mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-10-30 07:22:55 +01:00
5fa854a7fe
thanks sampo!! llvm-svn: 21113
1828 lines
61 KiB
C++
1828 lines
61 KiB
C++
//===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Duraid Madina and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for IA64.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "IA64.h"
|
|
#include "IA64InstrBuilder.h"
|
|
#include "IA64RegisterInfo.h"
|
|
#include "IA64MachineFunctionInfo.h"
|
|
#include "llvm/Constants.h" // FIXME: REMOVE
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IA64TargetLowering - IA64 Implementation of the TargetLowering interface
|
|
namespace {
|
|
class IA64TargetLowering : public TargetLowering {
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
|
|
|
|
//int ReturnAddrIndex; // FrameIndex for return slot.
|
|
unsigned GP, SP, RP; // FIXME - clean this mess up
|
|
public:
|
|
|
|
unsigned VirtGPR; // this is public so it can be accessed in the selector
|
|
// for ISD::RET down below. add an accessor instead? FIXME
|
|
|
|
IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
|
|
|
|
// register class for general registers
|
|
addRegisterClass(MVT::i64, IA64::GRRegisterClass);
|
|
|
|
// register class for FP registers
|
|
addRegisterClass(MVT::f64, IA64::FPRegisterClass);
|
|
|
|
// register class for predicate registers
|
|
addRegisterClass(MVT::i1, IA64::PRRegisterClass);
|
|
|
|
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
|
|
|
|
setSetCCResultType(MVT::i1);
|
|
setShiftAmountType(MVT::i64);
|
|
|
|
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
|
|
setOperationAction(ISD::EXTLOAD , MVT::f32 , Promote);
|
|
|
|
setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand);
|
|
setOperationAction(ISD::ZEXTLOAD , MVT::i32 , Expand);
|
|
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand);
|
|
|
|
setOperationAction(ISD::SREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::SREM , MVT::f64 , Expand);
|
|
|
|
setOperationAction(ISD::UREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::UREM , MVT::f64 , Expand);
|
|
|
|
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
|
|
|
|
computeRegisterProperties();
|
|
|
|
addLegalFPImmediate(+0.0);
|
|
addLegalFPImmediate(+1.0);
|
|
addLegalFPImmediate(-0.0);
|
|
addLegalFPImmediate(-1.0);
|
|
}
|
|
|
|
/// LowerArguments - This hook must be implemented to indicate how we should
|
|
/// lower the arguments for the specified function, into the specified DAG.
|
|
virtual std::vector<SDOperand>
|
|
LowerArguments(Function &F, SelectionDAG &DAG);
|
|
|
|
/// LowerCallTo - This hook lowers an abstract call to a function into an
|
|
/// actual call.
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
|
|
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand,SDOperand>
|
|
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
|
|
const Type *ArgTy, SelectionDAG &DAG);
|
|
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
|
|
SelectionDAG &DAG);
|
|
|
|
void restoreGP_SP_RP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreSP_RP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreRP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreGP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
|
|
std::vector<SDOperand>
|
|
IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
|
|
std::vector<SDOperand> ArgValues;
|
|
|
|
//
|
|
// add beautiful description of IA64 stack frame format
|
|
// here (from intel 24535803.pdf most likely)
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
|
|
MachineBasicBlock& BB = MF.front();
|
|
|
|
unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
|
|
IA64::r36, IA64::r37, IA64::r38, IA64::r39};
|
|
|
|
unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
|
|
IA64::F12,IA64::F13,IA64::F14, IA64::F15};
|
|
|
|
unsigned argVreg[8];
|
|
unsigned argPreg[8];
|
|
unsigned argOpc[8];
|
|
|
|
unsigned used_FPArgs = 0; // how many FP args have been used so far?
|
|
|
|
unsigned ArgOffset = 0;
|
|
int count = 0;
|
|
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
|
|
{
|
|
SDOperand newroot, argt;
|
|
if(count < 8) { // need to fix this logic? maybe.
