU_RETAIN, "R"),
|
|
ENUM_ENT(SHF_EXCLUDE, "E"),
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
|
|
ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
|
|
ENUM_ENT(XCORE_SHF_DP_SECTION, "")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
|
|
ENUM_ENT(SHF_ARM_PURECODE, "y")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
|
|
ENUM_ENT(SHF_HEX_GPREL, "")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
|
|
ENUM_ENT(SHF_MIPS_NODUPES, ""),
|
|
ENUM_ENT(SHF_MIPS_NAMES, ""),
|
|
ENUM_ENT(SHF_MIPS_LOCAL, ""),
|
|
ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
|
|
ENUM_ENT(SHF_MIPS_GPREL, ""),
|
|
ENUM_ENT(SHF_MIPS_MERGE, ""),
|
|
ENUM_ENT(SHF_MIPS_ADDR, ""),
|
|
ENUM_ENT(SHF_MIPS_STRING, "")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
|
|
ENUM_ENT(SHF_X86_64_LARGE, "l")
|
|
};
|
|
|
|
static std::vector<EnumEntry<unsigned>>
|
|
getSectionFlagsForTarget(unsigned EMachine) {
|
|
std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
|
|
std::end(ElfSectionFlags));
|
|
switch (EMachine) {
|
|
case EM_ARM:
|
|
Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
|
|
std::end(ElfARMSectionFlags));
|
|
break;
|
|
case EM_HEXAGON:
|
|
Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
|
|
std::end(ElfHexagonSectionFlags));
|
|
break;
|
|
case EM_MIPS:
|
|
Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
|
|
std::end(ElfMipsSectionFlags));
|
|
break;
|
|
case EM_X86_64:
|
|
Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
|
|
std::end(ElfX86_64SectionFlags));
|
|
break;
|
|
case EM_XCORE:
|
|
Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
|
|
std::end(ElfXCoreSectionFlags));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
|
|
// Here we are trying to build the flags string in the same way as GNU does.
|
|
// It is not that straightforward. Imagine we have sh_flags == 0x90000000.
|
|
// SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
|
|
// GNU readelf will not print "E" or "Ep" in this case, but will print just
|
|
// "p". It only will print "E" when no other processor flag is set.
|
|
std::string Str;
|
|
bool HasUnknownFlag = false;
|
|
bool HasOSFlag = false;
|
|
bool HasProcFlag = false;
|
|
std::vector<EnumEntry<unsigned>> FlagsList =
|
|
getSectionFlagsForTarget(EMachine);
|
|
while (Flags) {
|
|
// Take the least significant bit as a flag.
|
|
uint64_t Flag = Flags & -Flags;
|
|
Flags -= Flag;
|
|
|
|
// Find the flag in the known flags list.
|
|
auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
|
|
// Flags with empty names are not printed in GNU style output.
|
|
return E.Value == Flag && !E.AltName.empty();
|
|
});
|
|
if (I != FlagsList.end()) {
|
|
Str += I->AltName;
|
|
continue;
|
|
}
|
|
|
|
// If we did not find a matching regular flag, then we deal with an OS
|
|
// specific flag, processor specific flag or an unknown flag.
|
|
if (Flag & ELF::SHF_MASKOS) {
|
|
HasOSFlag = true;
|
|
Flags &= ~ELF::SHF_MASKOS;
|
|
} else if (Flag & ELF::SHF_MASKPROC) {
|
|
HasProcFlag = true;
|
|
// Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
|
|
// bit if set so that it doesn't also get printed.
|
|
Flags &= ~ELF::SHF_MASKPROC;
|
|
} else {
|
|
HasUnknownFlag = true;
|
|
}
|
|
}
|
|
|
|
// "o", "p" and "x" are printed last.
|
|
if (HasOSFlag)
|
|
Str += "o";
|
|
if (HasProcFlag)
|
|
Str += "p";
|
|
if (HasUnknownFlag)
|
|
Str += "x";
|
|
return Str;
|
|
}
|
|
|
|
static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
|
|
// Check potentially overlapped processor-specific program header type.
|
|
switch (Arch) {
|
|
case ELF::EM_ARM:
|
|
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
|
|
break;
|
|
case ELF::EM_MIPS:
|
|
case ELF::EM_MIPS_RS3_LE:
|
|
switch (Type) {
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (Type) {
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
|
|
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
|
|
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
|
|
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
static std::string getGNUPtType(unsigned Arch, unsigned Type) {
|
|
StringRef Seg = segmentTypeToString(Arch, Type);
|
|
if (Seg.empty())
|
|
return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
|
|
|
|
// E.g. "PT_ARM_EXIDX" -> "EXIDX".
|
|
if (Seg.startswith("PT_ARM_"))
|
|
return Seg.drop_front(7).str();
|
|
|
|
// E.g. "PT_MIPS_REGINFO" -> "REGINFO".
|
|
if (Seg.startswith("PT_MIPS_"))
|
|
return Seg.drop_front(8).str();
|
|
|
|
// E.g. "PT_LOAD" -> "LOAD".
|
|
assert(Seg.startswith("PT_"));
|
|
return Seg.drop_front(3).str();
|
|
}
|
|
|
|
static const EnumEntry<unsigned> ElfSegmentFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
|
|
ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
|
|
ENUM_ENT(EF_MIPS_PIC, "pic"),
|
|
ENUM_ENT(EF_MIPS_CPIC, "cpic"),
|
|
ENUM_ENT(EF_MIPS_ABI2, "abi2"),
|
|
ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
|
|
ENUM_ENT(EF_MIPS_FP64, "fp64"),
|
|
ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
|
|
ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
|
|
ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
|
|
ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
|
|
ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
|
|
ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
|
|
ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
|
|
ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
|
|
ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
|
|
ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
|
|
ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
|
|
ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
|
|
ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
|
|
ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
|
|
ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
|
|
ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
|
|
ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
|
|
ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
|
|
ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
|
|
ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
|
|
ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
|
|
ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
|
|
ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
|
|
ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
|
|
ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
|
|
ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
|
|
ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
|
|
ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
|
|
ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
|
|
ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
|
|
ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
|
|
ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
|
|
ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
|
|
ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
|
|
ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
|
|
ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
|
|
ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
|
|
ENUM_ENT(EF_RISCV_RVC, "RVC"),
|
|
ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
|
|
ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
|
|
ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
|
|
ENUM_ENT(EF_RISCV_RVE, "RVE")
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
|
|
ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
|
|
};
|
|
|
|
|
|
static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
|
|
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
|
|
};
|
|
|
|
static const char *getElfMipsOptionsOdkType(unsigned Odk) {
|
|
switch (Odk) {
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
|
|
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
|
|
ELFDumper<ELFT>::findDynamic() {
|
|
// Try to locate the PT_DYNAMIC header.
|
|
const Elf_Phdr *DynamicPhdr = nullptr;
|
|
if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
|
|
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
|
|
if (Phdr.p_type != ELF::PT_DYNAMIC)
|
|
continue;
|
|
DynamicPhdr = &Phdr;
|
|
break;
|
|
}
|
|
} else {
|
|
reportUniqueWarning(
|
|
"unable to read program headers to locate the PT_DYNAMIC segment: " +
|
|
toString(PhdrsOrErr.takeError()));
|
|
}
|
|
|
|
// Try to locate the .dynamic section in the sections header table.
|
|
const Elf_Shdr *DynamicSec = nullptr;
|
|
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
|
|
if (Sec.sh_type != ELF::SHT_DYNAMIC)
|
|
continue;
|
|
DynamicSec = &Sec;
|
|
break;
|
|
}
|
|
|
|
if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
|
|
ObjF.getMemoryBufferRef().getBufferSize()) ||
|
|
(DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
|
|
DynamicPhdr->p_offset))) {
|
|
reportUniqueWarning(
|
|
"PT_DYNAMIC segment offset (0x" +
|
|
Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
|
|
Twine::utohexstr(DynamicPhdr->p_filesz) +
|
|
") exceeds the size of the file (0x" +
|
|
Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
|
|
// Don't use the broken dynamic header.
|
|
DynamicPhdr = nullptr;
|
|
}
|
|
|
|
if (DynamicPhdr && DynamicSec) {
|
|
if (DynamicSec->sh_addr + DynamicSec->sh_size >
|
|
DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
|
|
DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
|
|
reportUniqueWarning(describe(*DynamicSec) +
|
|
" is not contained within the "
|
|
"PT_DYNAMIC segment");
|
|
|
|
if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
|
|
reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
|
|
"PT_DYNAMIC segment");
|
|
}
|
|
|
|
return std::make_pair(DynamicPhdr, DynamicSec);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void ELFDumper<ELFT>::loadDynamicTable() {
|
|
const Elf_Phdr *DynamicPhdr;
|
|
const Elf_Shdr *DynamicSec;
|
|
std::tie(DynamicPhdr, DynamicSec) = findDynamic();
|
|
if (!DynamicPhdr && !DynamicSec)
|
|
return;
|
|
|
|
DynRegionInfo FromPhdr(ObjF, *this);
|
|
bool IsPhdrTableValid = false;
|
|
if (DynamicPhdr) {
|
|
// Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
|
|
// validated in findDynamic() and so createDRI() is not expected to fail.
|
|
FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
|
|
sizeof(Elf_Dyn)));
|
|
FromPhdr.SizePrintName = "PT_DYNAMIC size";
|
|
FromPhdr.EntSizePrintName = "";
|
|
IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
|
|
}
|
|
|
|
// Locate the dynamic table described in a section header.
|
|
// Ignore sh_entsize and use the expected value for entry size explicitly.
|
|
// This allows us to dump dynamic sections with a broken sh_entsize
|
|
// field.
|
|
DynRegionInfo FromSec(ObjF, *this);
|
|
bool IsSecTableValid = false;
|
|
if (DynamicSec) {
|
|
Expected<DynRegionInfo> RegOrErr =
|
|
createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
|
|
if (RegOrErr) {
|
|
FromSec = *RegOrErr;
|
|
FromSec.Context = describe(*DynamicSec);
|
|
FromSec.EntSizePrintName = "";
|
|
IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
|
|
} else {
|
|
reportUniqueWarning("unable to read the dynamic table from " +
|
|
describe(*DynamicSec) + ": " +
|
|
toString(RegOrErr.takeError()));
|
|
}
|
|
}
|
|
|
|
// When we only have information from one of the SHT_DYNAMIC section header or
|
|
// PT_DYNAMIC program header, just use that.
|
|
if (!DynamicPhdr || !DynamicSec) {
|
|
if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
|
|
DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
|
|
parseDynamicTable();
|
|
} else {
|
|
reportUniqueWarning("no valid dynamic table was found");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// At this point we have tables found from the section header and from the
|
|
// dynamic segment. Usually they match, but we have to do sanity checks to
|
|
// verify that.
|
|
|
|
if (FromPhdr.Addr != FromSec.Addr)
|
|
reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
|
|
"program header disagree about "
|
|
"the location of the dynamic table");
|
|
|
|
if (!IsPhdrTableValid && !IsSecTableValid) {
|
|
reportUniqueWarning("no valid dynamic table was found");
|
|
return;
|
|
}
|
|
|
|
// Information in the PT_DYNAMIC program header has priority over the
|
|
// information in a section header.
|
|
if (IsPhdrTableValid) {
|
|
if (!IsSecTableValid)
|
|
reportUniqueWarning(
|
|
"SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
|
|
DynamicTable = FromPhdr;
|
|
} else {
|
|
reportUniqueWarning(
|
|
"PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
|
|
DynamicTable = FromSec;
|
|
}
|
|
|
|
parseDynamicTable();
|
|
}
|
|
|
|
template <typename ELFT>
|
|
ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
|
|
ScopedPrinter &Writer)
|
|
: ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
|
|
FileName(O.getFileName()), DynRelRegion(O, *this),
|
|
DynRelaRegion(O, *this), DynRelrRegion(O, *this),
|
|
DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
|
|
DynamicTable(O, *this) {
|
|
if (!O.IsContentValid())
|
|
return;
|
|
|
|
typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
|
|
for (const Elf_Shdr &Sec : Sections) {
|
|
switch (Sec.sh_type) {
|
|
case ELF::SHT_SYMTAB:
|
|
if (!DotSymtabSec)
|
|
DotSymtabSec = &Sec;
|
|
break;
|
|
case ELF::SHT_DYNSYM:
|
|
if (!DotDynsymSec)
|
|
DotDynsymSec = &Sec;
|
|
|
|
if (!DynSymRegion) {
|
|
Expected<DynRegionInfo> RegOrErr =
|
|
createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
|
|
if (RegOrErr) {
|
|
DynSymRegion = *RegOrErr;
|
|
DynSymRegion->Context = describe(Sec);
|
|
|
|
if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
|
|
DynamicStringTable = *E;
|
|
else
|
|
reportUniqueWarning("unable to get the string table for the " +
|
|
describe(Sec) + ": " + toString(E.takeError()));
|
|
} else {
|
|
reportUniqueWarning("unable to read dynamic symbols from " +
|
|
describe(Sec) + ": " +
|
|
toString(RegOrErr.takeError()));
|
|
}
|
|
}
|
|
break;
|
|
case ELF::SHT_SYMTAB_SHNDX: {
|
|
uint32_t SymtabNdx = Sec.sh_link;
|
|
if (SymtabNdx >= Sections.size()) {
|
|
reportUniqueWarning(
|
|
"unable to get the associated symbol table for " + describe(Sec) +
|
|
": sh_link (" + Twine(SymtabNdx) +
|
|
") is greater than or equal to the total number of sections (" +
|
|
Twine(Sections.size()) + ")");
|
|
continue;
|
|
}
|
|
|
|
if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
|
|
Obj.getSHNDXTable(Sec)) {
|
|
if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
|
|
.second)
|
|
reportUniqueWarning(
|
|
"multiple SHT_SYMTAB_SHNDX sections are linked to " +
|
|
describe(Sec));
|
|
} else {
|
|
reportUniqueWarning(ShndxTableOrErr.takeError());
|
|
}
|
|
break;
|
|
}
|
|
case ELF::SHT_GNU_versym:
|
|
if (!SymbolVersionSection)
|
|
SymbolVersionSection = &Sec;
|
|
break;
|
|
case ELF::SHT_GNU_verdef:
|
|
if (!SymbolVersionDefSection)
|
|
SymbolVersionDefSection = &Sec;
|
|
break;
|
|
case ELF::SHT_GNU_verneed:
|
|
if (!SymbolVersionNeedSection)
|
|
SymbolVersionNeedSection = &Sec;
|
|
break;
|
|
case ELF::SHT_LLVM_ADDRSIG:
|
|
if (!DotAddrsigSec)
|
|
DotAddrsigSec = &Sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
loadDynamicTable();
|
|
}
|
|
|
|
template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
|
|
auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
|
|
auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
|
|
this->reportUniqueWarning(Msg);
|
|
return Error::success();
|
|
});
|
|
if (!MappedAddrOrError) {
|
|
this->reportUniqueWarning("unable to parse DT_" +
|
|
Obj.getDynamicTagAsString(Tag) + ": " +
|
|
llvm::toString(MappedAddrOrError.takeError()));
|
|
return nullptr;
|
|
}
|
|
return MappedAddrOrError.get();
|
|
};
|
|
|
|
const char *StringTableBegin = nullptr;
|
|
uint64_t StringTableSize = 0;
|
|
Optional<DynRegionInfo> DynSymFromTable;
|
|
for (const Elf_Dyn &Dyn : dynamic_table()) {
|
|
switch (Dyn.d_tag) {
|
|
case ELF::DT_HASH:
|
|
HashTable = reinterpret_cast<const Elf_Hash *>(
|
|
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
|
|
break;
|
|
case ELF::DT_GNU_HASH:
|
|
GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
|
|
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
|
|
break;
|
|
case ELF::DT_STRTAB:
|
|
StringTableBegin = reinterpret_cast<const char *>(
|
|
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
|
|
break;
|
|
case ELF::DT_STRSZ:
|
|
StringTableSize = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_SYMTAB: {
|
|
// If we can't map the DT_SYMTAB value to an address (e.g. when there are
|
|
// no program headers), we ignore its value.
|
|
if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
|
|
DynSymFromTable.emplace(ObjF, *this);
|
|
DynSymFromTable->Addr = VA;
|
|
DynSymFromTable->EntSize = sizeof(Elf_Sym);
|
|
DynSymFromTable->EntSizePrintName = "";
|
|
}
|
|
break;
|
|
}
|
|
case ELF::DT_SYMENT: {
|
|
uint64_t Val = Dyn.getVal();
|
|
if (Val != sizeof(Elf_Sym))
|
|
this->reportUniqueWarning("DT_SYMENT value of 0x" +
|
|
Twine::utohexstr(Val) +
|
|
" is not the size of a symbol (0x" +
|
|
Twine::utohexstr(sizeof(Elf_Sym)) + ")");
|
|
break;
|
|
}
|
|
case ELF::DT_RELA:
|
|
DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
|
|
break;
|
|
case ELF::DT_RELASZ:
|
|
DynRelaRegion.Size = Dyn.getVal();
|
|
DynRelaRegion.SizePrintName = "DT_RELASZ value";
|
|
break;
|
|
case ELF::DT_RELAENT:
|
|
DynRelaRegion.EntSize = Dyn.getVal();
|
|
DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
|
|
break;
|
|
case ELF::DT_SONAME:
|
|
SONameOffset = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_REL:
|
|
DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
|
|
break;
|
|
case ELF::DT_RELSZ:
|
|
DynRelRegion.Size = Dyn.getVal();
|
|
DynRelRegion.SizePrintName = "DT_RELSZ value";
|
|
break;
|
|
case ELF::DT_RELENT:
|
|
DynRelRegion.EntSize = Dyn.getVal();
|
|
DynRelRegion.EntSizePrintName = "DT_RELENT value";
|
|
break;
|
|
case ELF::DT_RELR:
|
|
case ELF::DT_ANDROID_RELR:
|
|
DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
|
|
break;
|
|
case ELF::DT_RELRSZ:
|
|
case ELF::DT_ANDROID_RELRSZ:
|
|
DynRelrRegion.Size = Dyn.getVal();
|
|
DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
|
|
? "DT_RELRSZ value"
|
|
: "DT_ANDROID_RELRSZ value";
|
|
break;
|
|
case ELF::DT_RELRENT:
|
|
case ELF::DT_ANDROID_RELRENT:
|
|
DynRelrRegion.EntSize = Dyn.getVal();
|
|
DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
|
|
? "DT_RELRENT value"
|
|
: "DT_ANDROID_RELRENT value";
|
|
break;
|
|
case ELF::DT_PLTREL:
|
|
if (Dyn.getVal() == DT_REL)
|
|
DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
|
|
else if (Dyn.getVal() == DT_RELA)
|
|
DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
|
|
else
|
|
reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
|
|
Twine((uint64_t)Dyn.getVal()));
|
|
DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
|
|
break;
|
|
case ELF::DT_JMPREL:
|
|
DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
|
|
break;
|
|
case ELF::DT_PLTRELSZ:
|
|
DynPLTRelRegion.Size = Dyn.getVal();
|
|
DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
|
|
break;
|
|
case ELF::DT_SYMTAB_SHNDX:
|
|
DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
|
|
DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (StringTableBegin) {
|
|
const uint64_t FileSize = Obj.getBufSize();
|
|
const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
|
|
if (StringTableSize > FileSize - Offset)
|
|
reportUniqueWarning(
|
|
"the dynamic string table at 0x" + Twine::utohexstr(Offset) +
|
|
" goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
|
|
") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
|
|
else
|
|
DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
|
|
}
|
|
|
|
const bool IsHashTableSupported = getHashTableEntSize() == 4;
|
|
if (DynSymRegion) {
|
|
// Often we find the information about the dynamic symbol table
|
|
// location in the SHT_DYNSYM section header. However, the value in
|
|
// DT_SYMTAB has priority, because it is used by dynamic loaders to
|
|
// locate .dynsym at runtime. The location we find in the section header
|
|
// and the location we find here should match.
|
|
if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
|
|
reportUniqueWarning(
|
|
createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
|
|
"the location of the dynamic symbol table"));
|
|
|
|
// According to the ELF gABI: "The number of symbol table entries should
|
|
// equal nchain". Check to see if the DT_HASH hash table nchain value
|
|
// conflicts with the number of symbols in the dynamic symbol table
|
|
// according to the section header.
|
|
if (HashTable && IsHashTableSupported) {
|
|
if (DynSymRegion->EntSize == 0)
|
|
reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
|
|
else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
|
|
reportUniqueWarning(
|
|
"hash table nchain (" + Twine(HashTable->nchain) +
|
|
") differs from symbol count derived from SHT_DYNSYM section "
|
|
"header (" +
|
|
Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
|
|
}
|
|
}
|
|
|
|
// Delay the creation of the actual dynamic symbol table until now, so that
|
|
// checks can always be made against the section header-based properties,
|
|
// without worrying about tag order.
|
|
if (DynSymFromTable) {
|
|
if (!DynSymRegion) {
|
|
DynSymRegion = DynSymFromTable;
|
|
} else {
|
|
DynSymRegion->Addr = DynSymFromTable->Addr;
|
|
DynSymRegion->EntSize = DynSymFromTable->EntSize;
|
|
DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
|
|
}
|
|
}
|
|
|
|
// Derive the dynamic symbol table size from the DT_HASH hash table, if
|
|
// present.
|
|
if (HashTable && IsHashTableSupported && DynSymRegion) {
|
|
const uint64_t FileSize = Obj.getBufSize();
|
|
const uint64_t DerivedSize =
|
|
(uint64_t)HashTable->nchain * DynSymRegion->EntSize;
|
|
const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
|
|
if (DerivedSize > FileSize - Offset)
|
|
reportUniqueWarning(
|
|
"the size (0x" + Twine::utohexstr(DerivedSize) +
|
|
") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
|
|
", derived from the hash table, goes past the end of the file (0x" +
|
|
Twine::utohexstr(FileSize) + ") and will be ignored");
|
|
else
|
|
DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
|
|
}
|
|
}
|
|
|
|
template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
|
|
// Dump version symbol section.
|
|
printVersionSymbolSection(SymbolVersionSection);
|
|
|
|
// Dump version definition section.
|
|
printVersionDefinitionSection(SymbolVersionDefSection);
|
|
|
|
// Dump version dependency section.