|
|
|
|
switch (getValueType(I->getType())) {
|
|
default:
|
|
std::cerr << "ERROR in LowerArgs: unknown type "
|
|
<< getValueType(I->getType()) << "\n";
|
|
abort();
|
|
case MVT::f32:
|
|
// fixme? (well, will need to for weird FP structy stuff,
|
|
// see intel ABI docs)
|
|
case MVT::f64:
|
|
BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
|
|
// floating point args go into f8..f15 as-needed, the increment
|
|
argVreg[count] = // is below..:
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
|
|
// FP args go into f8..f15 as needed: (hence the ++)
|
|
argPreg[count] = args_FP[used_FPArgs++];
|
|
argOpc[count] = IA64::FMOV;
|
|
argt = newroot = DAG.getCopyFromReg(argVreg[count],
|
|
getValueType(I->getType()), DAG.getRoot());
|
|
break;
|
|
case MVT::i1: // NOTE: as far as C abi stuff goes,
|
|
// bools are just boring old ints
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
|
|
argVreg[count] =
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
argPreg[count] = args_int[count];
|
|
argOpc[count] = IA64::MOV;
|
|
argt = newroot =
|
|
DAG.getCopyFromReg(argVreg[count], MVT::i64, DAG.getRoot());
|
|
if ( getValueType(I->getType()) != MVT::i64)
|
|
argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
|
|
newroot);
|
|
break;
|
|
}
|
|
} else { // more than 8 args go into the frame
|
|
// Create the frame index object for this incoming parameter...
|
|
ArgOffset = 16 + 8 * (count - 8);
|
|
int FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load
|
|
//from this parameter
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
|
|
argt = newroot = DAG.getLoad(getValueType(I->getType()),
|
|
DAG.getEntryNode(), FIN);
|
|
}
|
|
++count;
|
|
DAG.setRoot(newroot.getValue(1));
|
|
ArgValues.push_back(argt);
|
|
}
|
|
|
|
|
|
// Create a vreg to hold the output of (what will become)
|
|
// the "alloc" instruction
|
|
VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR);
|
|
// we create a PSEUDO_ALLOC (pseudo)instruction for now
|
|
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::r1);
|
|
|
|
// hmm:
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
|
|
// ..hmm.
|
|
|
|
BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);
|
|
|
|
// hmm:
|
|
BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
|
|
BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
|
|
// ..hmm.
|
|
|
|
unsigned tempOffset=0;
|
|
|
|
// if this is a varargs function, we simply lower llvm.va_start by
|
|
// pointing to the first entry
|
|
if(F.isVarArg()) {
|
|
tempOffset=0;
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
|
|
}
|
|
|
|
// here we actually do the moving of args, and store them to the stack
|
|
// too if this is a varargs function:
|
|
for (int i = 0; i < count && i < 8; ++i) {
|
|
BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]);
|
|
if(F.isVarArg()) {
|
|
// if this is a varargs function, we copy the input registers to the stack
|
|
int FI = MFI->CreateFixedObject(8, tempOffset);
|
|
tempOffset+=8; //XXX: is it safe to use r22 like this?
|
|
BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI);
|
|
// FIXME: we should use st8.spill here, one day
|
|
BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]);
|
|
}
|
|
}
|
|
|
|
return ArgValues;
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
IA64TargetLowering::LowerCallTo(SDOperand Chain,
|
|
const Type *RetTy, bool isVarArg,
|
|
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
unsigned NumBytes = 16;
|
|
unsigned outRegsUsed = 0;
|
|
|
|
if (Args.size() > 8) {
|
|
NumBytes += (Args.size() - 8) * 8;
|
|
outRegsUsed = 8;
|
|
} else {
|
|
outRegsUsed = Args.size();
|
|
}
|
|
|
|
// FIXME? this WILL fail if we ever try to pass around an arg that
|
|
// consumes more than a single output slot (a 'real' double, int128
|
|
// some sort of aggregate etc.), as we'll underestimate how many 'outX'
|
|
// registers we use. Hopefully, the assembler will notice.
|
|
MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
|
|
std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
|
|
|
|
Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
|
|
std::vector<SDOperand> args_to_use;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
{
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "unexpected argument type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
//promote to 64-bits, sign/zero extending based on type
|
|
//of the argument
|
|
if(Args[i].second->isSigned())
|
|
Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64,
|
|
Args[i].first);
|
|
else
|
|
Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64,
|
|
Args[i].first);
|
|
break;
|
|
case MVT::f32:
|
|
//promote to 64-bits
|
|
Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first);
|
|
case MVT::f64:
|
|
case MVT::i64:
|
|
break;
|
|
}
|
|
args_to_use.push_back(Args[i].first);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> RetVals;
|
|
MVT::ValueType RetTyVT = getValueType(RetTy);
|
|
if (RetTyVT != MVT::isVoid)
|
|
RetVals.push_back(RetTyVT);
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain,
|
|
Callee, args_to_use), 0);
|
|
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
|
|
Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
return std::make_pair(TheCall, Chain);
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
IA64TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
|
|
// vastart just returns the address of the VarArgsFrameIndex slot.
|
|
return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64), Chain);
|
|
}
|
|
|
|
std::pair<SDOperand,SDOperand> IA64TargetLowering::
|
|
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
|
|
const Type *ArgTy, SelectionDAG &DAG) {
|
|
|
|
MVT::ValueType ArgVT = getValueType(ArgTy);
|
|
SDOperand Result;
|
|
if (!isVANext) {
|
|
Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList);
|
|
} else {
|
|
unsigned Amt;
|
|
if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
|
|
Amt = 8;
|
|
else {
|
|
assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
|
|
"Other types should have been promoted for varargs!");
|
|
Amt = 8;
|
|
}
|
|
Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
|
|
DAG.getConstant(Amt, VAList.getValueType()));
|
|
}
|
|
return std::make_pair(Result, Chain);
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand> IA64TargetLowering::
|
|
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
|
|
SelectionDAG &DAG) {
|
|
|
|
assert(0 && "LowerFrameReturnAddress not done yet\n");
|
|
abort();
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - IA64 specific code to select IA64 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class ISel : public SelectionDAGISel {
|
|
/// IA64Lowering - This object fully describes how to lower LLVM code to an
|
|
/// IA64-specific SelectionDAG.
|
|
IA64TargetLowering IA64Lowering;
|
|
|
|
/// ExprMap - As shared expressions are codegen'd, we keep track of which
|
|
/// vreg the value is produced in, so we only emit one copy of each compiled
|
|
/// tree.
|
|
std::map<SDOperand, unsigned> ExprMap;
|
|
std::set<SDOperand> LoweredTokens;
|
|
|
|
public:
|
|
ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM) {
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
unsigned SelectExpr(SDOperand N);
|
|
void Select(SDOperand N);
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
|
|
// Codegen the basic block.
|
|
Select(DAG.getRoot());
|
|
|
|
// Clear state used for selection.
|
|
ExprMap.clear();
|
|
LoweredTokens.clear();
|
|
}
|
|
|
|
/// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
/// returns zero when the input is not exactly a power of two.
|
|
static uint64_t ExactLog2(uint64_t Val) {
|
|
if (Val == 0 || (Val & (Val-1))) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
/// ponderIntegerDivisionBy - When handling integer divides, if the divide
|
|
/// is by a constant such that we can efficiently codegen it, this
|
|
/// function says what to do. Currently, it returns 0 if the division must
|
|
/// become a genuine divide, and 1 if the division can be turned into a
|
|
/// right shift.
|
|
static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned,
|
|
unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by
|
|
// a constant, give up.
|
|
|
|
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
if ((Imm = ExactLog2(v))) { // if a division by a power of two, say so
|
|
return 1;
|
|
}
|
|
|
|
return 0; // fallthrough
|
|
}
|
|
|
|
unsigned ISel::SelectExpr(SDOperand N) {
|
|
unsigned Result;
|
|
unsigned Tmp1, Tmp2, Tmp3;
|
|
unsigned Opc = 0;
|
|
MVT::ValueType DestType = N.getValueType();
|
|
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
SDNode *Node = N.Val;
|
|
SDOperand Op0, Op1;
|
|
|
|
if (Node->getOpcode() == ISD::CopyFromReg)
|
|
// Just use the specified register as our input.
|
|
return dyn_cast<RegSDNode>(Node)->getReg();
|
|
|
|
unsigned &Reg = ExprMap[N];
|
|
if (Reg) return Reg;
|
|
|
|
if (N.getOpcode() != ISD::CALL)
|
|
Reg = Result = (N.getValueType() != MVT::Other) ?
|
|
MakeReg(N.getValueType()) : 1;
|
|
else {
|
|
// If this is a call instruction, make sure to prepare ALL of the result
|
|
// values as well as the chain.
|
|
if (Node->getNumValues() == 1)
|
|
Reg = Result = 1; // Void call, just a chain.