|
|
printVersionDependencySection(SymbolVersionNeedSection);
|
|
}
|
|
|
|
#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
|
|
{ #enum, prefix##_##enum }
|
|
|
|
static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
|
|
LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
|
|
LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
|
|
};
|
|
|
|
#undef LLVM_READOBJ_DT_FLAG_ENT
|
|
|
|
template <typename T, typename TFlag>
|
|
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
|
|
SmallVector<EnumEntry<TFlag>, 10> SetFlags;
|
|
for (const EnumEntry<TFlag> &Flag : Flags)
|
|
if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
|
|
SetFlags.push_back(Flag);
|
|
|
|
for (const EnumEntry<TFlag> &Flag : SetFlags)
|
|
OS << Flag.Name << " ";
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename ELFT::Shdr *
|
|
ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
|
|
for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
|
|
if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
|
|
if (*NameOrErr == Name)
|
|
return &Shdr;
|
|
} else {
|
|
reportUniqueWarning("unable to read the name of " + describe(Shdr) +
|
|
": " + toString(NameOrErr.takeError()));
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
|
|
uint64_t Value) const {
|
|
auto FormatHexValue = [](uint64_t V) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
const char *ConvChar =
|
|
(opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
|
|
OS << format(ConvChar, V);
|
|
return OS.str();
|
|
};
|
|
|
|
auto FormatFlags = [](uint64_t V,
|
|
llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
printFlags(V, Array, OS);
|
|
return OS.str();
|
|
};
|
|
|
|
// Handle custom printing of architecture specific tags
|
|
switch (Obj.getHeader().e_machine) {
|
|
case EM_AARCH64:
|
|
switch (Type) {
|
|
case DT_AARCH64_BTI_PLT:
|
|
case DT_AARCH64_PAC_PLT:
|
|
case DT_AARCH64_VARIANT_PCS:
|
|
return std::to_string(Value);
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case EM_HEXAGON:
|
|
switch (Type) {
|
|
case DT_HEXAGON_VER:
|
|
return std::to_string(Value);
|
|
case DT_HEXAGON_SYMSZ:
|
|
case DT_HEXAGON_PLT:
|
|
return FormatHexValue(Value);
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case EM_MIPS:
|
|
switch (Type) {
|
|
case DT_MIPS_RLD_VERSION:
|
|
case DT_MIPS_LOCAL_GOTNO:
|
|
case DT_MIPS_SYMTABNO:
|
|
case DT_MIPS_UNREFEXTNO:
|
|
return std::to_string(Value);
|
|
case DT_MIPS_TIME_STAMP:
|
|
case DT_MIPS_ICHECKSUM:
|
|
case DT_MIPS_IVERSION:
|
|
case DT_MIPS_BASE_ADDRESS:
|
|
case DT_MIPS_MSYM:
|
|
case DT_MIPS_CONFLICT:
|
|
case DT_MIPS_LIBLIST:
|
|
case DT_MIPS_CONFLICTNO:
|
|
case DT_MIPS_LIBLISTNO:
|
|
case DT_MIPS_GOTSYM:
|
|
case DT_MIPS_HIPAGENO:
|
|
case DT_MIPS_RLD_MAP:
|
|
case DT_MIPS_DELTA_CLASS:
|
|
case DT_MIPS_DELTA_CLASS_NO:
|
|
case DT_MIPS_DELTA_INSTANCE:
|
|
case DT_MIPS_DELTA_RELOC:
|
|
case DT_MIPS_DELTA_RELOC_NO:
|
|
case DT_MIPS_DELTA_SYM:
|
|
case DT_MIPS_DELTA_SYM_NO:
|
|
case DT_MIPS_DELTA_CLASSSYM:
|
|
case DT_MIPS_DELTA_CLASSSYM_NO:
|
|
case DT_MIPS_CXX_FLAGS:
|
|
case DT_MIPS_PIXIE_INIT:
|
|
case DT_MIPS_SYMBOL_LIB:
|
|
case DT_MIPS_LOCALPAGE_GOTIDX:
|
|
case DT_MIPS_LOCAL_GOTIDX:
|
|
case DT_MIPS_HIDDEN_GOTIDX:
|
|
case DT_MIPS_PROTECTED_GOTIDX:
|
|
case DT_MIPS_OPTIONS:
|
|
case DT_MIPS_INTERFACE:
|
|
case DT_MIPS_DYNSTR_ALIGN:
|
|
case DT_MIPS_INTERFACE_SIZE:
|
|
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
|
|
case DT_MIPS_PERF_SUFFIX:
|
|
case DT_MIPS_COMPACT_SIZE:
|
|
case DT_MIPS_GP_VALUE:
|
|
case DT_MIPS_AUX_DYNAMIC:
|
|
case DT_MIPS_PLTGOT:
|
|
case DT_MIPS_RWPLT:
|
|
case DT_MIPS_RLD_MAP_REL:
|
|
return FormatHexValue(Value);
|
|
case DT_MIPS_FLAGS:
|
|
return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (Type) {
|
|
case DT_PLTREL:
|
|
if (Value == DT_REL)
|
|
return "REL";
|
|
if (Value == DT_RELA)
|
|
return "RELA";
|
|
LLVM_FALLTHROUGH;
|
|
case DT_PLTGOT:
|
|
case DT_HASH:
|
|
case DT_STRTAB:
|
|
case DT_SYMTAB:
|
|
case DT_RELA:
|
|
case DT_INIT:
|
|
case DT_FINI:
|
|
case DT_REL:
|
|
case DT_JMPREL:
|
|
case DT_INIT_ARRAY:
|
|
case DT_FINI_ARRAY:
|
|
case DT_PREINIT_ARRAY:
|
|
case DT_DEBUG:
|
|
case DT_VERDEF:
|
|
case DT_VERNEED:
|
|
case DT_VERSYM:
|
|
case DT_GNU_HASH:
|
|
case DT_NULL:
|
|
return FormatHexValue(Value);
|
|
case DT_RELACOUNT:
|
|
case DT_RELCOUNT:
|
|
case DT_VERDEFNUM:
|
|
case DT_VERNEEDNUM:
|
|
return std::to_string(Value);
|
|
case DT_PLTRELSZ:
|
|
case DT_RELASZ:
|
|
case DT_RELAENT:
|
|
case DT_STRSZ:
|
|
case DT_SYMENT:
|
|
case DT_RELSZ:
|
|
case DT_RELENT:
|
|
case DT_INIT_ARRAYSZ:
|
|
case DT_FINI_ARRAYSZ:
|
|
case DT_PREINIT_ARRAYSZ:
|
|
case DT_ANDROID_RELSZ:
|
|
case DT_ANDROID_RELASZ:
|
|
return std::to_string(Value) + " (bytes)";
|
|
case DT_NEEDED:
|
|
case DT_SONAME:
|
|
case DT_AUXILIARY:
|
|
case DT_USED:
|
|
case DT_FILTER:
|
|
case DT_RPATH:
|
|
case DT_RUNPATH: {
|
|
const std::map<uint64_t, const char *> TagNames = {
|
|
{DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
|
|
{DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
|
|
{DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
|
|
{DT_RUNPATH, "Library runpath"},
|
|
};
|
|
|
|
return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
|
|
.str();
|
|
}
|
|
case DT_FLAGS:
|
|
return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
|
|
case DT_FLAGS_1:
|
|
return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
|
|
default:
|
|
return FormatHexValue(Value);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
|
|
if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
|
|
reportUniqueWarning("string table was not found");
|
|
return "<?>";
|
|
}
|
|
|
|
auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
|
|
reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
|
|
Msg);
|
|
return "<?>";
|
|
};
|
|
|
|
const uint64_t FileSize = Obj.getBufSize();
|
|
const uint64_t Offset =
|
|
(const uint8_t *)DynamicStringTable.data() - Obj.base();
|
|
if (DynamicStringTable.size() > FileSize - Offset)
|
|
return WarnAndReturn(" with size 0x" +
|
|
Twine::utohexstr(DynamicStringTable.size()) +
|
|
" goes past the end of the file (0x" +
|
|
Twine::utohexstr(FileSize) + ")",
|
|
Offset);
|
|
|
|
if (Value >= DynamicStringTable.size())
|
|
return WarnAndReturn(
|
|
": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
|
|
": it goes past the end of the table (0x" +
|
|
Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
|
|
Offset);
|
|
|
|
if (DynamicStringTable.back() != '\0')
|
|
return WarnAndReturn(": unable to read the string at 0x" +
|
|
Twine::utohexstr(Offset + Value) +
|
|
": the string table is not null-terminated",
|
|
Offset);
|
|
|
|
return DynamicStringTable.data() + Value;
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
|
|
DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
|
|
Ctx.printUnwindInformation();
|
|
}
|
|
|
|
// The namespace is needed to fix the compilation with GCC older than 7.0+.
|
|
namespace {
|
|
template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
|
|
if (Obj.getHeader().e_machine == EM_ARM) {
|
|
ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
|
|
DotSymtabSec);
|
|
Ctx.PrintUnwindInformation();
|
|
}
|
|
DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
|
|
Ctx.printUnwindInformation();
|
|
}
|
|
} // namespace
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
|
|
ListScope D(W, "NeededLibraries");
|
|
|
|
std::vector<StringRef> Libs;
|
|
for (const auto &Entry : dynamic_table())
|
|
if (Entry.d_tag == ELF::DT_NEEDED)
|
|
Libs.push_back(getDynamicString(Entry.d_un.d_val));
|
|
|
|
llvm::sort(Libs);
|
|
|
|
for (StringRef L : Libs)
|
|
W.startLine() << L << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
|
|
const typename ELFT::Hash *H,
|
|
bool *IsHeaderValid = nullptr) {
|
|
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
|
|
const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
|
|
if (Dumper.getHashTableEntSize() == 8) {
|
|
auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
|
|
return E.Value == Obj.getHeader().e_machine;
|
|
});
|
|
if (IsHeaderValid)
|
|
*IsHeaderValid = false;
|
|
return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
|
|
" is not supported: it contains non-standard 8 "
|
|
"byte entries on " +
|
|
It->AltName + " platform");
|
|
}
|
|
|
|
auto MakeError = [&](const Twine &Msg = "") {
|
|
return createError("the hash table at offset 0x" +
|
|
Twine::utohexstr(SecOffset) +
|
|
" goes past the end of the file (0x" +
|
|
Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
|
|
};
|
|
|
|
// Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
|
|
const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
|
|
|
|
if (IsHeaderValid)
|
|
*IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
|
|
|
|
if (Obj.getBufSize() - SecOffset < HeaderSize)
|
|
return MakeError();
|
|
|
|
if (Obj.getBufSize() - SecOffset - HeaderSize <
|
|
((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
|
|
return MakeError(", nbucket = " + Twine(H->nbucket) +
|
|
", nchain = " + Twine(H->nchain));
|
|
return Error::success();
|
|
}
|
|
|
|
template <class ELFT>
|
|
static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
|
|
const typename ELFT::GnuHash *GnuHashTable,
|
|
bool *IsHeaderValid = nullptr) {
|
|
const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
|
|
assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
|
|
"GnuHashTable must always point to a location inside the file");
|
|
|
|
uint64_t TableOffset = TableData - Obj.base();
|
|
if (IsHeaderValid)
|
|
*IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
|
|
if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
|
|
(uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
|
|
Obj.getBufSize())
|
|
return createError("unable to dump the SHT_GNU_HASH "
|
|
"section at 0x" +
|
|
Twine::utohexstr(TableOffset) +
|
|
": it goes past the end of the file");
|
|
return Error::success();
|
|
}
|
|
|
|
template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
|
|
DictScope D(W, "HashTable");
|
|
if (!HashTable)
|
|
return;
|
|
|
|
bool IsHeaderValid;
|
|
Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
|
|
if (IsHeaderValid) {
|
|
W.printNumber("Num Buckets", HashTable->nbucket);
|
|
W.printNumber("Num Chains", HashTable->nchain);
|
|
}
|
|
|
|
if (Err) {
|
|
reportUniqueWarning(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
W.printList("Buckets", HashTable->buckets());
|
|
W.printList("Chains", HashTable->chains());
|
|
}
|
|
|
|
template <class ELFT>
|
|
static Expected<ArrayRef<typename ELFT::Word>>
|
|
getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
|
|
const typename ELFT::GnuHash *GnuHashTable) {
|
|
if (!DynSymRegion)
|
|
return createError("no dynamic symbol table found");
|
|
|
|
ArrayRef<typename ELFT::Sym> DynSymTable =
|
|
DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
|
|
size_t NumSyms = DynSymTable.size();
|
|
if (!NumSyms)
|
|
return createError("the dynamic symbol table is empty");
|
|
|
|
if (GnuHashTable->symndx < NumSyms)
|
|
return GnuHashTable->values(NumSyms);
|
|
|
|
// A normal empty GNU hash table section produced by linker might have
|
|
// symndx set to the number of dynamic symbols + 1 (for the zero symbol)
|
|
// and have dummy null values in the Bloom filter and in the buckets
|
|
// vector (or no values at all). It happens because the value of symndx is not
|
|
// important for dynamic loaders when the GNU hash table is empty. They just
|
|
// skip the whole object during symbol lookup. In such cases, the symndx value
|
|
// is irrelevant and we should not report a warning.
|
|
ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
|
|
if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
|
|
return createError(
|
|
"the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
|
|
") is greater than or equal to the number of dynamic symbols (" +
|
|
Twine(NumSyms) + ")");
|
|
// There is no way to represent an array of (dynamic symbols count - symndx)
|
|
// length.
|
|
return ArrayRef<typename ELFT::Word>();
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void ELFDumper<ELFT>::printGnuHashTable() {
|
|
DictScope D(W, "GnuHashTable");
|
|
if (!GnuHashTable)
|
|
return;
|
|
|
|
bool IsHeaderValid;
|
|
Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
|
|
if (IsHeaderValid) {
|
|
W.printNumber("Num Buckets", GnuHashTable->nbuckets);
|
|
W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
|
|
W.printNumber("Num Mask Words", GnuHashTable->maskwords);
|
|
W.printNumber("Shift Count", GnuHashTable->shift2);
|
|
}
|
|
|
|
if (Err) {
|
|
reportUniqueWarning(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
|
|
W.printHexList("Bloom Filter", BloomFilter);
|
|
|
|
ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
|
|
W.printList("Buckets", Buckets);
|
|
|
|
Expected<ArrayRef<Elf_Word>> Chains =
|
|
getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
|
|
if (!Chains) {
|
|
reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
|
|
"section: " +
|
|
toString(Chains.takeError()));
|
|
return;
|
|
}
|
|
|
|
W.printHexList("Values", *Chains);
|
|
}
|
|
|
|
template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
|
|
StringRef SOName = "<Not found>";
|
|
if (SONameOffset)
|
|
SOName = getDynamicString(*SONameOffset);
|
|
W.printString("LoadName", SOName);
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
|
|
switch (Obj.getHeader().e_machine) {
|
|
case EM_ARM:
|
|
case EM_RISCV:
|
|
printAttributes();
|
|
break;
|
|
case EM_MIPS: {
|
|
printMipsABIFlags();
|
|
printMipsOptions();
|
|
printMipsReginfo();
|
|
MipsGOTParser<ELFT> Parser(*this);
|
|
if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
|
|
reportUniqueWarning(std::move(E));
|
|
else if (!Parser.isGotEmpty())
|
|
printMipsGOT(Parser);
|
|
|
|
if (Error E = Parser.findPLT(dynamic_table()))
|
|
reportUniqueWarning(std::move(E));
|
|
else if (!Parser.isPltEmpty())
|
|
printMipsPLT(Parser);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
|
|
if (!Obj.isLE()) {
|
|
W.startLine() << "Attributes not implemented.\n";
|
|
return;
|
|
}
|
|
|
|
const unsigned Machine = Obj.getHeader().e_machine;
|
|
assert((Machine == EM_ARM || Machine == EM_RISCV) &&
|
|
"Attributes not implemented.");
|
|
|
|
DictScope BA(W, "BuildAttributes");
|
|
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
|
|
if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
|
|
Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
|
|
continue;
|
|
|
|
ArrayRef<uint8_t> Contents;
|
|
if (Expected<ArrayRef<uint8_t>> ContentOrErr =
|
|
Obj.getSectionContents(Sec)) {
|
|
Contents = *ContentOrErr;
|
|
if (Contents.empty()) {
|
|
reportUniqueWarning("the " + describe(Sec) + " is empty");
|
|
continue;
|
|
}
|
|
} else {
|
|
reportUniqueWarning("unable to read the content of the " + describe(Sec) +
|
|
": " + toString(ContentOrErr.takeError()));
|
|
continue;
|
|
}
|
|
|
|
W.printHex("FormatVersion", Contents[0]);
|
|
|
|
auto ParseAttrubutes = [&]() {
|
|
if (Machine == EM_ARM)
|
|
return ARMAttributeParser(&W).parse(Contents, support::little);
|
|
return RISCVAttributeParser(&W).parse(Contents, support::little);
|
|
};
|
|
|
|
if (Error E = ParseAttrubutes())
|
|
reportUniqueWarning("unable to dump attributes from the " +
|
|
describe(Sec) + ": " + toString(std::move(E)));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <class ELFT> class MipsGOTParser {
|
|
public:
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
using Entry = typename ELFT::Addr;
|
|
using Entries = ArrayRef<Entry>;
|
|
|
|
const bool IsStatic;
|
|
const ELFFile<ELFT> &Obj;
|
|
const ELFDumper<ELFT> &Dumper;
|
|
|
|
MipsGOTParser(const ELFDumper<ELFT> &D);
|
|
Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
|
|
Error findPLT(Elf_Dyn_Range DynTable);
|
|
|
|
bool isGotEmpty() const { return GotEntries.empty(); }
|
|
bool isPltEmpty() const { return PltEntries.empty(); }
|
|
|
|
uint64_t getGp() const;
|
|
|
|
const Entry *getGotLazyResolver() const;
|
|
const Entry *getGotModulePointer() const;
|
|
const Entry *getPltLazyResolver() const;
|
|
const Entry *getPltModulePointer() const;
|
|
|
|
Entries getLocalEntries() const;
|
|
Entries getGlobalEntries() const;
|
|
Entries getOtherEntries() const;
|
|
Entries getPltEntries() const;
|
|
|
|
uint64_t getGotAddress(const Entry * E) const;
|
|
int64_t getGotOffset(const Entry * E) const;
|
|
const Elf_Sym *getGotSym(const Entry *E) const;
|
|
|
|
uint64_t getPltAddress(const Entry * E) const;
|
|
const Elf_Sym *getPltSym(const Entry *E) const;
|
|
|
|
StringRef getPltStrTable() const { return PltStrTable; }
|
|
const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
|
|
|
|
private:
|
|
const Elf_Shdr *GotSec;
|
|
size_t LocalNum;
|
|
size_t GlobalNum;
|
|
|
|
const Elf_Shdr *PltSec;
|
|
const Elf_Shdr *PltRelSec;
|
|
const Elf_Shdr *PltSymTable;
|
|
StringRef FileName;
|
|
|
|
Elf_Sym_Range GotDynSyms;
|
|
StringRef PltStrTable;
|
|
|
|
Entries GotEntries;
|
|
Entries PltEntries;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
template <class ELFT>
|
|
MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
|
|
: IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
|
|
Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
|
|
PltRelSec(nullptr), PltSymTable(nullptr),
|
|
FileName(D.getElfObject().getFileName()) {}
|
|
|
|
template <class ELFT>
|
|
Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
|
|
Elf_Sym_Range DynSyms) {
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed GOT description.
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
|
|
// Find static GOT secton.
|
|
if (IsStatic) {
|
|
GotSec = Dumper.findSectionByName(".got");
|
|
if (!GotSec)
|
|
return Error::success();
|
|
|
|
ArrayRef<uint8_t> Content =
|
|
unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
|
|
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
|
|
Content.size() / sizeof(Entry));
|
|
LocalNum = GotEntries.size();
|
|
return Error::success();
|
|
}
|
|
|
|
// Lookup dynamic table tags which define the GOT layout.
|
|
Optional<uint64_t> DtPltGot;
|
|
Optional<uint64_t> DtLocalGotNum;
|
|
Optional<uint64_t> DtGotSym;
|
|
for (const auto &Entry : DynTable) {
|
|
switch (Entry.getTag()) {
|
|
case ELF::DT_PLTGOT:
|
|
DtPltGot = Entry.getVal();
|
|
break;
|
|
case ELF::DT_MIPS_LOCAL_GOTNO:
|
|
DtLocalGotNum = Entry.getVal();
|
|
break;
|
|
case ELF::DT_MIPS_GOTSYM:
|
|
DtGotSym = Entry.getVal();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
|
|
return Error::success();
|
|
|
|
if (!DtPltGot)
|
|
return createError("cannot find PLTGOT dynamic tag");
|
|
if (!DtLocalGotNum)
|
|
return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
|
|
if (!DtGotSym)
|
|
return createError("cannot find MIPS_GOTSYM dynamic tag");
|
|
|
|
size_t DynSymTotal = DynSyms.size();
|
|
if (*DtGotSym > DynSymTotal)
|
|
return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
|
|
") exceeds the number of dynamic symbols (" +
|
|
Twine(DynSymTotal) + ")");
|
|
|
|
GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
|
|
if (!GotSec)
|
|
return createError("there is no non-empty GOT section at 0x" +
|
|
Twine::utohexstr(*DtPltGot));
|
|
|
|
LocalNum = *DtLocalGotNum;
|
|
GlobalNum = DynSymTotal - *DtGotSym;
|
|
|
|
ArrayRef<uint8_t> Content =
|
|
unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
|
|
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
|
|
Content.size() / sizeof(Entry));
|
|
GotDynSyms = DynSyms.drop_front(*DtGotSym);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
template <class ELFT>
|
|
Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
|
|
// Lookup dynamic table tags which define the PLT layout.
|
|
Optional<uint64_t> DtMipsPltGot;
|
|
Optional<uint64_t> DtJmpRel;
|
|
for (const auto &Entry : DynTable) {
|
|
switch (Entry.getTag()) {
|
|
case ELF::DT_MIPS_PLTGOT:
|
|
DtMipsPltGot = Entry.getVal();
|
|
break;
|
|
case ELF::DT_JMPREL:
|
|
DtJmpRel = Entry.getVal();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!DtMipsPltGot && !DtJmpRel)
|
|
return Error::success();
|
|
|
|
// Find PLT section.
|
|
if (!DtMipsPltGot)
|
|
return createError("cannot find MIPS_PLTGOT dynamic tag");
|
|
if (!DtJmpRel)
|
|
return createError("cannot find JMPREL dynamic tag");
|
|
|
|
PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
|
|
if (!PltSec)
|
|
return createError("there is no non-empty PLTGOT section at 0x" +
|
|
Twine::utohexstr(*DtMipsPltGot));
|
|
|
|
PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
|
|
if (!PltRelSec)
|
|
return createError("there is no non-empty RELPLT section at 0x" +
|
|
Twine::utohexstr(*DtJmpRel));
|
|
|
|
if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
|
|
Obj.getSectionContents(*PltSec))
|
|
PltEntries =
|
|
Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
|
|
PltContentOrErr->size() / sizeof(Entry));
|
|
else
|
|
return createError("unable to read PLTGOT section content: " +
|
|
toString(PltContentOrErr.takeError()));
|
|
|
|
if (Expected<const Elf_Shdr *> PltSymTableOrErr =
|
|
Obj.getSection(PltRelSec->sh_link))
|
|
PltSymTable = *PltSymTableOrErr;
|
|
else
|
|
return createError("unable to get a symbol table linked to the " +
|
|
describe(Obj, *PltRelSec) + ": " +
|
|
toString(PltSymTableOrErr.takeError()));
|
|
|
|
if (Expected<StringRef> StrTabOrErr =
|
|
Obj.getStringTableForSymtab(*PltSymTable))
|
|
PltStrTable = *StrTabOrErr;
|
|
else
|
|
return createError("unable to get a string table for the " +
|
|
describe(Obj, *PltSymTable) + ": " +
|
|
toString(StrTabOrErr.takeError()));
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
|
|
return GotSec->sh_addr + 0x7ff0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Entry *
|
|
MipsGOTParser<ELFT>::getGotLazyResolver() const {
|
|
return LocalNum > 0 ? &GotEntries[0] : nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Entry *
|
|
MipsGOTParser<ELFT>::getGotModulePointer() const {
|
|
if (LocalNum < 2)
|
|
return nullptr;
|
|
const Entry &E = GotEntries[1];
|
|
if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
|
|
return nullptr;
|
|
return &E;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename MipsGOTParser<ELFT>::Entries
|
|
MipsGOTParser<ELFT>::getLocalEntries() const {
|
|
size_t Skip = getGotModulePointer() ? 2 : 1;
|
|
if (LocalNum - Skip <= 0)
|
|
return Entries();
|
|
return GotEntries.slice(Skip, LocalNum - Skip);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename MipsGOTParser<ELFT>::Entries
|
|
MipsGOTParser<ELFT>::getGlobalEntries() const {
|
|
if (GlobalNum == 0)
|
|
return Entries();
|
|
return GotEntries.slice(LocalNum, GlobalNum);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename MipsGOTParser<ELFT>::Entries
|
|
MipsGOTParser<ELFT>::getOtherEntries() const {
|
|
size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
|
|
if (OtherNum == 0)
|
|
return Entries();
|
|
return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
|
|
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
|
|
return GotSec->sh_addr + Offset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
|
|
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
|
|
return Offset - 0x7ff0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Elf_Sym *
|
|
MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
|
|
int64_t Offset = std::distance(GotEntries.data(), E);
|
|
return &GotDynSyms[Offset - LocalNum];
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Entry *
|
|
MipsGOTParser<ELFT>::getPltLazyResolver() const {
|
|
return PltEntries.empty() ? nullptr : &PltEntries[0];
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Entry *
|
|
MipsGOTParser<ELFT>::getPltModulePointer() const {
|
|
return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename MipsGOTParser<ELFT>::Entries
|
|
MipsGOTParser<ELFT>::getPltEntries() const {
|
|
if (PltEntries.size() <= 2)
|
|
return Entries();
|
|
return PltEntries.slice(2, PltEntries.size() - 2);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
|
|
int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
|
|
return PltSec->sh_addr + Offset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
const typename MipsGOTParser<ELFT>::Elf_Sym *
|
|
MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
|
|
int64_t Offset = std::distance(getPltEntries().data(), E);
|
|
if (PltRelSec->sh_type == ELF::SHT_REL) {
|
|
Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
|
|
return unwrapOrError(FileName,
|
|
Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
|
|
} else {
|
|
Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
|
|
return unwrapOrError(FileName,
|
|
Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
|
|
}
|
|
}
|
|
|
|
static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
|
|
{"None", Mips::AFL_EXT_NONE},
|
|
{"Broadcom SB-1", Mips::AFL_EXT_SB1},
|
|
{"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
|
|
{"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
|
|
{"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
|
|
{"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
|
|
{"LSI R4010", Mips::AFL_EXT_4010},
|
|
{"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
|
|
{"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
|
|
{"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
|
|
{"MIPS R4650", Mips::AFL_EXT_4650},
|
|
{"MIPS R5900", Mips::AFL_EXT_5900},
|
|
{"MIPS R10000", Mips::AFL_EXT_10000},
|
|
{"NEC VR4100", Mips::AFL_EXT_4100},
|
|
{"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
|
|
{"NEC VR4120", Mips::AFL_EXT_4120},
|
|
{"NEC VR5400", Mips::AFL_EXT_5400},
|
|
{"NEC VR5500", Mips::AFL_EXT_5500},
|
|
{"RMI Xlr", Mips::AFL_EXT_XLR},
|
|
{"Toshiba R3900", Mips::AFL_EXT_3900}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
|
|
{"DSP", Mips::AFL_ASE_DSP},
|
|
{"DSPR2", Mips::AFL_ASE_DSPR2},
|
|
{"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
|
|
{"MCU", Mips::AFL_ASE_MCU},
|
|
{"MDMX", Mips::AFL_ASE_MDMX},
|
|
{"MIPS-3D", Mips::AFL_ASE_MIPS3D},
|
|
{"MT", Mips::AFL_ASE_MT},
|
|
{"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
|
|
{"VZ", Mips::AFL_ASE_VIRT},
|
|
{"MSA", Mips::AFL_ASE_MSA},
|
|
{"MIPS16", Mips::AFL_ASE_MIPS16},
|
|
{"microMIPS", Mips::AFL_ASE_MICROMIPS},
|
|
{"XPA", Mips::AFL_ASE_XPA},
|
|
{"CRC", Mips::AFL_ASE_CRC},
|
|
{"GINV", Mips::AFL_ASE_GINV},
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
|
|
{"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
|
|
{"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
|
|
{"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
|
|
{"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
|
|
{"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
|
|
Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
|
|
{"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
|
|
{"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
|
|
{"Hard float compat (32-bit CPU, 64-bit FPU)",
|
|
Mips::Val_GNU_MIPS_ABI_FP_64A}
|
|
};
|
|
|
|
static const EnumEntry<unsigned> ElfMipsFlags1[] {
|
|
{"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
|
|
};
|
|
|
|
static int getMipsRegisterSize(uint8_t Flag) {
|
|
switch (Flag) {
|
|
case Mips::AFL_REG_NONE:
|
|
return 0;
|
|
case Mips::AFL_REG_32:
|
|
return 32;
|
|
case Mips::AFL_REG_64:
|
|
return 64;
|
|
case Mips::AFL_REG_128:
|
|
return 128;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void printMipsReginfoData(ScopedPrinter &W,
|
|
const Elf_Mips_RegInfo<ELFT> &Reginfo) {
|
|
W.printHex("GP", Reginfo.ri_gp_value);
|
|
W.printHex("General Mask", Reginfo.ri_gprmask);
|
|
W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
|
|
W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
|
|
W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
|
|
W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
|
|
const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
|
|
if (!RegInfoSec) {
|
|
W.startLine() << "There is no .reginfo section in the file.\n";
|
|
return;
|
|
}
|
|
|
|
Expected<ArrayRef<uint8_t>> ContentsOrErr =
|
|
Obj.getSectionContents(*RegInfoSec);
|
|
if (!ContentsOrErr) {
|
|
this->reportUniqueWarning(
|
|
"unable to read the content of the .reginfo section (" +
|
|
describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
|
|
this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
|
|
Twine::utohexstr(ContentsOrErr->size()) + ")");
|
|
return;
|
|
}
|
|
|
|
DictScope GS(W, "MIPS RegInfo");
|
|
printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
|
|
ContentsOrErr->data()));
|
|
}
|
|
|
|
template <class ELFT>
|
|
static Expected<const Elf_Mips_Options<ELFT> *>
|
|
readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
|
|
bool &IsSupported) {
|
|
if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
|
|
return createError("the .MIPS.options section has an invalid size (0x" +
|
|
Twine::utohexstr(SecData.size()) + ")");
|
|
|
|
const Elf_Mips_Options<ELFT> *O =
|
|
reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
|
|
const uint8_t Size = O->size;
|
|
if (Size > SecData.size()) {
|
|
const uint64_t Offset = SecData.data() - SecBegin;
|
|
const uint64_t SecSize = Offset + SecData.size();
|
|
return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
|
|
" at offset 0x" + Twine::utohexstr(Offset) +
|
|
" goes past the end of the .MIPS.options "
|
|
"section of size 0x" +
|
|
Twine::utohexstr(SecSize));
|
|
}
|
|
|
|
IsSupported = O->kind == ODK_REGINFO;
|
|
const size_t ExpectedSize =
|
|
sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
|
|
|
|
if (IsSupported)
|
|
if (Size < ExpectedSize)
|
|
return createError(
|
|
"a .MIPS.options entry of kind " +
|
|
Twine(getElfMipsOptionsOdkType(O->kind)) +
|
|
" has an invalid size (0x" + Twine::utohexstr(Size) +
|
|
"), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
|
|
|
|
SecData = SecData.drop_front(Size);
|
|
return O;
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
|
|
const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
|
|
if (!MipsOpts) {
|
|
W.startLine() << "There is no .MIPS.options section in the file.\n";
|
|
return;
|
|
}
|
|
|
|
DictScope GS(W, "MIPS Options");
|
|
|
|
ArrayRef<uint8_t> Data =
|
|
unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
|
|
const uint8_t *const SecBegin = Data.begin();
|
|
while (!Data.empty()) {
|
|
bool IsSupported;
|
|
Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
|
|
readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
|
|
if (!OptsOrErr) {
|
|
reportUniqueWarning(OptsOrErr.takeError());
|
|
break;
|
|
}
|
|
|
|
unsigned Kind = (*OptsOrErr)->kind;
|
|
const char *Type = getElfMipsOptionsOdkType(Kind);
|
|
if (!IsSupported) {
|
|
W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
|
|
<< ")\n";
|
|
continue;
|
|
}
|
|
|
|
DictScope GS(W, Type);
|
|
if (Kind == ODK_REGINFO)
|
|
printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
|
|
else
|
|
llvm_unreachable("unexpected .MIPS.options section descriptor kind");
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
|
|
const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
|
|
if (!StackMapSection)
|
|
return;
|
|
|
|
auto Warn = [&](Error &&E) {
|
|
this->reportUniqueWarning("unable to read the stack map from " +
|
|
describe(*StackMapSection) + ": " +
|
|
toString(std::move(E)));
|
|
};
|
|
|
|
Expected<ArrayRef<uint8_t>> ContentOrErr =
|
|
Obj.getSectionContents(*StackMapSection);
|
|
if (!ContentOrErr) {
|
|
Warn(ContentOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
|
|
*ContentOrErr)) {
|
|
Warn(std::move(E));
|
|
return;
|
|
}
|
|
|
|
prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
|
|
const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
|
|
Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
|
|
if (!Target)
|
|
reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
|
|
" in " + describe(Sec) + ": " +
|
|
toString(Target.takeError()));
|
|
else
|
|
printRelRelaReloc(R, *Target);
|
|
}
|
|
|
|
static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
|
|
StringRef Str2) {
|
|
OS.PadToColumn(2u);
|
|
OS << Str1;
|
|
OS.PadToColumn(37u);
|
|
OS << Str2 << "\n";
|
|
OS.flush();
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
|
|
StringRef FileName) {
|
|
const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
|
|
if (ElfHeader.e_shnum != 0)
|
|
return to_string(ElfHeader.e_shnum);
|
|
|
|
Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
|
|
if (!ArrOrErr) {
|
|
// In this case we can ignore an error, because we have already reported a
|
|
// warning about the broken section header table earlier.
|
|
consumeError(ArrOrErr.takeError());
|
|
return "<?>";
|
|
}
|
|
|
|
if (ArrOrErr->empty())
|
|
return "0";
|
|
return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
|
|
StringRef FileName) {
|
|
const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
|
|
if (ElfHeader.e_shstrndx != SHN_XINDEX)
|
|
return to_string(ElfHeader.e_shstrndx);
|
|
|
|
Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
|
|
if (!ArrOrErr) {
|
|
// In this case we can ignore an error, because we have already reported a
|
|
// warning about the broken section header table earlier.
|
|
consumeError(ArrOrErr.takeError());
|
|
return "<?>";
|
|
}
|
|
|
|
if (ArrOrErr->empty())
|
|
return "65535 (corrupt: out of range)";
|
|
return to_string(ElfHeader.e_shstrndx) + " (" +
|
|
to_string((*ArrOrErr)[0].sh_link) + ")";
|
|
}
|
|
|
|
static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
|
|
auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
|
|
return E.Value == Type;
|
|
});
|
|
if (It != makeArrayRef(ElfObjectFileType).end())
|
|
return It;
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
|
|
const Elf_Ehdr &e = this->Obj.getHeader();
|
|
OS << "ELF Header:\n";
|
|
OS << " Magic: ";
|
|
std::string Str;
|
|
for (int i = 0; i < ELF::EI_NIDENT; i++)
|
|
OS << format(" %02x", static_cast<int>(e.e_ident[i]));
|
|
OS << "\n";
|
|
Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
|
|
printFields(OS, "Class:", Str);
|
|
Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
|
|
printFields(OS, "Data:", Str);
|
|
OS.PadToColumn(2u);
|
|
OS << "Version:";
|
|
OS.PadToColumn(37u);
|
|
OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
|
|
if (e.e_version == ELF::EV_CURRENT)
|
|
OS << " (current)";
|
|
OS << "\n";
|
|
Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
|
|
printFields(OS, "OS/ABI:", Str);
|
|
printFields(OS,
|
|
"ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
|
|
|
|
if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
|
|
Str = E->AltName.str();
|
|
} else {
|
|
if (e.e_type >= ET_LOPROC)
|
|
Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
|
|
else if (e.e_type >= ET_LOOS)
|
|
Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
|
|
else
|
|
Str = "<unknown>: " + to_hexString(e.e_type, false);
|
|
}
|
|
printFields(OS, "Type:", Str);
|
|
|
|
Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType));
|
|
printFields(OS, "Machine:", Str);
|
|
Str = "0x" + to_hexString(e.e_version);
|
|
printFields(OS, "Version:", Str);
|
|
Str = "0x" + to_hexString(e.e_entry);
|
|
printFields(OS, "Entry point address:", Str);
|
|
Str = to_string(e.e_phoff) + " (bytes into file)";
|
|
printFields(OS, "Start of program headers:", Str);
|
|
Str = to_string(e.e_shoff) + " (bytes into file)";
|
|
printFields(OS, "Start of section headers:", Str);
|
|
std::string ElfFlags;
|
|
if (e.e_machine == EM_MIPS)
|
|
ElfFlags =
|
|
printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
|
|
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
|
|
unsigned(ELF::EF_MIPS_MACH));
|
|
else if (e.e_machine == EM_RISCV)
|
|
ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
|
|
else if (e.e_machine == EM_AVR)
|
|
ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
|
|
unsigned(ELF::EF_AVR_ARCH_MASK));
|
|
Str = "0x" + to_hexString(e.e_flags);
|
|
if (!ElfFlags.empty())
|
|
Str = Str + ", " + ElfFlags;
|
|
printFields(OS, "Flags:", Str);
|
|
Str = to_string(e.e_ehsize) + " (bytes)";
|
|
printFields(OS, "Size of this header:", Str);
|
|
Str = to_string(e.e_phentsize) + " (bytes)";
|
|
printFields(OS, "Size of program headers:", Str);
|
|
Str = to_string(e.e_phnum);
|
|
printFields(OS, "Number of program headers:", Str);
|
|
Str = to_string(e.e_shentsize) + " (bytes)";
|
|
printFields(OS, "Size of section headers:", Str);
|
|
Str = getSectionHeadersNumString(this->Obj, this->FileName);
|
|
printFields(OS, "Number of section headers:", Str);
|
|
Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
|
|
printFields(OS, "Section header string table index:", Str);
|
|
}
|
|
|
|
template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
|
|
auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
|
|
const Elf_Shdr &Symtab) -> StringRef {
|
|
Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
|
|
if (!StrTableOrErr) {
|
|
reportUniqueWarning("unable to get the string table for " +
|
|
describe(Symtab) + ": " +
|
|
toString(StrTableOrErr.takeError()));
|
|
return "<?>";
|
|
}
|
|
|
|
StringRef Strings = *StrTableOrErr;
|
|
if (Sym.st_name >= Strings.size()) {
|
|
reportUniqueWarning("unable to get the name of the symbol with index " +
|
|
Twine(SymNdx) + ": st_name (0x" +
|
|
Twine::utohexstr(Sym.st_name) +
|
|
") is past the end of the string table of size 0x" +
|
|
Twine::utohexstr(Strings.size()));
|
|
return "<?>";
|
|
}
|
|
|
|
return StrTableOrErr->data() + Sym.st_name;
|
|
};
|
|
|
|
std::vector<GroupSection> Ret;
|
|
uint64_t I = 0;
|
|
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
|
|
++I;
|
|
if (Sec.sh_type != ELF::SHT_GROUP)
|
|
continue;
|
|
|
|
StringRef Signature = "<?>";
|
|
if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
|
|
if (Expected<const Elf_Sym *> SymOrErr =
|
|
Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
|
|
Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
|
|
else
|
|
reportUniqueWarning("unable to get the signature symbol for " +
|
|
describe(Sec) + ": " +
|
|
toString(SymOrErr.takeError()));
|
|
} else {
|
|
reportUniqueWarning("unable to get the symbol table for " +
|
|
describe(Sec) + ": " +
|
|
toString(SymtabOrErr.takeError()));
|
|
}
|
|
|
|
ArrayRef<Elf_Word> Data;
|
|
if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
|
|
Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
|
|
if (ContentsOrErr->empty())
|
|
reportUniqueWarning("unable to read the section group flag from the " +
|
|
describe(Sec) + ": the section is empty");
|
|
else
|
|
Data = *ContentsOrErr;
|
|
} else {
|
|
reportUniqueWarning("unable to get the content of the " + describe(Sec) +
|
|
": " + toString(ContentsOrErr.takeError()));
|
|
}
|
|
|
|
Ret.push_back({getPrintableSectionName(Sec),
|
|
maybeDemangle(Signature),
|
|
Sec.sh_name,
|
|
I - 1,
|
|
Sec.sh_link,
|
|
Sec.sh_info,
|
|
Data.empty() ? Elf_Word(0) : Data[0],
|
|
{}});
|
|
|
|
if (Data.empty())
|
|
continue;
|
|
|
|
std::vector<GroupMember> &GM = Ret.back().Members;
|
|
for (uint32_t Ndx : Data.slice(1)) {
|
|
if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
|
|
GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
|
|
} else {
|
|
reportUniqueWarning("unable to get the section with index " +
|
|
Twine(Ndx) + " when dumping the " + describe(Sec) +
|
|
": " + toString(SecOrErr.takeError()));
|
|
GM.push_back({"<?>", Ndx});
|
|
}
|
|
}
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
static DenseMap<uint64_t, const GroupSection *>
|
|
mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
|
|
DenseMap<uint64_t, const GroupSection *> Ret;
|
|
for (const GroupSection &G : Groups)
|
|
for (const GroupMember &GM : G.Members)
|
|
Ret.insert({GM.Index, &G});
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
|
|
std::vector<GroupSection> V = this->getGroups();
|
|
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
|
|
for (const GroupSection &G : V) {
|
|
OS << "\n"
|
|
<< getGroupType(G.Type) << " group section ["
|
|
<< format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
|
|
<< "] contains " << G.Members.size() << " sections:\n"
|
|
<< " [Index] Name\n";
|
|
for (const GroupMember &GM : G.Members) {
|
|
const GroupSection *MainGroup = Map[GM.Index];
|
|
if (MainGroup != &G)
|
|
this->reportUniqueWarning(
|
|
"section with index " + Twine(GM.Index) +
|
|
", included in the group section with index " +
|
|
Twine(MainGroup->Index) +
|
|
", was also found in the group section with index " +
|
|
Twine(G.Index));
|
|
OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
|
|
}
|
|
}
|
|
|
|
if (V.empty())
|
|
OS << "There are no section groups in this file.\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
|
|
OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
|
|
const RelSymbol<ELFT> &RelSym) {
|
|
// First two fields are bit width dependent. The rest of them are fixed width.
|
|
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
|
|
Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
|
|
unsigned Width = ELFT::Is64Bits ? 16 : 8;
|
|
|
|
Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
|
|
Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
|
|
|
|
SmallString<32> RelocName;
|
|
this->Obj.getRelocationTypeName(R.Type, RelocName);
|
|
Fields[2].Str = RelocName.c_str();
|
|
|
|
if (RelSym.Sym)
|
|
Fields[3].Str =
|
|
to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
|
|
|
|
Fields[4].Str = std::string(RelSym.Name);
|
|
for (const Field &F : Fields)
|
|
printField(F);
|
|
|
|
std::string Addend;
|
|
if (Optional<int64_t> A = R.Addend) {
|
|
int64_t RelAddend = *A;
|
|
if (!RelSym.Name.empty()) {
|
|
if (RelAddend < 0) {
|
|
Addend = " - ";
|
|
RelAddend = std::abs(RelAddend);
|
|
} else {
|
|
Addend = " + ";
|
|
}
|
|
}
|
|
Addend += to_hexString(RelAddend, false);
|
|
}
|
|
OS << Addend << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
|
|
bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
|
|
bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
|
|
if (ELFT::Is64Bits)
|
|
OS << " ";
|
|
else
|
|
OS << " ";
|
|
if (IsRelr && opts::RawRelr)
|
|
OS << "Data ";
|
|
else
|
|
OS << "Offset";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Info Type"
|
|
<< " Symbol's Value Symbol's Name";
|
|
else
|
|
OS << " Info Type Sym. Value Symbol's Name";
|
|
if (IsRela)
|
|
OS << " + Addend";
|
|
OS << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
|
|
const DynRegionInfo &Reg) {
|
|
uint64_t Offset = Reg.Addr - this->Obj.base();
|
|
OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
|
|
<< to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
|
|
printRelocHeaderFields<ELFT>(OS, Type);
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
|
|
return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
|
|
Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
|
|
Sec.sh_type == ELF::SHT_ANDROID_RELA ||
|
|
Sec.sh_type == ELF::SHT_ANDROID_RELR;
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
|
|
auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
|
|
// Android's packed relocation section needs to be unpacked first
|
|
// to get the actual number of entries.
|
|
if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
|
|
Sec.sh_type == ELF::SHT_ANDROID_RELA) {
|
|
Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
|
|
this->Obj.android_relas(Sec);
|
|
if (!RelasOrErr)
|
|
return RelasOrErr.takeError();
|
|
return RelasOrErr->size();
|
|
}
|
|
|
|
if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
|
|
Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
|
|
Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
|
|
if (!RelrsOrErr)
|
|
return RelrsOrErr.takeError();
|
|
return this->Obj.decode_relrs(*RelrsOrErr).size();
|
|
}
|
|
|
|
return Sec.getEntityCount();
|
|
};
|
|
|
|
bool HasRelocSections = false;
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
if (!isRelocationSec<ELFT>(Sec))
|
|
continue;
|
|
HasRelocSections = true;
|
|
|
|
std::string EntriesNum = "<?>";
|
|
if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
|
|
EntriesNum = std::to_string(*NumOrErr);
|
|
else
|
|
this->reportUniqueWarning("unable to get the number of relocations in " +
|
|
this->describe(Sec) + ": " +
|
|
toString(NumOrErr.takeError()));
|
|
|
|
uintX_t Offset = Sec.sh_offset;
|
|
StringRef Name = this->getPrintableSectionName(Sec);
|
|
OS << "\nRelocation section '" << Name << "' at offset 0x"
|
|
<< to_hexString(Offset, false) << " contains " << EntriesNum
|
|
<< " entries:\n";
|
|
printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
|
|
this->printRelocationsHelper(Sec);
|
|
}
|
|
if (!HasRelocSections)
|
|
OS << "\nThere are no relocations in this file.\n";
|
|
}
|
|
|
|
// Print the offset of a particular section from anyone of the ranges:
|
|
// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
|
|
// If 'Type' does not fall within any of those ranges, then a string is
|
|
// returned as '<unknown>' followed by the type value.