|
|
else {
|
|
Result = MakeReg(Node->getValueType(0));
|
|
ExprMap[N.getValue(0)] = Result;
|
|
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
|
|
}
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Node not handled!\n");
|
|
|
|
case ISD::FrameIndex: {
|
|
Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
|
|
BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ConstantPool: {
|
|
Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
|
|
IA64Lowering.restoreGP(BB); // FIXME: do i really need this?
|
|
BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1)
|
|
.addReg(IA64::r1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ConstantFP: {
|
|
Tmp1 = Result; // Intermediate Register
|
|
if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
Tmp1 = MakeReg(MVT::f64);
|
|
|
|
if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0
|
|
else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
|
|
BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0
|
|
else
|
|
assert(0 && "Unexpected FP constant!");
|
|
if (Tmp1 != Result)
|
|
// we multiply by +1.0, negate (this is FNMA), and then add 0.0
|
|
BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1)
|
|
.addReg(IA64::F0);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::DYNAMIC_STACKALLOC: {
|
|
// Generate both result values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
// FIXME: We are currently ignoring the requested alignment for handling
|
|
// greater than the stack alignment. This will need to be revisited at some
|
|
// point. Align = N.getOperand(2);
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
|
|
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
|
|
/*
|
|
Select(N.getOperand(0));
|
|
if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
|
|
{
|
|
if (CN->getValue() < 32000)
|
|
{
|
|
BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12)
|
|
.addImm(-CN->getValue());
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
}
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
}
|
|
*/
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
// Put a pointer to the space into the result register, by copying the
|
|
// stack pointer.
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SELECT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
|
|
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
|
|
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
|
|
|
|
unsigned bogoResult;
|
|
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 &&
|
|
"ISD::SELECT: 'select'ing something other than i64 or f64!\n");
|
|
case MVT::i64:
|
|
bogoResult=MakeReg(MVT::i64);
|
|
break;
|
|
case MVT::f64:
|
|
bogoResult=MakeReg(MVT::f64);
|
|
break;
|
|
}
|
|
|
|
BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3);
|
|
BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
|
|
.addReg(Tmp1); // FIXME: should be FMOV/FCMOV sometimes,
|
|
// though this will work for now (no JIT)
|
|
return Result;
|
|
}
|
|
|
|
case ISD::Constant: {
|
|
unsigned depositPos=0;
|
|
unsigned depositLen=0;
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot use constants of this type!");
|
|
case MVT::i1: { // if a bool, we don't 'load' so much as generate
|
|
// the constant:
|
|
if(cast<ConstantSDNode>(N)->getValue()) // true:
|
|
BuildMI(BB, IA64::CMPEQ, 2, Result)
|
|
.addReg(IA64::r0).addReg(IA64::r0);
|
|
else // false:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result)
|
|
.addReg(IA64::r0).addReg(IA64::r0);
|
|
return Result;
|
|
}
|
|
case MVT::i64: Opc = IA64::MOVLI32; break;
|
|
}
|
|
|
|
int64_t immediate = cast<ConstantSDNode>(N)->getValue();
|
|
if(immediate>>32) { // if our immediate really is big:
|
|
int highPart = immediate>>32;
|
|
int lowPart = immediate&0xFFFFFFFF;
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
unsigned dummy2 = MakeReg(MVT::i64);
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
|
|
BuildMI(BB, IA64::MOVLI32, 1, dummy).addImm(highPart);
|
|
BuildMI(BB, IA64::SHLI, 2, dummy2).addReg(dummy).addImm(32);
|
|
BuildMI(BB, IA64::MOVLI32, 1, dummy3).addImm(lowPart);
|
|
BuildMI(BB, IA64::ADD, 2, Result).addReg(dummy2).addReg(dummy3);
|
|
} else {
|
|
BuildMI(BB, IA64::MOVLI32, 1, Result).addImm(immediate);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::UNDEF: {
|
|
BuildMI(BB, IA64::IDEF, 0, Result);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
unsigned Tmp1 = MakeReg(MVT::i64);
|
|
|
|
BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1);
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ExternalSymbol: {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
|
|
// assert(0 && "sorry, but what did you want an ExternalSymbol for again?");
|
|
BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_EXTEND: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ZERO_EXTEND: {
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // value
|
|
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Cannot zero-extend this type!");
|
|
case MVT::i8: Opc = IA64::ZXT1; break;
|
|
case MVT::i16: Opc = IA64::ZXT2; break;
|
|
case MVT::i32: Opc = IA64::ZXT4; break;
|
|
|
|
// we handle bools differently! :
|
|
case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR.