|
|
static std::string getSectionTypeOffsetString(unsigned Type) {
|
|
if (Type >= SHT_LOOS && Type <= SHT_HIOS)
|
|
return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
|
|
else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
|
|
return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
|
|
else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
|
|
return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
|
|
return "0x" + to_hexString(Type) + ": <unknown>";
|
|
}
|
|
|
|
static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
|
|
StringRef Name = getELFSectionTypeName(Machine, Type);
|
|
|
|
// Handle SHT_GNU_* type names.
|
|
if (Name.startswith("SHT_GNU_")) {
|
|
if (Name == "SHT_GNU_HASH")
|
|
return "GNU_HASH";
|
|
// E.g. SHT_GNU_verneed -> VERNEED.
|
|
return Name.drop_front(8).upper();
|
|
}
|
|
|
|
if (Name == "SHT_SYMTAB_SHNDX")
|
|
return "SYMTAB SECTION INDICES";
|
|
|
|
if (Name.startswith("SHT_"))
|
|
return Name.drop_front(4).str();
|
|
return getSectionTypeOffsetString(Type);
|
|
}
|
|
|
|
static void printSectionDescription(formatted_raw_ostream &OS,
|
|
unsigned EMachine) {
|
|
OS << "Key to Flags:\n";
|
|
OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
|
|
"(info),\n";
|
|
OS << " L (link order), O (extra OS processing required), G (group), T "
|
|
"(TLS),\n";
|
|
OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
|
|
OS << " R (retain)";
|
|
|
|
if (EMachine == EM_X86_64)
|
|
OS << ", l (large)";
|
|
else if (EMachine == EM_ARM)
|
|
OS << ", y (purecode)";
|
|
|
|
OS << ", p (processor specific)\n";
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
|
|
unsigned Bias = ELFT::Is64Bits ? 0 : 8;
|
|
ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
|
|
OS << "There are " << to_string(Sections.size())
|
|
<< " section headers, starting at offset "
|
|
<< "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
|
|
OS << "Section Headers:\n";
|
|
Field Fields[11] = {
|
|
{"[Nr]", 2}, {"Name", 7}, {"Type", 25},
|
|
{"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
|
|
{"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
|
|
{"Inf", 82 - Bias}, {"Al", 86 - Bias}};
|
|
for (const Field &F : Fields)
|
|
printField(F);
|
|
OS << "\n";
|
|
|
|
StringRef SecStrTable;
|
|
if (Expected<StringRef> SecStrTableOrErr =
|
|
this->Obj.getSectionStringTable(Sections, this->WarningHandler))
|
|
SecStrTable = *SecStrTableOrErr;
|
|
else
|
|
this->reportUniqueWarning(SecStrTableOrErr.takeError());
|
|
|
|
size_t SectionIndex = 0;
|
|
for (const Elf_Shdr &Sec : Sections) {
|
|
Fields[0].Str = to_string(SectionIndex);
|
|
if (SecStrTable.empty())
|
|
Fields[1].Str = "<no-strings>";
|
|
else
|
|
Fields[1].Str = std::string(unwrapOrError<StringRef>(
|
|
this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
|
|
Fields[2].Str =
|
|
getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
|
|
Fields[3].Str =
|
|
to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
|
|
Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
|
|
Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
|
|
Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
|
|
Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
|
|
Fields[8].Str = to_string(Sec.sh_link);
|
|
Fields[9].Str = to_string(Sec.sh_info);
|
|
Fields[10].Str = to_string(Sec.sh_addralign);
|
|
|
|
OS.PadToColumn(Fields[0].Column);
|
|
OS << "[" << right_justify(Fields[0].Str, 2) << "]";
|
|
for (int i = 1; i < 7; i++)
|
|
printField(Fields[i]);
|
|
OS.PadToColumn(Fields[7].Column);
|
|
OS << right_justify(Fields[7].Str, 3);
|
|
OS.PadToColumn(Fields[8].Column);
|
|
OS << right_justify(Fields[8].Str, 2);
|
|
OS.PadToColumn(Fields[9].Column);
|
|
OS << right_justify(Fields[9].Str, 3);
|
|
OS.PadToColumn(Fields[10].Column);
|
|
OS << right_justify(Fields[10].Str, 2);
|
|
OS << "\n";
|
|
++SectionIndex;
|
|
}
|
|
printSectionDescription(OS, this->Obj.getHeader().e_machine);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
|
|
size_t Entries,
|
|
bool NonVisibilityBitsUsed) const {
|
|
StringRef Name;
|
|
if (Symtab)
|
|
Name = this->getPrintableSectionName(*Symtab);
|
|
if (!Name.empty())
|
|
OS << "\nSymbol table '" << Name << "'";
|
|
else
|
|
OS << "\nSymbol table for image";
|
|
OS << " contains " << Entries << " entries:\n";
|
|
|
|
if (ELFT::Is64Bits)
|
|
OS << " Num: Value Size Type Bind Vis";
|
|
else
|
|
OS << " Num: Value Size Type Bind Vis";
|
|
|
|
if (NonVisibilityBitsUsed)
|
|
OS << " ";
|
|
OS << " Ndx Name\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::string
|
|
GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
|
|
unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const {
|
|
unsigned SectionIndex = Symbol.st_shndx;
|
|
switch (SectionIndex) {
|
|
case ELF::SHN_UNDEF:
|
|
return "UND";
|
|
case ELF::SHN_ABS:
|
|
return "ABS";
|
|
case ELF::SHN_COMMON:
|
|
return "COM";
|
|
case ELF::SHN_XINDEX: {
|
|
Expected<uint32_t> IndexOrErr =
|
|
object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
|
|
if (!IndexOrErr) {
|
|
assert(Symbol.st_shndx == SHN_XINDEX &&
|
|
"getExtendedSymbolTableIndex should only fail due to an invalid "
|
|
"SHT_SYMTAB_SHNDX table/reference");
|
|
this->reportUniqueWarning(IndexOrErr.takeError());
|
|
return "RSV[0xffff]";
|
|
}
|
|
return to_string(format_decimal(*IndexOrErr, 3));
|
|
}
|
|
default:
|
|
// Find if:
|
|
// Processor specific
|
|
if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
|
|
return std::string("PRC[0x") +
|
|
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
|
|
// OS specific
|
|
if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
|
|
return std::string("OS[0x") +
|
|
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
|
|
// Architecture reserved:
|
|
if (SectionIndex >= ELF::SHN_LORESERVE &&
|
|
SectionIndex <= ELF::SHN_HIRESERVE)
|
|
return std::string("RSV[0x") +
|
|
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
|
|
// A normal section with an index
|
|
return to_string(format_decimal(SectionIndex, 3));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable,
|
|
bool IsDynamic,
|
|
bool NonVisibilityBitsUsed) const {
|
|
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
|
|
Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
|
|
31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
|
|
Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
|
|
Fields[1].Str =
|
|
to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
|
|
Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
|
|
|
|
unsigned char SymbolType = Symbol.getType();
|
|
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
|
|
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
|
|
Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
|
|
else
|
|
Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
|
|
|
|
Fields[4].Str =
|
|
printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
|
|
Fields[5].Str =
|
|
printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
|
|
|
|
if (Symbol.st_other & ~0x3) {
|
|
if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
|
|
uint8_t Other = Symbol.st_other & ~0x3;
|
|
if (Other & STO_AARCH64_VARIANT_PCS) {
|
|
Other &= ~STO_AARCH64_VARIANT_PCS;
|
|
Fields[5].Str += " [VARIANT_PCS";
|
|
if (Other != 0)
|
|
Fields[5].Str.append(" | " + to_hexString(Other, false));
|
|
Fields[5].Str.append("]");
|
|
}
|
|
} else {
|
|
Fields[5].Str +=
|
|
" [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
|
|
}
|
|
}
|
|
|
|
Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
|
|
Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
|
|
|
|
Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
|
|
StrTable, IsDynamic);
|
|
for (const Field &Entry : Fields)
|
|
printField(Entry);
|
|
OS << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
|
|
unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
StringRef StrTable,
|
|
uint32_t Bucket) {
|
|
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
|
|
Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
|
|
34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
|
|
Fields[0].Str = to_string(format_decimal(SymIndex, 5));
|
|
Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
|
|
|
|
Fields[2].Str = to_string(
|
|
format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
|
|
Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
|
|
|
|
unsigned char SymbolType = Symbol->getType();
|
|
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
|
|
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
|
|
Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
|
|
else
|
|
Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
|
|
|
|
Fields[5].Str =
|
|
printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
|
|
Fields[6].Str =
|
|
printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
|
|
Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
|
|
Fields[8].Str =
|
|
this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
|
|
|
|
for (const Field &Entry : Fields)
|
|
printField(Entry);
|
|
OS << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
|
|
bool PrintDynamicSymbols) {
|
|
if (!PrintSymbols && !PrintDynamicSymbols)
|
|
return;
|
|
// GNU readelf prints both the .dynsym and .symtab with --symbols.
|
|
this->printSymbolsHelper(true);
|
|
if (PrintSymbols)
|
|
this->printSymbolsHelper(false);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
|
|
if (this->DynamicStringTable.empty())
|
|
return;
|
|
|
|
if (ELFT::Is64Bits)
|
|
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
|
|
else
|
|
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
|
|
OS << "\n";
|
|
|
|
Elf_Sym_Range DynSyms = this->dynamic_symbols();
|
|
const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
|
|
if (!FirstSym) {
|
|
this->reportUniqueWarning(
|
|
Twine("unable to print symbols for the .hash table: the "
|
|
"dynamic symbol table ") +
|
|
(this->DynSymRegion ? "is empty" : "was not found"));
|
|
return;
|
|
}
|
|
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
auto Buckets = SysVHash.buckets();
|
|
auto Chains = SysVHash.chains();
|
|
for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
|
|
if (Buckets[Buc] == ELF::STN_UNDEF)
|
|
continue;
|
|
std::vector<bool> Visited(SysVHash.nchain);
|
|
for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
|
|
if (Ch == ELF::STN_UNDEF)
|
|
break;
|
|
|
|
if (Visited[Ch]) {
|
|
this->reportUniqueWarning(".hash section is invalid: bucket " +
|
|
Twine(Ch) +
|
|
": a cycle was detected in the linked chain");
|
|
break;
|
|
}
|
|
|
|
printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
|
|
Buc);
|
|
Visited[Ch] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
|
|
if (this->DynamicStringTable.empty())
|
|
return;
|
|
|
|
Elf_Sym_Range DynSyms = this->dynamic_symbols();
|
|
const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
|
|
if (!FirstSym) {
|
|
this->reportUniqueWarning(
|
|
Twine("unable to print symbols for the .gnu.hash table: the "
|
|
"dynamic symbol table ") +
|
|
(this->DynSymRegion ? "is empty" : "was not found"));
|
|
return;
|
|
}
|
|
|
|
auto GetSymbol = [&](uint64_t SymIndex,
|
|
uint64_t SymsTotal) -> const Elf_Sym * {
|
|
if (SymIndex >= SymsTotal) {
|
|
this->reportUniqueWarning(
|
|
"unable to print hashed symbol with index " + Twine(SymIndex) +
|
|
", which is greater than or equal to the number of dynamic symbols "
|
|
"(" +
|
|
Twine::utohexstr(SymsTotal) + ")");
|
|
return nullptr;
|
|
}
|
|
return FirstSym + SymIndex;
|
|
};
|
|
|
|
Expected<ArrayRef<Elf_Word>> ValuesOrErr =
|
|
getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
|
|
ArrayRef<Elf_Word> Values;
|
|
if (!ValuesOrErr)
|
|
this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
|
|
"section: " +
|
|
toString(ValuesOrErr.takeError()));
|
|
else
|
|
Values = *ValuesOrErr;
|
|
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
|
|
for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
|
|
if (Buckets[Buc] == ELF::STN_UNDEF)
|
|
continue;
|
|
uint32_t Index = Buckets[Buc];
|
|
// Print whole chain.
|
|
while (true) {
|
|
uint32_t SymIndex = Index++;
|
|
if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
|
|
printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
|
|
Buc);
|
|
else
|
|
break;
|
|
|
|
if (SymIndex < GnuHash.symndx) {
|
|
this->reportUniqueWarning(
|
|
"unable to read the hash value for symbol with index " +
|
|
Twine(SymIndex) +
|
|
", which is less than the index of the first hashed symbol (" +
|
|
Twine(GnuHash.symndx) + ")");
|
|
break;
|
|
}
|
|
|
|
// Chain ends at symbol with stopper bit.
|
|
if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
|
|
if (this->HashTable) {
|
|
OS << "\n Symbol table of .hash for image:\n";
|
|
if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
|
|
this->reportUniqueWarning(std::move(E));
|
|
else
|
|
printHashTableSymbols(*this->HashTable);
|
|
}
|
|
|
|
// Try printing the .gnu.hash table.
|
|
if (this->GnuHashTable) {
|
|
OS << "\n Symbol table of .gnu.hash for image:\n";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
|
|
else
|
|
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
|
|
OS << "\n";
|
|
|
|
if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
|
|
this->reportUniqueWarning(std::move(E));
|
|
else
|
|
printGnuHashTableSymbols(*this->GnuHashTable);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
|
|
ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
|
|
OS << "There are " << to_string(Sections.size())
|
|
<< " section headers, starting at offset "
|
|
<< "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
|
|
|
|
OS << "Section Headers:\n";
|
|
|
|
auto PrintFields = [&](ArrayRef<Field> V) {
|
|
for (const Field &F : V)
|
|
printField(F);
|
|
OS << "\n";
|
|
};
|
|
|
|
PrintFields({{"[Nr]", 2}, {"Name", 7}});
|
|
|
|
constexpr bool Is64 = ELFT::Is64Bits;
|
|
PrintFields({{"Type", 7},
|
|
{Is64 ? "Address" : "Addr", 23},
|
|
{"Off", Is64 ? 40 : 32},
|
|
{"Size", Is64 ? 47 : 39},
|
|
{"ES", Is64 ? 54 : 46},
|
|
{"Lk", Is64 ? 59 : 51},
|
|
{"Inf", Is64 ? 62 : 54},
|
|
{"Al", Is64 ? 66 : 57}});
|
|
PrintFields({{"Flags", 7}});
|
|
|
|
StringRef SecStrTable;
|
|
if (Expected<StringRef> SecStrTableOrErr =
|
|
this->Obj.getSectionStringTable(Sections, this->WarningHandler))
|
|
SecStrTable = *SecStrTableOrErr;
|
|
else
|
|
this->reportUniqueWarning(SecStrTableOrErr.takeError());
|
|
|
|
size_t SectionIndex = 0;
|
|
const unsigned AddrSize = Is64 ? 16 : 8;
|
|
for (const Elf_Shdr &S : Sections) {
|
|
StringRef Name = "<?>";
|
|
if (Expected<StringRef> NameOrErr =
|
|
this->Obj.getSectionName(S, SecStrTable))
|
|
Name = *NameOrErr;
|
|
else
|
|
this->reportUniqueWarning(NameOrErr.takeError());
|
|
|
|
OS.PadToColumn(2);
|
|
OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
|
|
PrintFields({{Name, 7}});
|
|
PrintFields(
|
|
{{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
|
|
{to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
|
|
{to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
|
|
{to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
|
|
{to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
|
|
{to_string(S.sh_link), Is64 ? 59 : 51},
|
|
{to_string(S.sh_info), Is64 ? 63 : 55},
|
|
{to_string(S.sh_addralign), Is64 ? 66 : 58}});
|
|
|
|
OS.PadToColumn(7);
|
|
OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
|
|
|
|
DenseMap<unsigned, StringRef> FlagToName = {
|
|
{SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
|
|
{SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
|
|
{SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
|
|
{SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
|
|
{SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
|
|
{SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
|
|
|
|
uint64_t Flags = S.sh_flags;
|
|
uint64_t UnknownFlags = 0;
|
|
ListSeparator LS;
|
|
while (Flags) {
|
|
// Take the least significant bit as a flag.
|
|
uint64_t Flag = Flags & -Flags;
|
|
Flags -= Flag;
|
|
|
|
auto It = FlagToName.find(Flag);
|
|
if (It != FlagToName.end())
|
|
OS << LS << It->second;
|
|
else
|
|
UnknownFlags |= Flag;
|
|
}
|
|
|
|
auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
|
|
uint64_t FlagsToPrint = UnknownFlags & Mask;
|
|
if (!FlagsToPrint)
|
|
return;
|
|
|
|
OS << LS << Name << " ("
|
|
<< to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
|
|
UnknownFlags &= ~Mask;
|
|
};
|
|
|
|
PrintUnknownFlags(SHF_MASKOS, "OS");
|
|
PrintUnknownFlags(SHF_MASKPROC, "PROC");
|
|
PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
|
|
|
|
OS << "\n";
|
|
++SectionIndex;
|
|
}
|
|
}
|
|
|
|
static inline std::string printPhdrFlags(unsigned Flag) {
|
|
std::string Str;
|
|
Str = (Flag & PF_R) ? "R" : " ";
|
|
Str += (Flag & PF_W) ? "W" : " ";
|
|
Str += (Flag & PF_X) ? "E" : " ";
|
|
return Str;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec) {
|
|
if (Sec.sh_flags & ELF::SHF_TLS) {
|
|
// .tbss must only be shown in the PT_TLS segment.
|
|
if (Sec.sh_type == ELF::SHT_NOBITS)
|
|
return Phdr.p_type == ELF::PT_TLS;
|
|
|
|
// SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
|
|
// segments.
|
|
return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
|
|
(Phdr.p_type == ELF::PT_GNU_RELRO);
|
|
}
|
|
|
|
// PT_TLS must only have SHF_TLS sections.
|
|
return Phdr.p_type != ELF::PT_TLS;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool checkOffsets(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec) {
|
|
// SHT_NOBITS sections don't need to have an offset inside the segment.
|
|
if (Sec.sh_type == ELF::SHT_NOBITS)
|
|
return true;
|
|
|
|
if (Sec.sh_offset < Phdr.p_offset)
|
|
return false;
|
|
|
|
// Only non-empty sections can be at the end of a segment.
|
|
if (Sec.sh_size == 0)
|
|
return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
|
|
return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
|
|
}
|
|
|
|
// Check that an allocatable section belongs to a virtual address
|
|
// space of a segment.
|
|
template <class ELFT>
|
|
static bool checkVMA(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec) {
|
|
if (!(Sec.sh_flags & ELF::SHF_ALLOC))
|
|
return true;
|
|
|
|
if (Sec.sh_addr < Phdr.p_vaddr)
|
|
return false;
|
|
|
|
bool IsTbss =
|
|
(Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
|
|
// .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
|
|
bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
|
|
// Only non-empty sections can be at the end of a segment.
|
|
if (Sec.sh_size == 0 || IsTbssInNonTLS)
|
|
return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
|
|
return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec) {
|
|
if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
|
|
return true;
|
|
|
|
// We get here when we have an empty section. Only non-empty sections can be
|
|
// at the start or at the end of PT_DYNAMIC.
|
|
// Is section within the phdr both based on offset and VMA?
|
|
bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
|
|
(Sec.sh_offset > Phdr.p_offset &&
|
|
Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
|
|
bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
|
|
(Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
|
|
return CheckOffset && CheckVA;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printProgramHeaders(
|
|
bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
|
|
if (PrintProgramHeaders)
|
|
printProgramHeaders();
|
|
|
|
// Display the section mapping along with the program headers, unless
|
|
// -section-mapping is explicitly set to false.
|
|
if (PrintSectionMapping != cl::BOU_FALSE)
|
|
printSectionMapping();
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
|
|
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
|
|
const Elf_Ehdr &Header = this->Obj.getHeader();
|
|
Field Fields[8] = {2, 17, 26, 37 + Bias,
|
|
48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
|
|
OS << "\nElf file type is "
|
|
<< printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
|
|
<< "Entry point " << format_hex(Header.e_entry, 3) << "\n"
|
|
<< "There are " << Header.e_phnum << " program headers,"
|
|
<< " starting at offset " << Header.e_phoff << "\n\n"
|
|
<< "Program Headers:\n";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Type Offset VirtAddr PhysAddr "
|
|
<< " FileSiz MemSiz Flg Align\n";
|
|
else
|
|
OS << " Type Offset VirtAddr PhysAddr FileSiz "
|
|
<< "MemSiz Flg Align\n";
|
|
|
|
unsigned Width = ELFT::Is64Bits ? 18 : 10;
|
|
unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
|
|
|
|
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
|
|
if (!PhdrsOrErr) {
|
|
this->reportUniqueWarning("unable to dump program headers: " +
|
|
toString(PhdrsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
|
|
Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
|
|
Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
|
|
Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
|
|
Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
|
|
Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
|
|
Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
|
|
Fields[6].Str = printPhdrFlags(Phdr.p_flags);
|
|
Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
|
|
for (const Field &F : Fields)
|
|
printField(F);
|
|
if (Phdr.p_type == ELF::PT_INTERP) {
|
|
OS << "\n";
|
|
auto ReportBadInterp = [&](const Twine &Msg) {
|
|
this->reportUniqueWarning(
|
|
"unable to read program interpreter name at offset 0x" +
|
|
Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
|
|
};
|
|
|
|
if (Phdr.p_offset >= this->Obj.getBufSize()) {
|
|
ReportBadInterp("it goes past the end of the file (0x" +
|
|
Twine::utohexstr(this->Obj.getBufSize()) + ")");
|
|
continue;
|
|
}
|
|
|
|
const char *Data =
|
|
reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
|
|
size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
|
|
size_t Len = strnlen(Data, MaxSize);
|
|
if (Len == MaxSize) {
|
|
ReportBadInterp("it is not null-terminated");
|
|
continue;
|
|
}
|
|
|
|
OS << " [Requesting program interpreter: ";
|
|
OS << StringRef(Data, Len) << "]";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
|
|
OS << "\n Section to Segment mapping:\n Segment Sections...\n";
|
|
DenseSet<const Elf_Shdr *> BelongsToSegment;
|
|
int Phnum = 0;
|
|
|
|
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
|
|
if (!PhdrsOrErr) {
|
|
this->reportUniqueWarning(
|
|
"can't read program headers to build section to segment mapping: " +
|
|
toString(PhdrsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
|
|
std::string Sections;
|
|
OS << format(" %2.2d ", Phnum++);
|
|
// Check if each section is in a segment and then print mapping.
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
if (Sec.sh_type == ELF::SHT_NULL)
|
|
continue;
|
|
|
|
// readelf additionally makes sure it does not print zero sized sections
|
|
// at end of segments and for PT_DYNAMIC both start and end of section
|
|
// .tbss must only be shown in PT_TLS section.
|
|
if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
|
|
checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
|
|
Sections +=
|
|
unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
|
|
" ";
|
|
BelongsToSegment.insert(&Sec);
|
|
}
|
|
}
|
|
OS << Sections << "\n";
|
|
OS.flush();
|
|
}
|
|
|
|
// Display sections that do not belong to a segment.
|
|
std::string Sections;
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
|
|
Sections +=
|
|
unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
|
|
' ';
|
|
}
|
|
if (!Sections.empty()) {
|
|
OS << " None " << Sections << '\n';
|
|
OS.flush();
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <class ELFT>
|
|
RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
|
|
const Relocation<ELFT> &Reloc) {
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
auto WarnAndReturn = [&](const Elf_Sym *Sym,
|
|
const Twine &Reason) -> RelSymbol<ELFT> {
|
|
Dumper.reportUniqueWarning(
|
|
"unable to get name of the dynamic symbol with index " +
|
|
Twine(Reloc.Symbol) + ": " + Reason);
|
|
return {Sym, "<corrupt>"};
|
|
};
|
|
|
|
ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
|
|
const Elf_Sym *FirstSym = Symbols.begin();
|
|
if (!FirstSym)
|
|
return WarnAndReturn(nullptr, "no dynamic symbol table found");
|
|
|
|
// We might have an object without a section header. In this case the size of
|
|
// Symbols is zero, because there is no way to know the size of the dynamic
|
|
// table. We should allow this case and not print a warning.
|
|
if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
|
|
return WarnAndReturn(
|
|
nullptr,
|
|
"index is greater than or equal to the number of dynamic symbols (" +
|
|
Twine(Symbols.size()) + ")");
|
|
|
|
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
|
|
const uint64_t FileSize = Obj.getBufSize();
|
|
const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
|
|
(uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
|
|
if (SymOffset + sizeof(Elf_Sym) > FileSize)
|
|
return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
|
|
" goes past the end of the file (0x" +
|
|
Twine::utohexstr(FileSize) + ")");
|
|
|
|
const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
|
|
Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
|
|
if (!ErrOrName)
|
|
return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
|
|
|
|
return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
|
|
}
|
|
} // namespace
|
|
|
|
template <class ELFT>
|
|
static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
|
|
typename ELFT::DynRange Tags) {
|
|
size_t Max = 0;
|
|
for (const typename ELFT::Dyn &Dyn : Tags)
|
|
Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
|
|
return Max;
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
|
|
Elf_Dyn_Range Table = this->dynamic_table();
|
|
if (Table.empty())
|
|
return;
|
|
|
|
OS << "Dynamic section at offset "
|
|
<< format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
|
|
this->Obj.base(),
|
|
1)
|
|
<< " contains " << Table.size() << " entries:\n";
|
|
|
|
// The type name is surrounded with round brackets, hence add 2.
|
|
size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
|
|
// The "Name/Value" column should be indented from the "Type" column by N
|
|
// spaces, where N = MaxTagSize - length of "Type" (4) + trailing
|
|
// space (1) = 3.
|
|
OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
|
|
<< std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
|
|
|
|
std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
|
|
for (auto Entry : Table) {
|
|
uintX_t Tag = Entry.getTag();
|
|
std::string Type =
|
|
std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")";
|
|
std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
|
|
OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
|
|
<< format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
|
|
this->printDynamicRelocationsHelper();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
|
|
printRelRelaReloc(R, getSymbolForReloc(*this, R));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
|
|
this->forEachRelocationDo(
|
|
Sec, opts::RawRelr,
|
|
[&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
|
|
const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
|
|
[&](const Elf_Relr &R) { printRelrReloc(R); });
|
|
}
|
|
|
|
template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
|
|
const bool IsMips64EL = this->Obj.isMips64EL();
|
|
if (this->DynRelaRegion.Size > 0) {
|
|
printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
|
|
for (const Elf_Rela &Rela :
|
|
this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
|
|
printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
|
|
}
|
|
|
|
if (this->DynRelRegion.Size > 0) {
|
|
printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
|
|
for (const Elf_Rel &Rel :
|
|
this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
|
|
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
|
|
}
|
|
|
|
if (this->DynRelrRegion.Size > 0) {
|
|
printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
|
|
Elf_Relr_Range Relrs =
|
|
this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
|
|
for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
|
|
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
|
|
}
|
|
|
|
if (this->DynPLTRelRegion.Size) {
|
|
if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
|
|
printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
|
|
for (const Elf_Rela &Rela :
|
|
this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
|
|
printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
|
|
} else {
|
|
printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
|
|
for (const Elf_Rel &Rel :
|
|
this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
|
|
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
|
|
const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
|
|
// Don't inline the SecName, because it might report a warning to stderr and
|
|
// corrupt the output.
|
|
StringRef SecName = this->getPrintableSectionName(Sec);
|
|
OS << Label << " section '" << SecName << "' "
|
|
<< "contains " << EntriesNum << " entries:\n";
|
|
|
|
StringRef LinkedSecName = "<corrupt>";
|
|
if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
|
|
this->Obj.getSection(Sec.sh_link))
|
|
LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
|
|
else
|
|
this->reportUniqueWarning("invalid section linked to " +
|
|
this->describe(Sec) + ": " +
|
|
toString(LinkedSecOrErr.takeError()));
|
|
|
|
OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
|
|
<< " Offset: " << format_hex(Sec.sh_offset, 8)
|
|
<< " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
|
|
if (!Sec)
|
|
return;
|
|
|
|
printGNUVersionSectionProlog(*Sec, "Version symbols",
|
|
Sec->sh_size / sizeof(Elf_Versym));
|
|
Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
|
|
this->getVersionTable(*Sec, /*SymTab=*/nullptr,
|
|
/*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
|
|
if (!VerTableOrErr) {
|
|
this->reportUniqueWarning(VerTableOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
|
|
if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
|
|
this->getVersionMap())
|
|
VersionMap = *MapOrErr;
|
|
else
|
|
this->reportUniqueWarning(MapOrErr.takeError());
|
|
|
|
ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
|
|
std::vector<StringRef> Versions;
|
|
for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
|
|
unsigned Ndx = VerTable[I].vs_index;
|
|
if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
|
|
Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
|
|
continue;
|
|
}
|
|
|
|
if (!VersionMap) {
|
|
Versions.emplace_back("<corrupt>");
|
|
continue;
|
|
}
|
|
|
|
bool IsDefault;
|
|
Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
|
|
Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
|
|
if (!NameOrErr) {
|
|
this->reportUniqueWarning("unable to get a version for entry " +
|
|
Twine(I) + " of " + this->describe(*Sec) +
|
|
": " + toString(NameOrErr.takeError()));
|
|
Versions.emplace_back("<corrupt>");
|
|
continue;
|
|
}
|
|
Versions.emplace_back(*NameOrErr);
|
|
}
|
|
|
|
// readelf prints 4 entries per line.
|
|
uint64_t Entries = VerTable.size();
|
|
for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
|
|
OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
|
|
for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
|
|
unsigned Ndx = VerTable[VersymRow + I].vs_index;
|
|
OS << format("%4x%c", Ndx & VERSYM_VERSION,
|
|
Ndx & VERSYM_HIDDEN ? 'h' : ' ');
|
|
OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
|
|
}
|
|
OS << '\n';
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
static std::string versionFlagToString(unsigned Flags) {
|
|
if (Flags == 0)
|
|
return "none";
|
|
|
|
std::string Ret;
|
|
auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
|
|
if (!(Flags & Flag))
|
|
return;
|
|
if (!Ret.empty())
|
|
Ret += " | ";
|
|
Ret += Name;
|
|
Flags &= ~Flag;
|
|
};
|
|
|
|
AddFlag(VER_FLG_BASE, "BASE");
|
|
AddFlag(VER_FLG_WEAK, "WEAK");
|
|
AddFlag(VER_FLG_INFO, "INFO");
|
|
AddFlag(~0, "<unknown>");
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
|
|
if (!Sec)
|
|
return;
|
|
|
|
printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
|
|
|
|
Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
|
|
if (!V) {
|
|
this->reportUniqueWarning(V.takeError());
|
|
return;
|
|
}
|
|
|
|
for (const VerDef &Def : *V) {
|
|
OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
|
|
Def.Offset, Def.Version,
|
|
versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
|
|
Def.Name.data());
|
|
unsigned I = 0;
|
|
for (const VerdAux &Aux : Def.AuxV)
|
|
OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
|
|
Aux.Name.data());
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
|
|
if (!Sec)
|
|
return;
|
|
|
|
unsigned VerneedNum = Sec->sh_info;
|
|
printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
|
|
|
|
Expected<std::vector<VerNeed>> V =
|
|
this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
|
|
if (!V) {
|
|
this->reportUniqueWarning(V.takeError());
|
|
return;
|
|
}
|
|
|
|
for (const VerNeed &VN : *V) {
|
|
OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
|
|
VN.Version, VN.File.data(), VN.Cnt);
|
|
for (const VernAux &Aux : VN.AuxV)
|
|
OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
|
|
Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
|
|
Aux.Other);
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
|
|
size_t NBucket = HashTable.nbucket;
|
|
size_t NChain = HashTable.nchain;
|
|
ArrayRef<Elf_Word> Buckets = HashTable.buckets();
|
|
ArrayRef<Elf_Word> Chains = HashTable.chains();
|
|
size_t TotalSyms = 0;
|
|
// If hash table is correct, we have at least chains with 0 length
|
|
size_t MaxChain = 1;
|
|
size_t CumulativeNonZero = 0;
|
|
|
|
if (NChain == 0 || NBucket == 0)
|
|
return;
|
|
|
|
std::vector<size_t> ChainLen(NBucket, 0);
|
|
// Go over all buckets and and note chain lengths of each bucket (total
|
|
// unique chain lengths).
|
|
for (size_t B = 0; B < NBucket; B++) {
|
|
std::vector<bool> Visited(NChain);
|
|
for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
|
|
if (C == ELF::STN_UNDEF)
|
|
break;
|
|
if (Visited[C]) {
|
|
this->reportUniqueWarning(".hash section is invalid: bucket " +
|
|
Twine(C) +
|
|
": a cycle was detected in the linked chain");
|
|
break;
|
|
}
|
|
Visited[C] = true;
|
|
if (MaxChain <= ++ChainLen[B])
|
|
MaxChain++;
|
|
}
|
|
TotalSyms += ChainLen[B];
|
|
}
|
|
|
|
if (!TotalSyms)
|
|
return;
|
|
|
|
std::vector<size_t> Count(MaxChain, 0);
|
|
// Count how long is the chain for each bucket
|
|
for (size_t B = 0; B < NBucket; B++)
|
|
++Count[ChainLen[B]];
|
|
// Print Number of buckets with each chain lengths and their cumulative
|
|
// coverage of the symbols
|
|
OS << "Histogram for bucket list length (total of " << NBucket
|
|
<< " buckets)\n"
|
|
<< " Length Number % of total Coverage\n";
|
|
for (size_t I = 0; I < MaxChain; I++) {
|
|
CumulativeNonZero += Count[I] * I;
|
|
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
|
|
(Count[I] * 100.0) / NBucket,
|
|
(CumulativeNonZero * 100.0) / TotalSyms);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printGnuHashHistogram(
|
|
const Elf_GnuHash &GnuHashTable) {
|
|
Expected<ArrayRef<Elf_Word>> ChainsOrErr =
|
|
getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
|
|
if (!ChainsOrErr) {
|
|
this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
|
|
toString(ChainsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
ArrayRef<Elf_Word> Chains = *ChainsOrErr;
|
|
size_t Symndx = GnuHashTable.symndx;
|
|
size_t TotalSyms = 0;
|
|
size_t MaxChain = 1;
|
|
size_t CumulativeNonZero = 0;
|
|
|
|
size_t NBucket = GnuHashTable.nbuckets;
|
|
if (Chains.empty() || NBucket == 0)
|
|
return;
|
|
|
|
ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
|
|
std::vector<size_t> ChainLen(NBucket, 0);
|
|
for (size_t B = 0; B < NBucket; B++) {
|
|
if (!Buckets[B])
|
|
continue;
|
|
size_t Len = 1;
|
|
for (size_t C = Buckets[B] - Symndx;
|
|
C < Chains.size() && (Chains[C] & 1) == 0; C++)
|
|
if (MaxChain < ++Len)
|
|
MaxChain++;
|
|
ChainLen[B] = Len;
|
|
TotalSyms += Len;
|
|
}
|
|
MaxChain++;
|
|
|
|
if (!TotalSyms)
|
|
return;
|
|
|
|
std::vector<size_t> Count(MaxChain, 0);
|
|
for (size_t B = 0; B < NBucket; B++)
|
|
++Count[ChainLen[B]];
|
|
// Print Number of buckets with each chain lengths and their cumulative
|
|
// coverage of the symbols
|
|
OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
|
|
<< " buckets)\n"
|
|
<< " Length Number % of total Coverage\n";
|
|
for (size_t I = 0; I < MaxChain; I++) {
|
|
CumulativeNonZero += Count[I] * I;
|
|
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
|
|
(Count[I] * 100.0) / NBucket,
|
|
(CumulativeNonZero * 100.0) / TotalSyms);
|
|
}
|
|
}
|
|
|
|
// Hash histogram shows statistics of how efficient the hash was for the
|
|
// dynamic symbol table. The table shows the number of hash buckets for
|
|
// different lengths of chains as an absolute number and percentage of the total
|
|
// buckets, and the cumulative coverage of symbols for each set of buckets.
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
|
|
// Print histogram for the .hash section.
|
|
if (this->HashTable) {
|
|
if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
|
|
this->reportUniqueWarning(std::move(E));
|
|
else
|
|
printHashHistogram(*this->HashTable);
|
|
}
|
|
|
|
// Print histogram for the .gnu.hash section.
|
|
if (this->GnuHashTable) {
|
|
if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
|
|
this->reportUniqueWarning(std::move(E));
|
|
else
|
|
printGnuHashHistogram(*this->GnuHashTable);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
|
|
OS << "GNUStyle::printCGProfile not implemented\n";
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
|
|
OS << "GNUStyle::printBBAddrMaps not implemented\n";
|
|
}
|
|
|
|
static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
|
|
std::vector<uint64_t> Ret;
|
|
const uint8_t *Cur = Data.begin();
|
|
const uint8_t *End = Data.end();
|
|
while (Cur != End) {
|
|
unsigned Size;
|
|
const char *Err;
|
|
Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
|
|
if (Err)
|
|
return createError(Err);
|
|
Cur += Size;
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static Expected<std::vector<uint64_t>>
|
|
decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
|
|
Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
|
|
if (!ContentsOrErr)
|
|
return ContentsOrErr.takeError();
|
|
|
|
if (Expected<std::vector<uint64_t>> SymsOrErr =
|
|
toULEB128Array(*ContentsOrErr))
|
|
return *SymsOrErr;
|
|
else
|
|
return createError("unable to decode " + describe(Obj, Sec) + ": " +
|
|
toString(SymsOrErr.takeError()));
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
|
|
if (!this->DotAddrsigSec)
|
|
return;
|
|
|
|
Expected<std::vector<uint64_t>> SymsOrErr =
|
|
decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
|
|
if (!SymsOrErr) {
|
|
this->reportUniqueWarning(SymsOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
|
|
OS << "\nAddress-significant symbols section '" << Name << "'"
|
|
<< " contains " << SymsOrErr->size() << " entries:\n";
|
|
OS << " Num: Name\n";
|
|
|
|
Field Fields[2] = {0, 8};
|
|
size_t SymIndex = 0;
|
|
for (uint64_t Sym : *SymsOrErr) {
|
|
Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
|
|
Fields[1].Str = this->getStaticSymbolName(Sym);
|
|
for (const Field &Entry : Fields)
|
|
printField(Entry);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
|
|
ArrayRef<uint8_t> Data) {
|
|
std::string str;
|
|
raw_string_ostream OS(str);
|
|
uint32_t PrData;
|
|
auto DumpBit = [&](uint32_t Flag, StringRef Name) {
|
|
if (PrData & Flag) {
|
|
PrData &= ~Flag;
|
|
OS << Name;
|
|
if (PrData)
|
|
OS << ", ";
|
|
}
|
|
};
|
|
|
|
switch (Type) {
|
|
default:
|
|
OS << format("<application-specific type 0x%x>", Type);
|
|
return OS.str();
|
|
case GNU_PROPERTY_STACK_SIZE: {
|
|
OS << "stack size: ";
|
|
if (DataSize == sizeof(typename ELFT::uint))
|
|
OS << formatv("{0:x}",
|
|
(uint64_t)(*(const typename ELFT::Addr *)Data.data()));
|
|
else
|
|
OS << format("<corrupt length: 0x%x>", DataSize);
|
|
return OS.str();
|
|
}
|
|
case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
|
|
OS << "no copy on protected";
|
|
if (DataSize)
|
|
OS << format(" <corrupt length: 0x%x>", DataSize);
|
|
return OS.str();
|
|
case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
|
|
case GNU_PROPERTY_X86_FEATURE_1_AND:
|
|
OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
|
|
: "x86 feature: ");
|
|
if (DataSize != 4) {
|
|
OS << format("<corrupt length: 0x%x>", DataSize);
|
|
return OS.str();
|
|
}
|
|
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
|
|
if (PrData == 0) {
|
|
OS << "<None>";
|
|
return OS.str();
|
|
}
|
|
if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
|
|
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
|
|
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
|
|
} else {
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
|
|
}
|
|
if (PrData)
|
|
OS << format("<unknown flags: 0x%x>", PrData);
|
|
return OS.str();
|
|
case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
|
|
case GNU_PROPERTY_X86_FEATURE_2_USED:
|
|
OS << "x86 feature "
|
|
<< (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
|
|
if (DataSize != 4) {
|
|
OS << format("<corrupt length: 0x%x>", DataSize);
|
|
return OS.str();
|
|
}
|
|
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
|
|
if (PrData == 0) {
|
|
OS << "<None>";
|
|
return OS.str();
|
|
}
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
|
|
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
|
|
if (PrData)
|
|
OS << format("<unknown flags: 0x%x>", PrData);
|
|
return OS.str();
|
|
case GNU_PROPERTY_X86_ISA_1_NEEDED:
|
|
case GNU_PROPERTY_X86_ISA_1_USED:
|
|
OS << "x86 ISA "
|
|
<< (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
|
|
if (DataSize != 4) {
|
|
OS << format("<corrupt length: 0x%x>", DataSize);
|
|
return OS.str();
|
|
}
|
|
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
|
|
if (PrData == 0) {
|
|
OS << "<None>";
|
|
return OS.str();
|
|
}
|
|
DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
|
|
DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
|
|
DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
|
|
DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
|
|
if (PrData)
|
|
OS << format("<unknown flags: 0x%x>", PrData);
|
|
return OS.str();
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
|
|
using Elf_Word = typename ELFT::Word;
|
|
|
|
SmallVector<std::string, 4> Properties;
|
|
while (Arr.size() >= 8) {
|
|
uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
|
|
uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
|
|
Arr = Arr.drop_front(8);
|
|
|
|
// Take padding size into account if present.
|
|
uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
|
|
std::string str;
|
|
raw_string_ostream OS(str);
|
|
if (Arr.size() < PaddedSize) {
|
|
OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
|
|
Properties.push_back(OS.str());
|
|
break;
|
|
}
|
|
Properties.push_back(
|
|
getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
|
|
Arr = Arr.drop_front(PaddedSize);
|
|
}
|
|
|
|
if (!Arr.empty())
|
|
Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
|
|
|
|
return Properties;
|
|
}
|
|
|
|
struct GNUAbiTag {
|
|
std::string OSName;
|
|
std::string ABI;
|
|
bool IsValid;
|
|
};
|
|
|
|
template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
|
|
typedef typename ELFT::Word Elf_Word;
|
|
|
|
ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
|
|
reinterpret_cast<const Elf_Word *>(Desc.end()));
|
|
|
|
if (Words.size() < 4)
|
|
return {"", "", /*IsValid=*/false};
|
|
|
|
static const char *OSNames[] = {
|
|
"Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
|
|
};
|
|
StringRef OSName = "Unknown";
|
|
if (Words[0] < array_lengthof(OSNames))
|
|
OSName = OSNames[Words[0]];
|
|
uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
|
|
std::string str;
|
|
raw_string_ostream ABI(str);
|
|
ABI << Major << "." << Minor << "." << Patch;
|
|
return {std::string(OSName), ABI.str(), /*IsValid=*/true};
|
|
}
|
|
|
|
static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
|
|
std::string str;
|
|
raw_string_ostream OS(str);
|
|
for (uint8_t B : Desc)
|
|
OS << format_hex_no_prefix(B, 2);
|
|
return OS.str();
|
|
}
|
|
|
|
static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
|
|
return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
|
|
ArrayRef<uint8_t> Desc) {
|
|
// Return true if we were able to pretty-print the note, false otherwise.
|
|
switch (NoteType) {
|
|
default:
|
|
return false;
|
|
case ELF::NT_GNU_ABI_TAG: {
|
|
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
|
|
if (!AbiTag.IsValid)
|
|
OS << " <corrupt GNU_ABI_TAG>";
|
|
else
|
|
OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
|
|
break;
|
|
}
|
|
case ELF::NT_GNU_BUILD_ID: {
|
|
OS << " Build ID: " << getGNUBuildId(Desc);
|
|
break;
|
|
}
|
|
case ELF::NT_GNU_GOLD_VERSION:
|
|
OS << " Version: " << getGNUGoldVersion(Desc);
|
|
break;
|
|
case ELF::NT_GNU_PROPERTY_TYPE_0:
|
|
OS << " Properties:";
|
|
for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
|
|
OS << " " << Property << "\n";
|
|
break;
|
|
}
|
|
OS << '\n';
|
|
return true;
|
|
}
|
|
|
|
static const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
|
|
{"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
|
|
{"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
|
|
{"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
|
|
{"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
|
|
{"LA48", NT_FREEBSD_FCTL_LA48},
|
|
{"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
|
|
};
|
|
|
|
struct FreeBSDNote {
|
|
std::string Type;
|
|
std::string Value;
|
|
};
|
|
|
|
template <typename ELFT>
|
|
static Optional<FreeBSDNote>
|
|
getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
|
|
if (IsCore)
|
|
return None; // No pretty-printing yet.