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
// first load zero:
|
|
BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
|
|
// ...then conditionally (PR:Tmp1) add 1:
|
|
BuildMI(BB, IA64::CADDIMM22, 3, Result).addReg(dummy)
|
|
.addImm(1).addReg(Tmp1);
|
|
return Result; // XXX early exit!
|
|
}
|
|
}
|
|
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND: { // we should only have to handle i1 -> i64 here!!!
|
|
|
|
assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
|
|
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // value
|
|
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Cannot sign-extend this type!");
|
|
case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n");
|
|
Opc = IA64::SXT1; break;
|
|
// FIXME: for now, we treat bools the same as i8s
|
|
case MVT::i8: Opc = IA64::SXT1; break;
|
|
case MVT::i16: Opc = IA64::SXT2; break;
|
|
case MVT::i32: Opc = IA64::SXT4; break;
|
|
}
|
|
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::TRUNCATE: {
|
|
// we use the funky dep.z (deposit (zero)) instruction to deposit bits
|
|
// of R0 appropriately.
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i64: break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
unsigned depositPos, depositLen;
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i1: {
|
|
// if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1):
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1)
|
|
.addReg(IA64::r0);
|
|
return Result; // XXX early exit!
|
|
}
|
|
case MVT::i8: depositPos=0; depositLen=8; break;
|
|
case MVT::i16: depositPos=0; depositLen=16; break;
|
|
case MVT::i32: depositPos=0; depositLen=32; break;
|
|
}
|
|
BuildMI(BB, IA64::DEPZ, 1, Result).addReg(Tmp1)
|
|
.addImm(depositPos).addImm(depositLen);
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
case ISD::FP_ROUND: {
|
|
assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 &&
|
|
"error: trying to FP_ROUND something other than f64 -> f32!\n");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0);
|
|
// we add 0.0 using a single precision add to do rounding
|
|
return Result;
|
|
}
|
|
*/
|
|
|
|
// FIXME: the following 4 cases need cleaning
|
|
case ISD::SINT_TO_FP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
unsigned dummy = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2);
|
|
BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::UINT_TO_FP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
unsigned dummy = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2);
|
|
BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_TO_SINT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_TO_UINT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
|
|
N.getOperand(0).Val->hasOneUse()) { // if we can fold this add
|
|
// into an fma, do so:
|
|
// ++FusedFP; // Statistic
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
|
|
Tmp3 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
if(DestType != MVT::f64)
|
|
BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); // int
|
|
else
|
|
BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2); // FP
|
|
return Result;
|
|
}
|
|
|
|
case ISD::MUL: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
if(DestType != MVT::f64) { // TODO: speed!
|
|
// boring old integer multiply with xma
|
|
unsigned TempFR1=MakeReg(MVT::f64);
|
|
unsigned TempFR2=MakeReg(MVT::f64);
|
|
unsigned TempFR3=MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2);
|
|
BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2)
|
|
.addReg(IA64::F0);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3);
|
|
}
|
|
else // floating point multiply
|
|
BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SUB: {
|
|
if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
|
|
N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub
|
|
// into an fms, do so:
|
|
// ++FusedFP; // Statistic
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
|
|
Tmp3 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
if(DestType != MVT::f64)
|
|
BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
else
|
|
BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FABS: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
assert(DestType == MVT::f64 && "trying to fabs something other than f64?");
|
|
BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FNEG: {
|
|
assert(DestType == MVT::f64 && "trying to fneg something other than f64?");
|
|
|
|
if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()?
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::AND: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot AND this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode AND
|
|
unsigned pA = SelectExpr(N.getOperand(0));
|
|
unsigned pB = SelectExpr(N.getOperand(1));
|
|
|
|
/* our pseudocode for AND is:
|
|
*
|
|
(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
|
|
cmp.eq pTemp,p0 = r0,r0 // pTemp = NOT pB
|
|
;;
|
|
(pB) cmp.ne pTemp,p0 = r0,r0
|
|
;;
|
|
(pTemp)cmp.ne pC,p0 = r0,r0 // if (NOT pB) pC = 0
|
|
|
|
*/
|
|
unsigned pTemp = MakeReg(MVT::i1);
|
|
|
|
unsigned bogusTemp1 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp2 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp3 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp4 = MakeReg(MVT::i1);
|
|
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
|
|
BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2)
|
|
.addReg(IA64::r0).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, pTemp)
|
|
.addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, Result)
|
|
.addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp);
|
|
break;
|
|
}
|
|
// if not a bool, we just AND away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::OR: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot OR this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode OR
|
|
unsigned pA = SelectExpr(N.getOperand(0));
|
|
unsigned pB = SelectExpr(N.getOperand(1));
|
|
|
|
unsigned pTemp1 = MakeReg(MVT::i1);
|
|
|
|
/* our pseudocode for OR is:
|
|
*
|
|
|
|
pC = pA OR pB
|
|
-------------
|
|
|
|
(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
|
|
;;
|
|
(pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1
|
|
|
|
*/
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
|
|
BuildMI(BB, IA64::TPCMPEQ, 3, Result)
|
|
.addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
|
|
break;
|
|
}
|
|
// if not a bool, we just OR away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::XOR: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot XOR this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode XOR
|
|
unsigned pY = SelectExpr(N.getOperand(0));
|
|
unsigned pZ = SelectExpr(N.getOperand(1));
|
|
|
|
/* one possible routine for XOR is:
|
|
|
|
// Compute px = py ^ pz
|
|
// using sum of products: px = (py & !pz) | (pz & !py)
|
|
// Uses 5 instructions in 3 cycles.
|
|
// cycle 1
|
|
(pz) cmp.eq.unc px = r0, r0 // px = pz
|
|
(py) cmp.eq.unc pt = r0, r0 // pt = py
|
|
;;
|
|
// cycle 2
|
|
(pt) cmp.ne.and px = r0, r0 // px = px & !pt (px = pz & !pt)
|
|
(pz) cmp.ne.and pt = r0, r0 // pt = pt & !pz
|
|
;;
|
|
} { .mmi
|
|
// cycle 3
|
|
(pt) cmp.eq.or px = r0, r0 // px = px | pt
|
|
|
|
*** Another, which we use here, requires one scratch GR. it is:
|
|
|
|
mov rt = 0 // initialize rt off critical path
|
|
;;
|
|
|
|
// cycle 1
|
|
(pz) cmp.eq.unc px = r0, r0 // px = pz
|
|
(pz) mov rt = 1 // rt = pz
|
|
;;
|
|
// cycle 2
|
|
(py) cmp.ne px = 1, rt // if (py) px = !pz
|
|
|
|
.. these routines kindly provided by Jim Hull
|
|
*/
|
|
unsigned rt = MakeReg(MVT::i64);
|
|
|
|
// these two temporaries will never actually appear,
|
|
// due to the two-address form of some of the instructions below
|
|
unsigned bogoPR = MakeReg(MVT::i1); // becomes Result
|
|
unsigned bogoGR = MakeReg(MVT::i64); // becomes rt
|
|
|
|
BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pZ);
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, rt)
|
|
.addReg(bogoGR).addImm(1).addReg(pZ);
|
|
BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result)
|
|
.addReg(bogoPR).addImm(1).addReg(rt).addReg(pY);
|
|
break;
|
|
}
|
|
// if not a bool, we just XOR away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SHL: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
case ISD::SRL: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
case ISD::SRA: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM: {
|
|
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
bool isFP=false;
|
|
|
|
if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we?
|
|
isFP=true;
|
|
|
|
bool isModulus=false; // is it a division or a modulus?
|
|
bool isSigned=false;
|
|
|
|
switch(N.getOpcode()) {
|
|
case ISD::SDIV: isModulus=false; isSigned=true; break;
|
|
case ISD::UDIV: isModulus=false; isSigned=false; break;
|
|
case ISD::SREM: isModulus=true; isSigned=true; break;
|
|
case ISD::UREM: isModulus=true; isSigned=false; break;
|
|
}
|
|
|
|
if(!isModulus && !isFP) { // if this is an integer divide,
|
|
switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) {
|
|
case 1: // division by a constant that's a power of 2
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if(isSigned) // becomes a shift right:
|
|
BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addImm(Tmp3);
|
|
else
|
|
BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
}
|
|
|
|
unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch
|
|
unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers,
|
|
unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs.