|
|
switch (NoteType) {
|
|
case ELF::NT_FREEBSD_ABI_TAG:
|
|
if (Desc.size() != 4)
|
|
return None;
|
|
return FreeBSDNote{
|
|
"ABI tag",
|
|
utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
|
|
case ELF::NT_FREEBSD_ARCH_TAG:
|
|
return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
|
|
case ELF::NT_FREEBSD_FEATURE_CTL: {
|
|
if (Desc.size() != 4)
|
|
return None;
|
|
unsigned Value =
|
|
support::endian::read32<ELFT::TargetEndianness>(Desc.data());
|
|
std::string FlagsStr;
|
|
raw_string_ostream OS(FlagsStr);
|
|
printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
|
|
if (OS.str().empty())
|
|
OS << "0x" << utohexstr(Value);
|
|
else
|
|
OS << "(0x" << utohexstr(Value) << ")";
|
|
return FreeBSDNote{"Feature flags", OS.str()};
|
|
}
|
|
default:
|
|
return None;
|
|
}
|
|
}
|
|
|
|
struct AMDNote {
|
|
std::string Type;
|
|
std::string Value;
|
|
};
|
|
|
|
template <typename ELFT>
|
|
static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
|
|
switch (NoteType) {
|
|
default:
|
|
return {"", ""};
|
|
case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
|
|
struct CodeObjectVersion {
|
|
uint32_t MajorVersion;
|
|
uint32_t MinorVersion;
|
|
};
|
|
if (Desc.size() != sizeof(CodeObjectVersion))
|
|
return {"AMD HSA Code Object Version",
|
|
"Invalid AMD HSA Code Object Version"};
|
|
std::string VersionString;
|
|
raw_string_ostream StrOS(VersionString);
|
|
auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
|
|
StrOS << "[Major: " << Version->MajorVersion
|
|
<< ", Minor: " << Version->MinorVersion << "]";
|
|
return {"AMD HSA Code Object Version", VersionString};
|
|
}
|
|
case ELF::NT_AMD_HSA_HSAIL: {
|
|
struct HSAILProperties {
|
|
uint32_t HSAILMajorVersion;
|
|
uint32_t HSAILMinorVersion;
|
|
uint8_t Profile;
|
|
uint8_t MachineModel;
|
|
uint8_t DefaultFloatRound;
|
|
};
|
|
if (Desc.size() != sizeof(HSAILProperties))
|
|
return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
|
|
auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
|
|
std::string HSAILPropetiesString;
|
|
raw_string_ostream StrOS(HSAILPropetiesString);
|
|
StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
|
|
<< ", HSAIL Minor: " << Properties->HSAILMinorVersion
|
|
<< ", Profile: " << uint32_t(Properties->Profile)
|
|
<< ", Machine Model: " << uint32_t(Properties->MachineModel)
|
|
<< ", Default Float Round: "
|
|
<< uint32_t(Properties->DefaultFloatRound) << "]";
|
|
return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
|
|
}
|
|
case ELF::NT_AMD_HSA_ISA_VERSION: {
|
|
struct IsaVersion {
|
|
uint16_t VendorNameSize;
|
|
uint16_t ArchitectureNameSize;
|
|
uint32_t Major;
|
|
uint32_t Minor;
|
|
uint32_t Stepping;
|
|
};
|
|
if (Desc.size() < sizeof(IsaVersion))
|
|
return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
|
|
auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
|
|
if (Desc.size() < sizeof(IsaVersion) +
|
|
Isa->VendorNameSize + Isa->ArchitectureNameSize ||
|
|
Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
|
|
return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
|
|
std::string IsaString;
|
|
raw_string_ostream StrOS(IsaString);
|
|
StrOS << "[Vendor: "
|
|
<< StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
|
|
<< ", Architecture: "
|
|
<< StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
|
|
Isa->ArchitectureNameSize - 1)
|
|
<< ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
|
|
<< ", Stepping: " << Isa->Stepping << "]";
|
|
return {"AMD HSA ISA Version", IsaString};
|
|
}
|
|
case ELF::NT_AMD_HSA_METADATA: {
|
|
if (Desc.size() == 0)
|
|
return {"AMD HSA Metadata", ""};
|
|
return {
|
|
"AMD HSA Metadata",
|
|
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
|
|
}
|
|
case ELF::NT_AMD_HSA_ISA_NAME: {
|
|
if (Desc.size() == 0)
|
|
return {"AMD HSA ISA Name", ""};
|
|
return {
|
|
"AMD HSA ISA Name",
|
|
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
|
|
}
|
|
case ELF::NT_AMD_PAL_METADATA: {
|
|
struct PALMetadata {
|
|
uint32_t Key;
|
|
uint32_t Value;
|
|
};
|
|
if (Desc.size() % sizeof(PALMetadata) != 0)
|
|
return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
|
|
auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
|
|
std::string MetadataString;
|
|
raw_string_ostream StrOS(MetadataString);
|
|
for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
|
|
StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
|
|
}
|
|
return {"AMD PAL Metadata", MetadataString};
|
|
}
|
|
}
|
|
}
|
|
|
|
struct AMDGPUNote {
|
|
std::string Type;
|
|
std::string Value;
|
|
};
|
|
|
|
template <typename ELFT>
|
|
static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
|
|
switch (NoteType) {
|
|
default:
|
|
return {"", ""};
|
|
case ELF::NT_AMDGPU_METADATA: {
|
|
StringRef MsgPackString =
|
|
StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
|
|
msgpack::Document MsgPackDoc;
|
|
if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
|
|
return {"", ""};
|
|
|
|
AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
|
|
std::string MetadataString;
|
|
if (!Verifier.verify(MsgPackDoc.getRoot()))
|
|
MetadataString = "Invalid AMDGPU Metadata\n";
|
|
|
|
raw_string_ostream StrOS(MetadataString);
|
|
if (MsgPackDoc.getRoot().isScalar()) {
|
|
// TODO: passing a scalar root to toYAML() asserts:
|
|
// (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
|
|
// "plain scalar documents are not supported")
|
|
// To avoid this crash we print the raw data instead.
|
|
return {"", ""};
|
|
}
|
|
MsgPackDoc.toYAML(StrOS);
|
|
return {"AMDGPU Metadata", StrOS.str()};
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CoreFileMapping {
|
|
uint64_t Start, End, Offset;
|
|
StringRef Filename;
|
|
};
|
|
|
|
struct CoreNote {
|
|
uint64_t PageSize;
|
|
std::vector<CoreFileMapping> Mappings;
|
|
};
|
|
|
|
static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
|
|
// Expected format of the NT_FILE note description:
|
|
// 1. # of file mappings (call it N)
|
|
// 2. Page size
|
|
// 3. N (start, end, offset) triples
|
|
// 4. N packed filenames (null delimited)
|
|
// Each field is an Elf_Addr, except for filenames which are char* strings.
|
|
|
|
CoreNote Ret;
|
|
const int Bytes = Desc.getAddressSize();
|
|
|
|
if (!Desc.isValidOffsetForAddress(2))
|
|
return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
|
|
" is too short, expected at least 0x" +
|
|
Twine::utohexstr(Bytes * 2));
|
|
if (Desc.getData().back() != 0)
|
|
return createError("the note is not NUL terminated");
|
|
|
|
uint64_t DescOffset = 0;
|
|
uint64_t FileCount = Desc.getAddress(&DescOffset);
|
|
Ret.PageSize = Desc.getAddress(&DescOffset);
|
|
|
|
if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
|
|
return createError("unable to read file mappings (found " +
|
|
Twine(FileCount) + "): the note of size 0x" +
|
|
Twine::utohexstr(Desc.size()) + " is too short");
|
|
|
|
uint64_t FilenamesOffset = 0;
|
|
DataExtractor Filenames(
|
|
Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
|
|
Desc.isLittleEndian(), Desc.getAddressSize());
|
|
|
|
Ret.Mappings.resize(FileCount);
|
|
size_t I = 0;
|
|
for (CoreFileMapping &Mapping : Ret.Mappings) {
|
|
++I;
|
|
if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
|
|
return createError(
|
|
"unable to read the file name for the mapping with index " +
|
|
Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
|
|
" is truncated");
|
|
Mapping.Start = Desc.getAddress(&DescOffset);
|
|
Mapping.End = Desc.getAddress(&DescOffset);
|
|
Mapping.Offset = Desc.getAddress(&DescOffset);
|
|
Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
|
|
// Length of "0x<address>" string.
|
|
const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
|
|
|
|
OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
|
|
OS << " " << right_justify("Start", FieldWidth) << " "
|
|
<< right_justify("End", FieldWidth) << " "
|
|
<< right_justify("Page Offset", FieldWidth) << '\n';
|
|
for (const CoreFileMapping &Mapping : Note.Mappings) {
|
|
OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
|
|
<< format_hex(Mapping.End, FieldWidth) << " "
|
|
<< format_hex(Mapping.Offset, FieldWidth) << "\n "
|
|
<< Mapping.Filename << '\n';
|
|
}
|
|
}
|
|
|
|
static const NoteType GenericNoteTypes[] = {
|
|
{ELF::NT_VERSION, "NT_VERSION (version)"},
|
|
{ELF::NT_ARCH, "NT_ARCH (architecture)"},
|
|
{ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
|
|
{ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
|
|
};
|
|
|
|
static const NoteType GNUNoteTypes[] = {
|
|
{ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
|
|
{ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
|
|
{ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
|
|
{ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
|
|
{ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
|
|
};
|
|
|
|
static const NoteType FreeBSDCoreNoteTypes[] = {
|
|
{ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
|
|
"NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
|
|
{ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
|
|
};
|
|
|
|
static const NoteType FreeBSDNoteTypes[] = {
|
|
{ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
|
|
{ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
|
|
{ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
|
|
{ELF::NT_FREEBSD_FEATURE_CTL,
|
|
"NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
|
|
};
|
|
|
|
static const NoteType AMDNoteTypes[] = {
|
|
{ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
|
|
"NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
|
|
{ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
|
|
{ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
|
|
{ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
|
|
{ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
|
|
{ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
|
|
};
|
|
|
|
static const NoteType AMDGPUNoteTypes[] = {
|
|
{ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
|
|
};
|
|
|
|
static const NoteType CoreNoteTypes[] = {
|
|
{ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
|
|
{ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
|
|
{ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
|
|
{ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
|
|
{ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
|
|
{ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
|
|
{ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
|
|
{ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
|
|
{ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
|
|
{ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
|
|
{ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
|
|
|
|
{ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
|
|
{ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
|
|
{ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
|
|
{ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
|
|
{ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
|
|
{ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
|
|
{ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
|
|
{ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
|
|
{ELF::NT_PPC_TM_CFPR,
|
|
"NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
|
|
{ELF::NT_PPC_TM_CVMX,
|
|
"NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
|
|
{ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
|
|
{ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
|
|
{ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
|
|
{ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
|
|
{ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
|
|
|
|
{ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
|
|
{ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
|
|
{ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
|
|
|
|
{ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
|
|
{ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
|
|
{ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
|
|
{ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
|
|
{ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
|
|
{ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
|
|
{ELF::NT_S390_LAST_BREAK,
|
|
"NT_S390_LAST_BREAK (s390 last breaking event address)"},
|
|
{ELF::NT_S390_SYSTEM_CALL,
|
|
"NT_S390_SYSTEM_CALL (s390 system call restart data)"},
|
|
{ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
|
|
{ELF::NT_S390_VXRS_LOW,
|
|
"NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
|
|
{ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
|
|
{ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
|
|
{ELF::NT_S390_GS_BC,
|
|
"NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
|
|
|
|
{ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
|
|
{ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
|
|
{ELF::NT_ARM_HW_BREAK,
|
|
"NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
|
|
{ELF::NT_ARM_HW_WATCH,
|
|
"NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
|
|
|
|
{ELF::NT_FILE, "NT_FILE (mapped files)"},
|
|
{ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
|
|
{ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
|
|
};
|
|
|
|
template <class ELFT>
|
|
StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
|
|
uint32_t Type = Note.getType();
|
|
auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
|
|
for (const NoteType &N : V)
|
|
if (N.ID == Type)
|
|
return N.Name;
|
|
return "";
|
|
};
|
|
|
|
StringRef Name = Note.getName();
|
|
if (Name == "GNU")
|
|
return FindNote(GNUNoteTypes);
|
|
if (Name == "FreeBSD") {
|
|
if (ELFType == ELF::ET_CORE) {
|
|
// FreeBSD also places the generic core notes in the FreeBSD namespace.
|
|
StringRef Result = FindNote(FreeBSDCoreNoteTypes);
|
|
if (!Result.empty())
|
|
return Result;
|
|
return FindNote(CoreNoteTypes);
|
|
} else {
|
|
return FindNote(FreeBSDNoteTypes);
|
|
}
|
|
}
|
|
if (Name == "AMD")
|
|
return FindNote(AMDNoteTypes);
|
|
if (Name == "AMDGPU")
|
|
return FindNote(AMDGPUNoteTypes);
|
|
|
|
if (ELFType == ELF::ET_CORE)
|
|
return FindNote(CoreNoteTypes);
|
|
return FindNote(GenericNoteTypes);
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void printNotesHelper(
|
|
const ELFDumper<ELFT> &Dumper,
|
|
llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
|
|
typename ELFT::Addr)>
|
|
StartNotesFn,
|
|
llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
|
|
llvm::function_ref<void()> FinishNotesFn) {
|
|
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
|
|
bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
|
|
|
|
ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
|
|
if (!IsCoreFile && !Sections.empty()) {
|
|
for (const typename ELFT::Shdr &S : Sections) {
|
|
if (S.sh_type != SHT_NOTE)
|
|
continue;
|
|
StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
|
|
S.sh_size);
|
|
Error Err = Error::success();
|
|
size_t I = 0;
|
|
for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
|
|
if (Error E = ProcessNoteFn(Note, IsCoreFile))
|
|
Dumper.reportUniqueWarning(
|
|
"unable to read note with index " + Twine(I) + " from the " +
|
|
describe(Obj, S) + ": " + toString(std::move(E)));
|
|
++I;
|
|
}
|
|
if (Err)
|
|
Dumper.reportUniqueWarning("unable to read notes from the " +
|
|
describe(Obj, S) + ": " +
|
|
toString(std::move(Err)));
|
|
FinishNotesFn();
|
|
}
|
|
return;
|
|
}
|
|
|
|
Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
|
|
if (!PhdrsOrErr) {
|
|
Dumper.reportUniqueWarning(
|
|
"unable to read program headers to locate the PT_NOTE segment: " +
|
|
toString(PhdrsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
|
|
const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
|
|
if (P.p_type != PT_NOTE)
|
|
continue;
|
|
StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
|
|
Error Err = Error::success();
|
|
size_t Index = 0;
|
|
for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
|
|
if (Error E = ProcessNoteFn(Note, IsCoreFile))
|
|
Dumper.reportUniqueWarning("unable to read note with index " +
|
|
Twine(Index) +
|
|
" from the PT_NOTE segment with index " +
|
|
Twine(I) + ": " + toString(std::move(E)));
|
|
++Index;
|
|
}
|
|
if (Err)
|
|
Dumper.reportUniqueWarning(
|
|
"unable to read notes from the PT_NOTE segment with index " +
|
|
Twine(I) + ": " + toString(std::move(Err)));
|
|
FinishNotesFn();
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
|
|
bool IsFirstHeader = true;
|
|
auto PrintHeader = [&](Optional<StringRef> SecName,
|
|
const typename ELFT::Off Offset,
|
|
const typename ELFT::Addr Size) {
|
|
// Print a newline between notes sections to match GNU readelf.
|
|
if (!IsFirstHeader) {
|
|
OS << '\n';
|
|
} else {
|
|
IsFirstHeader = false;
|
|
}
|
|
|
|
OS << "Displaying notes found ";
|
|
|
|
if (SecName)
|
|
OS << "in: " << *SecName << "\n";
|
|
else
|
|
OS << "at file offset " << format_hex(Offset, 10) << " with length "
|
|
<< format_hex(Size, 10) << ":\n";
|
|
|
|
OS << " Owner Data size \tDescription\n";
|
|
};
|
|
|
|
auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
|
|
StringRef Name = Note.getName();
|
|
ArrayRef<uint8_t> Descriptor = Note.getDesc();
|
|
Elf_Word Type = Note.getType();
|
|
|
|
// Print the note owner/type.
|
|
OS << " " << left_justify(Name, 20) << ' '
|
|
<< format_hex(Descriptor.size(), 10) << '\t';
|
|
|
|
StringRef NoteType =
|
|
getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
|
|
if (!NoteType.empty())
|
|
OS << NoteType << '\n';
|
|
else
|
|
OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
|
|
|
|
// Print the description, or fallback to printing raw bytes for unknown
|
|
// owners/if we fail to pretty-print the contents.
|
|
if (Name == "GNU") {
|
|
if (printGNUNote<ELFT>(OS, Type, Descriptor))
|
|
return Error::success();
|
|
} else if (Name == "FreeBSD") {
|
|
if (Optional<FreeBSDNote> N =
|
|
getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
|
|
OS << " " << N->Type << ": " << N->Value << '\n';
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "AMD") {
|
|
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
|
|
if (!N.Type.empty()) {
|
|
OS << " " << N.Type << ":\n " << N.Value << '\n';
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "AMDGPU") {
|
|
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
|
|
if (!N.Type.empty()) {
|
|
OS << " " << N.Type << ":\n " << N.Value << '\n';
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "CORE") {
|
|
if (Type == ELF::NT_FILE) {
|
|
DataExtractor DescExtractor(Descriptor,
|
|
ELFT::TargetEndianness == support::little,
|
|
sizeof(Elf_Addr));
|
|
if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
|
|
printCoreNote<ELFT>(OS, *NoteOrErr);
|
|
return Error::success();
|
|
} else {
|
|
return NoteOrErr.takeError();
|
|
}
|
|
}
|
|
}
|
|
if (!Descriptor.empty()) {
|
|
OS << " description data:";
|
|
for (uint8_t B : Descriptor)
|
|
OS << " " << format("%02x", B);
|
|
OS << '\n';
|
|
}
|
|
return Error::success();
|
|
};
|
|
|
|
printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
|
|
OS << "printELFLinkerOptions not implemented!\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printDependentLibsHelper(
|
|
function_ref<void(const Elf_Shdr &)> OnSectionStart,
|
|
function_ref<void(StringRef, uint64_t)> OnLibEntry) {
|
|
auto Warn = [this](unsigned SecNdx, StringRef Msg) {
|
|
this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
|
|
Twine(SecNdx) + " is broken: " + Msg);
|
|
};
|
|
|
|
unsigned I = -1;
|
|
for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
|
|
++I;
|
|
if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
|
|
continue;
|
|
|
|
OnSectionStart(Shdr);
|
|
|
|
Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
|
|
if (!ContentsOrErr) {
|
|
Warn(I, toString(ContentsOrErr.takeError()));
|
|
continue;
|
|
}
|
|
|
|
ArrayRef<uint8_t> Contents = *ContentsOrErr;
|
|
if (!Contents.empty() && Contents.back() != 0) {
|
|
Warn(I, "the content is not null-terminated");
|
|
continue;
|
|
}
|
|
|
|
for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
|
|
StringRef Lib((const char *)I);
|
|
OnLibEntry(Lib, I - Contents.begin());
|
|
I += Lib.size() + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::forEachRelocationDo(
|
|
const Elf_Shdr &Sec, bool RawRelr,
|
|
llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
|
|
const Elf_Shdr &, const Elf_Shdr *)>
|
|
RelRelaFn,
|
|
llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
|
|
auto Warn = [&](Error &&E,
|
|
const Twine &Prefix = "unable to read relocations from") {
|
|
this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
|
|
toString(std::move(E)));
|
|
};
|
|
|
|
// SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
|
|
// For them we should not treat the value of the sh_link field as an index of
|
|
// a symbol table.
|
|
const Elf_Shdr *SymTab;
|
|
if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
|
|
Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
|
|
if (!SymTabOrErr) {
|
|
Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
|
|
return;
|
|
}
|
|
SymTab = *SymTabOrErr;
|
|
}
|
|
|
|
unsigned RelNdx = 0;
|
|
const bool IsMips64EL = this->Obj.isMips64EL();
|
|
switch (Sec.sh_type) {
|
|
case ELF::SHT_REL:
|
|
if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
|
|
for (const Elf_Rel &R : *RangeOrErr)
|
|
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
|
|
} else {
|
|
Warn(RangeOrErr.takeError());
|
|
}
|
|
break;
|
|
case ELF::SHT_RELA:
|
|
if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
|
|
for (const Elf_Rela &R : *RangeOrErr)
|
|
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
|
|
} else {
|
|
Warn(RangeOrErr.takeError());
|
|
}
|
|
break;
|
|
case ELF::SHT_RELR:
|
|
case ELF::SHT_ANDROID_RELR: {
|
|
Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
|
|
if (!RangeOrErr) {
|
|
Warn(RangeOrErr.takeError());
|
|
break;
|
|
}
|
|
if (RawRelr) {
|
|
for (const Elf_Relr &R : *RangeOrErr)
|
|
RelrFn(R);
|
|
break;
|
|
}
|
|
|
|
for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
|
|
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
|
|
/*SymTab=*/nullptr);
|
|
break;
|
|
}
|
|
case ELF::SHT_ANDROID_REL:
|
|
case ELF::SHT_ANDROID_RELA:
|
|
if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
|
|
for (const Elf_Rela &R : *RelasOrErr)
|
|
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
|
|
} else {
|
|
Warn(RelasOrErr.takeError());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
|
|
StringRef Name = "<?>";
|
|
if (Expected<StringRef> SecNameOrErr =
|
|
Obj.getSectionName(Sec, this->WarningHandler))
|
|
Name = *SecNameOrErr;
|
|
else
|
|
this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
|
|
": " + toString(SecNameOrErr.takeError()));
|
|
return Name;
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
|
|
bool SectionStarted = false;
|
|
struct NameOffset {
|
|
StringRef Name;
|
|
uint64_t Offset;
|
|
};
|
|
std::vector<NameOffset> SecEntries;
|
|
NameOffset Current;
|
|
auto PrintSection = [&]() {
|
|
OS << "Dependent libraries section " << Current.Name << " at offset "
|
|
<< format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
|
|
<< " entries:\n";
|
|
for (NameOffset Entry : SecEntries)
|
|
OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
|
|
<< "\n";
|
|
OS << "\n";
|
|
SecEntries.clear();
|
|
};
|
|
|
|
auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
|
|
if (SectionStarted)
|
|
PrintSection();
|
|
SectionStarted = true;
|
|
Current.Offset = Shdr.sh_offset;
|
|
Current.Name = this->getPrintableSectionName(Shdr);
|
|
};
|
|
auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
|
|
SecEntries.push_back(NameOffset{Lib, Offset});
|
|
};
|
|
|
|
this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
|
|
if (SectionStarted)
|
|
PrintSection();
|
|
}
|
|
|
|
template <class ELFT>
|
|
Optional<uint32_t> ELFDumper<ELFT>::getSymbolIndexForFunctionAddress(
|
|
uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
|
|
if (!this->AddressToIndexMap.hasValue()) {
|
|
// Populate the address to index map upon the first invocation of this
|
|
// function.
|
|
this->AddressToIndexMap.emplace();
|
|
if (this->DotSymtabSec) {
|
|
if (Expected<Elf_Sym_Range> SymsOrError =
|
|
Obj.symbols(this->DotSymtabSec)) {
|
|
uint32_t Index = (uint32_t)-1;
|
|
for (const Elf_Sym &Sym : *SymsOrError) {
|
|
++Index;
|
|
|
|
if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
|
|
continue;
|
|
|
|
Expected<uint64_t> SymAddrOrErr =
|
|
ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
|
|
if (!SymAddrOrErr) {
|
|
std::string Name = this->getStaticSymbolName(Index);
|
|
reportUniqueWarning("unable to get address of symbol '" + Name +
|
|
"': " + toString(SymAddrOrErr.takeError()));
|
|
return None;
|
|
}
|
|
|
|
(*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
|
|
}
|
|
} else {
|
|
reportUniqueWarning("unable to read the symbol table: " +
|
|
toString(SymsOrError.takeError()));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto Symbols = this->AddressToIndexMap->find(SymValue);
|
|
if (Symbols == this->AddressToIndexMap->end())
|
|
return None;
|
|
|
|
for (uint32_t Index : Symbols->second) {
|
|
// Check if the symbol is in the right section. FunctionSec == None
|
|
// means "any section".
|
|
if (FunctionSec) {
|
|
const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
|
|
if (Expected<const Elf_Shdr *> SecOrErr =
|
|
Obj.getSection(Sym, this->DotSymtabSec,
|
|
this->getShndxTable(this->DotSymtabSec))) {
|
|
if (*FunctionSec != *SecOrErr)
|
|
continue;
|
|
} else {
|
|
std::string Name = this->getStaticSymbolName(Index);
|
|
// Note: it is impossible to trigger this error currently, it is
|
|
// untested.
|
|
reportUniqueWarning("unable to get section of symbol '" + Name +
|
|
"': " + toString(SecOrErr.takeError()));
|
|
return None;
|
|
}
|
|
}
|
|
|
|
return Index;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFDumper<ELFT>::printFunctionStackSize(
|
|
uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
|
|
const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
|
|
Optional<uint32_t> FuncSymIndex =
|
|
this->getSymbolIndexForFunctionAddress(SymValue, FunctionSec);
|
|
std::string FuncName = "?";
|
|
if (!FuncSymIndex)
|
|
reportUniqueWarning(
|
|
"could not identify function symbol for stack size entry in " +
|
|
describe(StackSizeSec));
|
|
else
|
|
FuncName = this->getStaticSymbolName(*FuncSymIndex);
|
|
|
|
// Extract the size. The expectation is that Offset is pointing to the right
|
|
// place, i.e. past the function address.
|
|
Error Err = Error::success();
|
|
uint64_t StackSize = Data.getULEB128(Offset, &Err);
|
|
if (Err) {
|
|
reportUniqueWarning("could not extract a valid stack size from " +
|
|
describe(StackSizeSec) + ": " +
|
|
toString(std::move(Err)));
|
|
return false;
|
|
}
|
|
printStackSizeEntry(StackSize, FuncName);
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
|
|
StringRef FuncName) {
|
|
OS.PadToColumn(2);
|
|
OS << format_decimal(Size, 11);
|
|
OS.PadToColumn(18);
|
|
OS << FuncName << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
|
|
const Elf_Shdr &RelocSec, unsigned Ndx,
|
|
const Elf_Shdr *SymTab,
|
|
const Elf_Shdr *FunctionSec,
|
|
const Elf_Shdr &StackSizeSec,
|
|
const RelocationResolver &Resolver,
|
|
DataExtractor Data) {
|
|
// This function ignores potentially erroneous input, unless it is directly
|
|
// related to stack size reporting.
|
|
const Elf_Sym *Sym = nullptr;
|
|
Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
|
|
if (!TargetOrErr)
|
|
reportUniqueWarning("unable to get the target of relocation with index " +
|
|
Twine(Ndx) + " in " + describe(RelocSec) + ": " +
|
|
toString(TargetOrErr.takeError()));
|
|
else
|
|
Sym = TargetOrErr->Sym;
|
|
|
|
uint64_t RelocSymValue = 0;
|
|
if (Sym) {
|
|
Expected<const Elf_Shdr *> SectionOrErr =
|
|
this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
|
|
if (!SectionOrErr) {
|
|
reportUniqueWarning(
|
|
"cannot identify the section for relocation symbol '" +
|
|
(*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
|
|
} else if (*SectionOrErr != FunctionSec) {
|
|
reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
|
|
"' is not in the expected section");
|
|
// Pretend that the symbol is in the correct section and report its
|
|
// stack size anyway.
|
|
FunctionSec = *SectionOrErr;
|
|
}
|
|
|
|
RelocSymValue = Sym->st_value;
|
|
}
|
|
|
|
uint64_t Offset = R.Offset;
|
|
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
|
|
reportUniqueWarning("found invalid relocation offset (0x" +
|
|
Twine::utohexstr(Offset) + ") into " +
|
|
describe(StackSizeSec) +
|
|
" while trying to extract a stack size entry");
|
|
return;
|
|
}
|
|
|
|
uint64_t SymValue =
|
|
Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
|
|
R.Addend.getValueOr(0));
|
|
this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
|
|
&Offset);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printNonRelocatableStackSizes(
|
|
std::function<void()> PrintHeader) {
|
|
// This function ignores potentially erroneous input, unless it is directly
|
|
// related to stack size reporting.
|
|
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
|
|
if (this->getPrintableSectionName(Sec) != ".stack_sizes")
|
|
continue;
|
|
PrintHeader();
|
|
ArrayRef<uint8_t> Contents =
|
|
unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
|
|
DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
|
|
uint64_t Offset = 0;
|
|
while (Offset < Contents.size()) {
|
|
// The function address is followed by a ULEB representing the stack
|
|
// size. Check for an extra byte before we try to process the entry.
|
|
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
|
|
reportUniqueWarning(
|
|
describe(Sec) +
|
|
" ended while trying to extract a stack size entry");
|
|
break;
|
|
}
|
|
uint64_t SymValue = Data.getAddress(&Offset);
|
|
if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
|
|
&Offset))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::getSectionAndRelocations(
|
|
std::function<bool(const Elf_Shdr &)> IsMatch,
|
|
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
|
|
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
|
|
if (IsMatch(Sec))
|
|
if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
|
|
.second)
|
|
continue;
|
|
|
|
if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
|
|
continue;
|
|
|
|
Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
|
|
if (!RelSecOrErr) {
|
|
reportUniqueWarning(describe(Sec) +
|
|
": failed to get a relocated section: " +
|
|
toString(RelSecOrErr.takeError()));
|
|
continue;
|
|
}
|
|
const Elf_Shdr *ContentsSec = *RelSecOrErr;
|
|
if (IsMatch(*ContentsSec))
|
|
SecToRelocMap[ContentsSec] = &Sec;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFDumper<ELFT>::printRelocatableStackSizes(
|
|
std::function<void()> PrintHeader) {
|
|
// Build a map between stack size sections and their corresponding relocation
|
|
// sections.
|
|
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
|
|
auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
|
|
StringRef SectionName;
|
|
if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
|
|
SectionName = *NameOrErr;
|
|
else
|
|
consumeError(NameOrErr.takeError());
|
|
|
|
return SectionName == ".stack_sizes";
|
|
};
|
|
getSectionAndRelocations(IsMatch, StackSizeRelocMap);
|
|
|
|
for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
|
|
PrintHeader();
|
|
const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
|
|
const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
|
|
|
|
// Warn about stack size sections without a relocation section.
|
|
if (!RelocSec) {
|
|
reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
|
|
") does not have a corresponding "
|
|
"relocation section"),
|
|
FileName);
|
|
continue;
|
|
}
|
|
|
|
// A .stack_sizes section header's sh_link field is supposed to point
|
|
// to the section that contains the functions whose stack sizes are
|
|
// described in it.
|
|
const Elf_Shdr *FunctionSec = unwrapOrError(
|
|
this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
|
|
|
|
SupportsRelocation IsSupportedFn;
|
|
RelocationResolver Resolver;
|
|
std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
|
|
ArrayRef<uint8_t> Contents =
|
|
unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
|
|
DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
|
|
|
|
forEachRelocationDo(
|
|
*RelocSec, /*RawRelr=*/false,
|
|
[&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
|
|
const Elf_Shdr *SymTab) {
|
|
if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
|
|
reportUniqueWarning(
|
|
describe(*RelocSec) +
|
|
" contains an unsupported relocation with index " + Twine(Ndx) +
|
|
": " + Obj.getRelocationTypeName(R.Type));
|
|
return;
|
|
}
|
|
|
|
this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
|
|
*StackSizesELFSec, Resolver, Data);
|
|
},
|
|
[](const Elf_Relr &) {
|
|
llvm_unreachable("can't get here, because we only support "
|
|
"SHT_REL/SHT_RELA sections");
|
|
});
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printStackSizes() {
|
|
bool HeaderHasBeenPrinted = false;
|
|
auto PrintHeader = [&]() {
|
|
if (HeaderHasBeenPrinted)
|
|
return;
|
|
OS << "\nStack Sizes:\n";
|
|
OS.PadToColumn(9);
|
|
OS << "Size";
|
|
OS.PadToColumn(18);
|
|
OS << "Function\n";
|
|
HeaderHasBeenPrinted = true;
|
|
};
|
|
|
|
// For non-relocatable objects, look directly for sections whose name starts
|
|
// with .stack_sizes and process the contents.
|
|
if (this->Obj.getHeader().e_type == ELF::ET_REL)
|
|
this->printRelocatableStackSizes(PrintHeader);
|
|
else
|
|
this->printNonRelocatableStackSizes(PrintHeader);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
|
|
size_t Bias = ELFT::Is64Bits ? 8 : 0;
|
|
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
|
|
OS.PadToColumn(2);
|
|
OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
|
|
OS.PadToColumn(11 + Bias);
|
|
OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
|
|
OS.PadToColumn(22 + Bias);
|
|
OS << format_hex_no_prefix(*E, 8 + Bias);
|
|
OS.PadToColumn(31 + 2 * Bias);
|
|
OS << Purpose << "\n";
|
|
};
|
|
|
|
OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
|
|
OS << " Canonical gp value: "
|
|
<< format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
|
|
|
|
OS << " Reserved entries:\n";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Address Access Initial Purpose\n";
|
|
else
|
|
OS << " Address Access Initial Purpose\n";
|
|
PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
|
|
if (Parser.getGotModulePointer())
|
|
PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
|
|
|
|
if (!Parser.getLocalEntries().empty()) {
|
|
OS << "\n";
|
|
OS << " Local entries:\n";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Address Access Initial\n";
|
|
else
|
|
OS << " Address Access Initial\n";
|
|
for (auto &E : Parser.getLocalEntries())
|
|
PrintEntry(&E, "");
|
|
}
|
|
|
|
if (Parser.IsStatic)
|
|
return;
|
|
|
|
if (!Parser.getGlobalEntries().empty()) {
|
|
OS << "\n";
|
|
OS << " Global entries:\n";
|
|
if (ELFT::Is64Bits)
|
|
OS << " Address Access Initial Sym.Val."
|
|
<< " Type Ndx Name\n";
|
|
else
|
|
OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
|
|
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
for (auto &E : Parser.getGlobalEntries()) {
|
|
const Elf_Sym &Sym = *Parser.getGotSym(&E);
|
|
const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
|
|
std::string SymName = this->getFullSymbolName(
|
|
Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
|
|
|
|
OS.PadToColumn(2);
|
|
OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
|
|
OS.PadToColumn(11 + Bias);
|
|
OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
|
|
OS.PadToColumn(22 + Bias);
|
|
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
|
|
OS.PadToColumn(31 + 2 * Bias);
|
|
OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
|
|
OS.PadToColumn(40 + 3 * Bias);
|
|
OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
|
|
OS.PadToColumn(48 + 3 * Bias);
|
|
OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
|
|
ShndxTable);
|
|
OS.PadToColumn(52 + 3 * Bias);
|
|
OS << SymName << "\n";
|
|
}
|
|
}
|
|
|
|
if (!Parser.getOtherEntries().empty())
|
|
OS << "\n Number of TLS and multi-GOT entries "
|
|
<< Parser.getOtherEntries().size() << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
|
|
size_t Bias = ELFT::Is64Bits ? 8 : 0;
|
|
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
|
|
OS.PadToColumn(2);
|
|
OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
|
|
OS.PadToColumn(11 + Bias);
|
|
OS << format_hex_no_prefix(*E, 8 + Bias);
|
|
OS.PadToColumn(20 + 2 * Bias);
|
|
OS << Purpose << "\n";
|
|
};
|
|
|
|
OS << "PLT GOT:\n\n";
|
|
|
|
OS << " Reserved entries:\n";
|
|
OS << " Address Initial Purpose\n";
|
|
PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
|
|
if (Parser.getPltModulePointer())
|
|
PrintEntry(Parser.getPltModulePointer(), "Module pointer");
|
|
|
|
if (!Parser.getPltEntries().empty()) {
|
|
OS << "\n";
|
|
OS << " Entries:\n";
|
|
OS << " Address Initial Sym.Val. Type Ndx Name\n";
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
for (auto &E : Parser.getPltEntries()) {
|
|
const Elf_Sym &Sym = *Parser.getPltSym(&E);
|
|
const Elf_Sym &FirstSym = *cantFail(
|
|
this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
|
|
std::string SymName = this->getFullSymbolName(
|
|
Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
|
|
|
|
OS.PadToColumn(2);
|
|
OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
|
|
OS.PadToColumn(11 + Bias);
|
|
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
|
|
OS.PadToColumn(20 + 2 * Bias);
|
|
OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
|
|
OS.PadToColumn(29 + 3 * Bias);
|
|
OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
|
|
OS.PadToColumn(37 + 3 * Bias);
|
|
OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
|
|
ShndxTable);
|
|
OS.PadToColumn(41 + 3 * Bias);
|
|
OS << SymName << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<const Elf_Mips_ABIFlags<ELFT> *>
|
|
getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
|
|
const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
|
|
if (Sec == nullptr)
|
|
return nullptr;
|
|
|
|
constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
|
|
Expected<ArrayRef<uint8_t>> DataOrErr =
|
|
Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
|
|
if (!DataOrErr)
|
|
return createError(ErrPrefix + toString(DataOrErr.takeError()));
|
|
|
|
if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
|
|
return createError(ErrPrefix + "it has a wrong size (" +
|
|
Twine(DataOrErr->size()) + ")");
|
|
return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
|
|
}
|
|
|
|
template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
|
|
const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
|
|
if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
|
|
getMipsAbiFlagsSection(*this))
|
|
Flags = *SecOrErr;
|
|
else
|
|
this->reportUniqueWarning(SecOrErr.takeError());
|
|
if (!Flags)
|
|
return;
|
|
|
|
OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
|
|
OS << "ISA: MIPS" << int(Flags->isa_level);
|
|
if (Flags->isa_rev > 1)
|
|
OS << "r" << int(Flags->isa_rev);
|
|
OS << "\n";
|
|
OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
|
|
OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
|
|
OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
|
|
OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
|
|
<< "\n";
|
|
OS << "ISA Extension: "
|
|
<< printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
|
|
if (Flags->ases == 0)
|
|
OS << "ASEs: None\n";
|
|
else
|
|
// FIXME: Print each flag on a separate line.
|
|
OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
|
|
<< "\n";
|
|
OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
|
|
OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
|
|
const Elf_Ehdr &E = this->Obj.getHeader();
|
|
{
|
|
DictScope D(W, "ElfHeader");
|
|
{
|
|
DictScope D(W, "Ident");
|
|
W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
|
|
W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
|
|
W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
|
|
makeArrayRef(ElfDataEncoding));
|
|
W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
|
|
|
|
auto OSABI = makeArrayRef(ElfOSABI);
|
|
if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
|
|
E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
|
|
switch (E.e_machine) {
|
|
case ELF::EM_AMDGPU:
|
|
OSABI = makeArrayRef(AMDGPUElfOSABI);
|
|
break;
|
|
case ELF::EM_ARM:
|
|
OSABI = makeArrayRef(ARMElfOSABI);
|
|
break;
|
|
case ELF::EM_TI_C6000:
|
|
OSABI = makeArrayRef(C6000ElfOSABI);
|
|
break;
|
|
}
|
|
}
|
|
W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
|
|
W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
|
|
W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
|
|
}
|
|
|
|
std::string TypeStr;
|
|
if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
|
|
TypeStr = Ent->Name.str();
|
|
} else {
|
|
if (E.e_type >= ET_LOPROC)
|
|
TypeStr = "Processor Specific";
|
|
else if (E.e_type >= ET_LOOS)
|
|
TypeStr = "OS Specific";
|
|
else
|
|
TypeStr = "Unknown";
|
|
}
|
|
W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
|
|
|
|
W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
|
|
W.printNumber("Version", E.e_version);
|
|
W.printHex("Entry", E.e_entry);
|
|
W.printHex("ProgramHeaderOffset", E.e_phoff);
|
|
W.printHex("SectionHeaderOffset", E.e_shoff);
|
|
if (E.e_machine == EM_MIPS)
|
|
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
|
|
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
|
|
unsigned(ELF::EF_MIPS_MACH));
|
|
else if (E.e_machine == EM_AMDGPU) {
|
|
switch (E.e_ident[ELF::EI_ABIVERSION]) {
|
|
default:
|
|
W.printHex("Flags", E.e_flags);
|
|
break;
|
|
case 0:
|
|
// ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
|
|
LLVM_FALLTHROUGH;
|
|
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
|
|
W.printFlags("Flags", E.e_flags,
|
|
makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
|
|
unsigned(ELF::EF_AMDGPU_MACH));
|
|
break;
|
|
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
|
|
W.printFlags("Flags", E.e_flags,
|
|
makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
|
|
unsigned(ELF::EF_AMDGPU_MACH),
|
|
unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
|
|
unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
|
|
break;
|
|
}
|
|
} else if (E.e_machine == EM_RISCV)
|
|
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
|
|
else if (E.e_machine == EM_AVR)
|
|
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
|
|
unsigned(ELF::EF_AVR_ARCH_MASK));
|
|
else
|
|
W.printFlags("Flags", E.e_flags);
|
|
W.printNumber("HeaderSize", E.e_ehsize);
|
|
W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
|
|
W.printNumber("ProgramHeaderCount", E.e_phnum);
|
|
W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
|
|
W.printString("SectionHeaderCount",
|
|
getSectionHeadersNumString(this->Obj, this->FileName));
|
|
W.printString("StringTableSectionIndex",
|
|
getSectionHeaderTableIndexString(this->Obj, this->FileName));
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
|
|
DictScope Lists(W, "Groups");
|
|
std::vector<GroupSection> V = this->getGroups();
|
|
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
|
|
for (const GroupSection &G : V) {
|
|
DictScope D(W, "Group");
|
|
W.printNumber("Name", G.Name, G.ShName);
|
|
W.printNumber("Index", G.Index);
|
|
W.printNumber("Link", G.Link);
|
|
W.printNumber("Info", G.Info);
|
|
W.printHex("Type", getGroupType(G.Type), G.Type);
|
|
W.startLine() << "Signature: " << G.Signature << "\n";
|
|
|
|
ListScope L(W, "Section(s) in group");
|
|
for (const GroupMember &GM : G.Members) {
|
|
const GroupSection *MainGroup = Map[GM.Index];
|
|
if (MainGroup != &G)
|
|
this->reportUniqueWarning(
|
|
"section with index " + Twine(GM.Index) +
|
|
", included in the group section with index " +
|
|
Twine(MainGroup->Index) +
|
|
", was also found in the group section with index " +
|
|
Twine(G.Index));
|
|
W.startLine() << GM.Name << " (" << GM.Index << ")\n";
|
|
}
|
|
}
|
|
|
|
if (V.empty())
|
|
W.startLine() << "There are no group sections in the file.\n";
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
|
|
ListScope D(W, "Relocations");
|
|
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
if (!isRelocationSec<ELFT>(Sec))
|
|
continue;
|
|
|
|
StringRef Name = this->getPrintableSectionName(Sec);
|
|
unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
|
|
W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
|
|
W.indent();
|
|
this->printRelocationsHelper(Sec);
|
|
W.unindent();
|
|
W.startLine() << "}\n";
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
|
|
W.startLine() << W.hex(R) << "\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
|
|
const RelSymbol<ELFT> &RelSym) {
|
|
StringRef SymbolName = RelSym.Name;
|
|
SmallString<32> RelocName;
|
|
this->Obj.getRelocationTypeName(R.Type, RelocName);
|
|
|
|
if (opts::ExpandRelocs) {
|
|
DictScope Group(W, "Relocation");
|
|
W.printHex("Offset", R.Offset);
|
|
W.printNumber("Type", RelocName, R.Type);
|
|
W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
|
|
if (R.Addend)
|
|
W.printHex("Addend", (uintX_t)*R.Addend);
|
|
} else {
|
|
raw_ostream &OS = W.startLine();
|
|
OS << W.hex(R.Offset) << " " << RelocName << " "
|
|
<< (!SymbolName.empty() ? SymbolName : "-");
|
|
if (R.Addend)
|
|
OS << " " << W.hex((uintX_t)*R.Addend);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
|
|
ListScope SectionsD(W, "Sections");
|
|
|
|
int SectionIndex = -1;
|
|
std::vector<EnumEntry<unsigned>> FlagsList =
|
|
getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
DictScope SectionD(W, "Section");
|
|
W.printNumber("Index", ++SectionIndex);
|
|
W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
|
|
W.printHex("Type",
|
|
object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
|
|
Sec.sh_type),
|
|
Sec.sh_type);
|
|
W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
|
|
W.printHex("Address", Sec.sh_addr);
|
|
W.printHex("Offset", Sec.sh_offset);
|
|
W.printNumber("Size", Sec.sh_size);
|
|
W.printNumber("Link", Sec.sh_link);
|
|
W.printNumber("Info", Sec.sh_info);
|
|
W.printNumber("AddressAlignment", Sec.sh_addralign);
|
|
W.printNumber("EntrySize", Sec.sh_entsize);
|
|
|
|
if (opts::SectionRelocations) {
|
|
ListScope D(W, "Relocations");
|
|
this->printRelocationsHelper(Sec);
|
|
}
|
|
|
|
if (opts::SectionSymbols) {
|
|
ListScope D(W, "Symbols");
|
|
if (this->DotSymtabSec) {
|
|
StringRef StrTable = unwrapOrError(
|
|
this->FileName,
|
|
this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
|
|
ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
|
|
|
|
typename ELFT::SymRange Symbols = unwrapOrError(
|
|
this->FileName, this->Obj.symbols(this->DotSymtabSec));
|
|
for (const Elf_Sym &Sym : Symbols) {
|
|
const Elf_Shdr *SymSec = unwrapOrError(
|
|
this->FileName,
|
|
this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
|
|
if (SymSec == &Sec)
|
|
printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
|
|
false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
|
|
ArrayRef<uint8_t> Data =
|
|
unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
|
|
W.printBinaryBlock(
|
|
"SectionData",
|
|
StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printSymbolSection(
|
|
const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable) const {
|
|
auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
|
|
if (Symbol.isUndefined())
|
|
return StringRef("Undefined");
|
|
if (Symbol.isProcessorSpecific())
|
|
return StringRef("Processor Specific");
|
|
if (Symbol.isOSSpecific())
|
|
return StringRef("Operating System Specific");
|
|
if (Symbol.isAbsolute())
|
|
return StringRef("Absolute");
|
|
if (Symbol.isCommon())
|
|
return StringRef("Common");
|
|
if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
|
|
return StringRef("Reserved");
|
|
return None;
|
|
};
|
|
|
|
if (Optional<StringRef> Type = GetSectionSpecialType()) {
|
|
W.printHex("Section", *Type, Symbol.st_shndx);
|
|
return;
|
|
}
|
|
|
|
Expected<unsigned> SectionIndex =
|
|
this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
|
|
if (!SectionIndex) {
|
|
assert(Symbol.st_shndx == SHN_XINDEX &&
|
|
"getSymbolSectionIndex should only fail due to an invalid "
|
|
"SHT_SYMTAB_SHNDX table/reference");
|
|
this->reportUniqueWarning(SectionIndex.takeError());
|
|
W.printHex("Section", "Reserved", SHN_XINDEX);
|
|
return;
|
|
}
|
|
|
|
Expected<StringRef> SectionName =
|
|
this->getSymbolSectionName(Symbol, *SectionIndex);
|
|
if (!SectionName) {
|
|
// Don't report an invalid section name if the section headers are missing.
|
|
// In such situations, all sections will be "invalid".
|
|
if (!this->ObjF.sections().empty())
|
|
this->reportUniqueWarning(SectionName.takeError());
|
|
else
|
|
consumeError(SectionName.takeError());
|
|
W.printHex("Section", "<?>", *SectionIndex);
|
|
} else {
|
|
W.printHex("Section", *SectionName, *SectionIndex);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
|
|
DataRegion<Elf_Word> ShndxTable,
|
|
Optional<StringRef> StrTable,
|
|
bool IsDynamic,
|
|
bool /*NonVisibilityBitsUsed*/) const {
|
|
std::string FullSymbolName = this->getFullSymbolName(
|
|
Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
|
|
unsigned char SymbolType = Symbol.getType();
|
|
|
|
DictScope D(W, "Symbol");
|
|
W.printNumber("Name", FullSymbolName, Symbol.st_name);
|
|
W.printHex("Value", Symbol.st_value);
|
|
W.printNumber("Size", Symbol.st_size);
|
|
W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
|
|
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
|
|
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
|
|
W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
|
|
else
|
|
W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
|
|
if (Symbol.st_other == 0)
|
|
// Usually st_other flag is zero. Do not pollute the output
|
|
// by flags enumeration in that case.
|
|
W.printNumber("Other", 0);
|
|
else {
|
|
std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
|
|
std::end(ElfSymOtherFlags));
|
|
if (this->Obj.getHeader().e_machine == EM_MIPS) {
|
|
// Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
|
|
// flag overlapped with other ST_MIPS_xxx flags. So consider both
|
|
// cases separately.
|
|
if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
|
|
SymOtherFlags.insert(SymOtherFlags.end(),
|
|
std::begin(ElfMips16SymOtherFlags),
|
|
std::end(ElfMips16SymOtherFlags));
|
|
else
|
|
SymOtherFlags.insert(SymOtherFlags.end(),
|
|
std::begin(ElfMipsSymOtherFlags),
|
|
std::end(ElfMipsSymOtherFlags));
|
|
} else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
|
|
SymOtherFlags.insert(SymOtherFlags.end(),
|
|
std::begin(ElfAArch64SymOtherFlags),
|
|
std::end(ElfAArch64SymOtherFlags));
|
|
}
|
|
W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
|
|
}
|
|
printSymbolSection(Symbol, SymIndex, ShndxTable);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
|
|
bool PrintDynamicSymbols) {
|
|
if (PrintSymbols) {
|
|
ListScope Group(W, "Symbols");
|
|
this->printSymbolsHelper(false);
|
|
}
|
|
if (PrintDynamicSymbols) {
|
|
ListScope Group(W, "DynamicSymbols");
|
|
this->printSymbolsHelper(true);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
|
|
Elf_Dyn_Range Table = this->dynamic_table();
|
|
if (Table.empty())
|
|
return;
|
|
|
|
W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
|
|
|
|
size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
|
|
// The "Name/Value" column should be indented from the "Type" column by N
|
|
// spaces, where N = MaxTagSize - length of "Type" (4) + trailing
|
|
// space (1) = -3.
|
|
W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
|
|
<< "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
|
|
|
|
std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
|
|
for (auto Entry : Table) {
|
|
uintX_t Tag = Entry.getTag();
|
|
std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
|
|
W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
|
|
<< " "
|
|
<< format(ValueFmt.c_str(),
|
|
this->Obj.getDynamicTagAsString(Tag).c_str())
|
|
<< Value << "\n";
|
|
}
|
|
W.startLine() << "]\n";
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
|
|
W.startLine() << "Dynamic Relocations {\n";
|
|
W.indent();
|
|
this->printDynamicRelocationsHelper();
|
|
W.unindent();
|
|
W.startLine() << "}\n";
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printProgramHeaders(
|
|
bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
|
|
if (PrintProgramHeaders)
|
|
printProgramHeaders();
|
|
if (PrintSectionMapping == cl::BOU_TRUE)
|
|
printSectionMapping();
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
|
|
ListScope L(W, "ProgramHeaders");
|
|
|
|
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
|
|
if (!PhdrsOrErr) {
|
|
this->reportUniqueWarning("unable to dump program headers: " +
|
|
toString(PhdrsOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
|
|
DictScope P(W, "ProgramHeader");
|
|
StringRef Type =
|
|
segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
|
|
|
|
W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
|
|
W.printHex("Offset", Phdr.p_offset);
|
|
W.printHex("VirtualAddress", Phdr.p_vaddr);
|
|
W.printHex("PhysicalAddress", Phdr.p_paddr);
|
|
W.printNumber("FileSize", Phdr.p_filesz);
|
|
W.printNumber("MemSize", Phdr.p_memsz);
|
|
W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
|
|
W.printNumber("Alignment", Phdr.p_align);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
|
|
ListScope SS(W, "VersionSymbols");
|
|
if (!Sec)
|
|
return;
|
|
|
|
StringRef StrTable;
|
|
ArrayRef<Elf_Sym> Syms;
|
|
const Elf_Shdr *SymTabSec;
|
|
Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
|
|
this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
|
|
if (!VerTableOrErr) {
|
|
this->reportUniqueWarning(VerTableOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
|
|
return;
|
|
|
|
ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
|
|
for (size_t I = 0, E = Syms.size(); I < E; ++I) {
|
|
DictScope S(W, "Symbol");
|
|
W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
|
|
W.printString("Name",
|
|
this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
|
|
/*IsDynamic=*/true));
|
|
}
|
|
}
|
|
|
|
static const EnumEntry<unsigned> SymVersionFlags[] = {
|
|
{"Base", "BASE", VER_FLG_BASE},
|
|
{"Weak", "WEAK", VER_FLG_WEAK},
|
|
{"Info", "INFO", VER_FLG_INFO}};
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
|
|
ListScope SD(W, "VersionDefinitions");
|
|
if (!Sec)
|
|
return;
|
|
|
|
Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
|
|
if (!V) {
|
|
this->reportUniqueWarning(V.takeError());
|
|
return;
|
|
}
|
|
|
|
for (const VerDef &D : *V) {
|
|
DictScope Def(W, "Definition");
|
|
W.printNumber("Version", D.Version);
|
|
W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
|
|
W.printNumber("Index", D.Ndx);
|
|
W.printNumber("Hash", D.Hash);
|
|
W.printString("Name", D.Name.c_str());
|
|
W.printList(
|
|
"Predecessors", D.AuxV,
|
|
[](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
|
|
ListScope SD(W, "VersionRequirements");
|
|
if (!Sec)
|
|
return;
|
|
|
|
Expected<std::vector<VerNeed>> V =
|
|
this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
|
|
if (!V) {
|
|
this->reportUniqueWarning(V.takeError());
|
|
return;
|
|
}
|
|
|
|
for (const VerNeed &VN : *V) {
|
|
DictScope Entry(W, "Dependency");
|
|
W.printNumber("Version", VN.Version);
|
|
W.printNumber("Count", VN.Cnt);
|
|
W.printString("FileName", VN.File.c_str());
|
|
|
|
ListScope L(W, "Entries");
|
|
for (const VernAux &Aux : VN.AuxV) {
|
|
DictScope Entry(W, "Entry");
|
|
W.printNumber("Hash", Aux.Hash);
|
|
W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
|
|
W.printNumber("Index", Aux.Other);
|
|
W.printString("Name", Aux.Name.c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
|
|
W.startLine() << "Hash Histogram not implemented!\n";
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
|
|
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
|
|
|
|
auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
|
|
return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
|
|
};
|
|
this->getSectionAndRelocations(IsMatch, SecToRelocMap);
|
|
|
|
for (const auto &CGMapEntry : SecToRelocMap) {
|
|
const Elf_Shdr *CGSection = CGMapEntry.first;
|
|
const Elf_Shdr *CGRelSection = CGMapEntry.second;
|
|
|
|
Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
|
|
this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
|
|
if (!CGProfileOrErr) {
|
|
this->reportUniqueWarning(
|
|
"unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
|
|
toString(CGProfileOrErr.takeError()));
|
|
return;
|
|
}
|
|
|
|
Elf_Rel_Range CGProfileRel;
|
|
bool UseReloc = (CGRelSection != nullptr);
|
|
if (UseReloc) {
|
|
Expected<Elf_Rel_Range> CGProfileRelaOrError =
|
|
this->Obj.rels(*CGRelSection);
|
|
if (!CGProfileRelaOrError) {
|
|
this->reportUniqueWarning("unable to load relocations for "
|
|
"SHT_LLVM_CALL_GRAPH_PROFILE section: " +
|
|
toString(CGProfileRelaOrError.takeError()));
|
|
UseReloc = false;
|
|
} else
|
|
CGProfileRel = *CGProfileRelaOrError;
|
|
|
|
if (UseReloc && CGProfileRel.size() != (CGProfileOrErr->size() * 2)) {
|
|
this->reportUniqueWarning(
|
|
"number of from/to pairs does not match number of frequencies");
|
|
UseReloc = false;
|
|
}
|
|
} else
|
|
this->reportUniqueWarning(
|
|
"relocation section for a call graph section doesn't exist");
|
|
|
|
auto GetIndex = [&](uint32_t Index) {
|
|
const Elf_Rel_Impl<ELFT, false> &Rel = CGProfileRel[Index];
|
|
return Rel.getSymbol(this->Obj.isMips64EL());
|
|
};
|
|
|
|
ListScope L(W, "CGProfile");
|
|
for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
|
|
const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
|
|
DictScope D(W, "CGProfileEntry");
|
|
if (UseReloc) {
|
|
uint32_t From = GetIndex(I * 2);
|
|
uint32_t To = GetIndex(I * 2 + 1);
|
|
W.printNumber("From", this->getStaticSymbolName(From), From);
|
|
W.printNumber("To", this->getStaticSymbolName(To), To);
|
|
}
|
|
W.printNumber("Weight", CGPE.cgp_weight);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
|
|
bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
|
|
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
|
|
if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
|
|
continue;
|
|
Optional<const Elf_Shdr *> FunctionSec = None;
|
|
if (IsRelocatable)
|
|
FunctionSec =
|
|
unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
|
|
ListScope L(W, "BBAddrMap");
|
|
Expected<std::vector<Elf_BBAddrMap>> BBAddrMapOrErr =
|
|
this->Obj.decodeBBAddrMap(Sec);
|
|
if (!BBAddrMapOrErr) {
|
|
this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
|
|
toString(BBAddrMapOrErr.takeError()));
|
|
continue;
|
|
}
|
|
for (const Elf_BBAddrMap &AM : *BBAddrMapOrErr) {
|
|
DictScope D(W, "Function");
|
|
W.printHex("At", AM.Addr);
|
|
Optional<uint32_t> FuncSymIndex =
|
|
this->getSymbolIndexForFunctionAddress(AM.Addr, FunctionSec);
|
|
std::string FuncName = "<?>";
|
|
if (FuncSymIndex == None)
|
|
this->reportUniqueWarning(
|
|
"could not identify function symbol for address (0x" +
|
|
Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
|
|
else
|
|
FuncName = this->getStaticSymbolName(*FuncSymIndex);
|
|
W.printString("Name", FuncName);
|
|
|
|
ListScope L(W, "BB entries");
|
|
for (const typename Elf_BBAddrMap::BBEntry &BBE : AM.BBEntries) {
|
|
DictScope L(W);
|
|
W.printHex("Offset", BBE.Offset);
|
|
W.printHex("Size", BBE.Size);
|
|
W.printBoolean("HasReturn", BBE.HasReturn);
|
|
W.printBoolean("HasTailCall", BBE.HasTailCall);
|
|
W.printBoolean("IsEHPad", BBE.IsEHPad);
|
|
W.printBoolean("CanFallThrough", BBE.CanFallThrough);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
|
|
ListScope L(W, "Addrsig");
|
|
if (!this->DotAddrsigSec)
|
|
return;
|
|
|
|
Expected<std::vector<uint64_t>> SymsOrErr =
|
|
decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
|
|
if (!SymsOrErr) {
|
|
this->reportUniqueWarning(SymsOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
for (uint64_t Sym : *SymsOrErr)
|
|
W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
|
|
ScopedPrinter &W) {
|
|
// Return true if we were able to pretty-print the note, false otherwise.
|
|
switch (NoteType) {
|
|
default:
|
|
return false;
|
|
case ELF::NT_GNU_ABI_TAG: {
|
|
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
|
|
if (!AbiTag.IsValid) {
|
|
W.printString("ABI", "<corrupt GNU_ABI_TAG>");
|
|
return false;
|
|
} else {
|
|
W.printString("OS", AbiTag.OSName);
|
|
W.printString("ABI", AbiTag.ABI);
|
|
}
|
|
break;
|
|
}
|
|
case ELF::NT_GNU_BUILD_ID: {
|
|
W.printString("Build ID", getGNUBuildId(Desc));
|
|
break;
|
|
}
|
|
case ELF::NT_GNU_GOLD_VERSION:
|
|
W.printString("Version", getGNUGoldVersion(Desc));
|
|
break;
|
|
case ELF::NT_GNU_PROPERTY_TYPE_0:
|
|
ListScope D(W, "Property");
|
|
for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
|
|
W.printString(Property);
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
|
|
W.printNumber("Page Size", Note.PageSize);
|
|
for (const CoreFileMapping &Mapping : Note.Mappings) {
|
|
ListScope D(W, "Mapping");
|
|
W.printHex("Start", Mapping.Start);
|
|
W.printHex("End", Mapping.End);
|
|
W.printHex("Offset", Mapping.Offset);
|
|
W.printString("Filename", Mapping.Filename);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
|
|
ListScope L(W, "Notes");
|
|
|
|
std::unique_ptr<DictScope> NoteScope;
|
|
auto StartNotes = [&](Optional<StringRef> SecName,
|
|
const typename ELFT::Off Offset,
|
|
const typename ELFT::Addr Size) {
|
|
NoteScope = std::make_unique<DictScope>(W, "NoteSection");
|
|
W.printString("Name", SecName ? *SecName : "<?>");
|
|
W.printHex("Offset", Offset);
|
|
W.printHex("Size", Size);
|
|
};
|
|
|
|
auto EndNotes = [&] { NoteScope.reset(); };
|
|
|
|
auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
|
|
DictScope D2(W, "Note");
|
|
StringRef Name = Note.getName();
|
|
ArrayRef<uint8_t> Descriptor = Note.getDesc();
|
|
Elf_Word Type = Note.getType();
|
|
|
|
// Print the note owner/type.
|
|
W.printString("Owner", Name);
|
|
W.printHex("Data size", Descriptor.size());
|
|
|
|
StringRef NoteType =
|
|
getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
|
|
if (!NoteType.empty())
|
|
W.printString("Type", NoteType);
|
|
else
|
|
W.printString("Type",
|
|
"Unknown (" + to_string(format_hex(Type, 10)) + ")");
|
|
|
|
// Print the description, or fallback to printing raw bytes for unknown
|
|
// owners/if we fail to pretty-print the contents.
|
|
if (Name == "GNU") {
|
|
if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
|
|
return Error::success();
|
|
} else if (Name == "FreeBSD") {
|
|
if (Optional<FreeBSDNote> N =
|
|
getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
|
|
W.printString(N->Type, N->Value);
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "AMD") {
|
|
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
|
|
if (!N.Type.empty()) {
|
|
W.printString(N.Type, N.Value);
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "AMDGPU") {
|
|
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
|
|
if (!N.Type.empty()) {
|
|
W.printString(N.Type, N.Value);
|
|
return Error::success();
|
|
}
|
|
} else if (Name == "CORE") {
|
|
if (Type == ELF::NT_FILE) {
|
|
DataExtractor DescExtractor(Descriptor,
|
|
ELFT::TargetEndianness == support::little,
|
|
sizeof(Elf_Addr));
|
|
if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
|
|
printCoreNoteLLVMStyle(*N, W);
|
|
return Error::success();
|
|
} else {
|
|
return N.takeError();
|
|
}
|
|
}
|
|
}
|
|
if (!Descriptor.empty()) {
|
|
W.printBinaryBlock("Description data", Descriptor);
|
|
}
|
|
return Error::success();
|
|
};
|
|
|
|
printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
|
|
ListScope L(W, "LinkerOptions");
|
|
|
|
unsigned I = -1;
|
|
for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
|
|
++I;
|
|
if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
|
|
continue;
|
|
|
|
Expected<ArrayRef<uint8_t>> ContentsOrErr =
|
|
this->Obj.getSectionContents(Shdr);
|
|
if (!ContentsOrErr) {
|
|
this->reportUniqueWarning("unable to read the content of the "
|
|
"SHT_LLVM_LINKER_OPTIONS section: " +
|
|
toString(ContentsOrErr.takeError()));
|
|
continue;
|
|
}
|
|
if (ContentsOrErr->empty())
|
|
continue;
|
|
|
|
if (ContentsOrErr->back() != 0) {
|
|
this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
|
|
Twine(I) +
|
|
" is broken: the "
|
|
"content is not null-terminated");
|
|
continue;
|
|
}
|
|
|
|
SmallVector<StringRef, 16> Strings;
|
|
toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
|
|
if (Strings.size() % 2 != 0) {
|
|
this->reportUniqueWarning(
|
|
"SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
|
|
" is broken: an incomplete "
|
|
"key-value pair was found. The last possible key was: \"" +
|
|
Strings.back() + "\"");
|
|
continue;
|
|
}
|
|
|
|
for (size_t I = 0; I < Strings.size(); I += 2)
|
|
W.printString(Strings[I], Strings[I + 1]);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
|
|
ListScope L(W, "DependentLibs");
|
|
this->printDependentLibsHelper(
|
|
[](const Elf_Shdr &) {},
|
|
[this](StringRef Lib, uint64_t) { W.printString(Lib); });
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
|
|
ListScope L(W, "StackSizes");
|
|
if (this->Obj.getHeader().e_type == ELF::ET_REL)
|
|
this->printRelocatableStackSizes([]() {});
|
|
else
|
|
this->printNonRelocatableStackSizes([]() {});
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
|
|
DictScope D(W, "Entry");
|
|
W.printString("Function", FuncName);
|
|
W.printHex("Size", Size);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
|
|
auto PrintEntry = [&](const Elf_Addr *E) {
|
|
W.printHex("Address", Parser.getGotAddress(E));
|
|
W.printNumber("Access", Parser.getGotOffset(E));
|
|
W.printHex("Initial", *E);
|
|
};
|
|
|
|
DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
|
|
|
|
W.printHex("Canonical gp value", Parser.getGp());
|
|
{
|
|
ListScope RS(W, "Reserved entries");
|
|
{
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(Parser.getGotLazyResolver());
|
|
W.printString("Purpose", StringRef("Lazy resolver"));
|
|
}
|
|
|
|
if (Parser.getGotModulePointer()) {
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(Parser.getGotModulePointer());
|
|
W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
|
|
}
|
|
}
|
|
{
|
|
ListScope LS(W, "Local entries");
|
|
for (auto &E : Parser.getLocalEntries()) {
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(&E);
|
|
}
|
|
}
|
|
|
|
if (Parser.IsStatic)
|
|
return;
|
|
|
|
{
|
|
ListScope GS(W, "Global entries");
|
|
for (auto &E : Parser.getGlobalEntries()) {
|
|
DictScope D(W, "Entry");
|
|
|
|
PrintEntry(&E);
|
|
|
|
const Elf_Sym &Sym = *Parser.getGotSym(&E);
|
|
W.printHex("Value", Sym.st_value);
|
|
W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
|
|
|
|
const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
printSymbolSection(Sym, SymIndex, ShndxTable);
|
|
|
|
std::string SymName = this->getFullSymbolName(
|
|
Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
|
|
W.printNumber("Name", SymName, Sym.st_name);
|
|
}
|
|
}
|
|
|
|
W.printNumber("Number of TLS and multi-GOT entries",
|
|
uint64_t(Parser.getOtherEntries().size()));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
|
|
auto PrintEntry = [&](const Elf_Addr *E) {
|
|
W.printHex("Address", Parser.getPltAddress(E));
|
|
W.printHex("Initial", *E);
|
|
};
|
|
|
|
DictScope GS(W, "PLT GOT");
|
|
|
|
{
|
|
ListScope RS(W, "Reserved entries");
|
|
{
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(Parser.getPltLazyResolver());
|
|
W.printString("Purpose", StringRef("PLT lazy resolver"));
|
|
}
|
|
|
|
if (auto E = Parser.getPltModulePointer()) {
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(E);
|
|
W.printString("Purpose", StringRef("Module pointer"));
|
|
}
|
|
}
|
|
{
|
|
ListScope LS(W, "Entries");
|
|
DataRegion<Elf_Word> ShndxTable(
|
|
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
|
|
for (auto &E : Parser.getPltEntries()) {
|
|
DictScope D(W, "Entry");
|
|
PrintEntry(&E);
|
|
|
|
const Elf_Sym &Sym = *Parser.getPltSym(&E);
|
|
W.printHex("Value", Sym.st_value);
|
|
W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
|
|
printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
|
|
ShndxTable);
|
|
|
|
const Elf_Sym *FirstSym = cantFail(
|
|
this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
|
|
std::string SymName = this->getFullSymbolName(
|
|
Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
|
|
W.printNumber("Name", SymName, Sym.st_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
|
|
const Elf_Mips_ABIFlags<ELFT> *Flags;
|
|
if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
|
|
getMipsAbiFlagsSection(*this)) {
|
|
Flags = *SecOrErr;
|
|
if (!Flags) {
|
|
W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
|
|
return;
|
|
}
|
|
} else {
|
|
this->reportUniqueWarning(SecOrErr.takeError());
|
|
return;
|
|
}
|
|
|
|
raw_ostream &OS = W.getOStream();
|
|
DictScope GS(W, "MIPS ABI Flags");
|
|
|
|
W.printNumber("Version", Flags->version);
|
|
W.startLine() << "ISA: ";
|
|
if (Flags->isa_rev <= 1)
|
|
OS << format("MIPS%u", Flags->isa_level);
|
|
else
|
|
OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
|
|
OS << "\n";
|
|
W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
|
|
W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
|
|
W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
|
|
W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
|
|
W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
|
|
W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
|
|
W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
|
|
W.printHex("Flags 2", Flags->flags2);
|
|
}
|