|
|
unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64?
|
|
unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have
|
|
unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these
|
|
unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with
|
|
unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc.
|
|
unsigned TmpF7=MakeReg(MVT::f64);
|
|
unsigned TmpF8=MakeReg(MVT::f64);
|
|
unsigned TmpF9=MakeReg(MVT::f64);
|
|
unsigned TmpF10=MakeReg(MVT::f64);
|
|
unsigned TmpF11=MakeReg(MVT::f64);
|
|
unsigned TmpF12=MakeReg(MVT::f64);
|
|
unsigned TmpF13=MakeReg(MVT::f64);
|
|
unsigned TmpF14=MakeReg(MVT::f64);
|
|
unsigned TmpF15=MakeReg(MVT::f64);
|
|
|
|
// OK, emit some code:
|
|
|
|
if(!isFP) {
|
|
// first, load the inputs into FP regs.
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2);
|
|
|
|
// next, convert the inputs to FP
|
|
if(isSigned) {
|
|
BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1);
|
|
BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2);
|
|
} else {
|
|
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1);
|
|
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2);
|
|
}
|
|
|
|
} else { // this is an FP divide/remainder, so we 'leak' some temp
|
|
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2
|
|
TmpF3=Tmp1;
|
|
TmpF4=Tmp2;
|
|
}
|
|
|
|
// we start by computing an approximate reciprocal (good to 9 bits?)
|
|
// note, this instruction writes _both_ TmpF5 (answer) and tmpPR (predicate)
|
|
// FIXME: or at least, it should!!
|
|
BuildMI(BB, IA64::FRCPAS1FLOAT, 2, TmpF5).addReg(TmpF3).addReg(TmpF4);
|
|
BuildMI(BB, IA64::FRCPAS1PREDICATE, 2, TmpPR).addReg(TmpF3).addReg(TmpF4);
|
|
|
|
if(!isModulus) { // if this is a divide, we worry about div-by-zero
|
|
unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress
|
|
// TPCMPNE below
|
|
BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR);
|
|
}
|
|
|
|
// now we apply newton's method, thrice! (FIXME: this is ~72 bits of
|
|
// precision, don't need this much for f32/i32)
|
|
BuildMI(BB, IA64::CFNMAS1, 4, TmpF6)
|
|
.addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF7)
|
|
.addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF8)
|
|
.addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF9)
|
|
.addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF10)
|
|
.addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF11)
|
|
.addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF12)
|
|
.addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFNMAS1, 4,TmpF13)
|
|
.addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR);
|
|
|
|
// FIXME: this is unfortunate :(
|
|
// the story is that the dest reg of the fnma above and the fma below
|
|
// (and therefore possibly the src of the fcvt.fx[u] as well) cannot
|
|
// be the same register, or this code breaks if the first argument is
|
|
// zero. (e.g. without this hack, 0%8 yields -64, not 0.)
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF14)
|
|
.addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR);
|
|
|
|
if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
|
|
BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :(
|
|
}
|
|
|
|
if(!isFP) {
|
|
// round to an integer
|
|
if(isSigned)
|
|
BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14);
|
|
else
|
|
BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14);
|
|
} else {
|
|
BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14);
|
|
// EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
|
|
// we really do need the above FMOV? ;)
|
|
}
|
|
|
|
if(!isModulus) {
|
|
if(isFP) { // extra worrying about div-by-zero
|
|
unsigned bogoResult=MakeReg(MVT::f64);
|
|
|
|
// we do a 'conditional fmov' (of the correct result, depending
|
|
// on how the frcpa predicate turned out)
|
|
BuildMI(BB, IA64::PFMOV, 2, bogoResult)
|
|
.addReg(TmpF12).addReg(TmpPR2);
|
|
BuildMI(BB, IA64::CFMOV, 2, Result)
|
|
.addReg(bogoResult).addReg(TmpF15).addReg(TmpPR);
|
|
}
|
|
else {
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15);
|
|
}
|
|
} else { // this is a modulus
|
|
if(!isFP) {
|
|
// answer = q * (-b) + a
|
|
unsigned ModulusResult = MakeReg(MVT::f64);
|
|
unsigned TmpF = MakeReg(MVT::f64);
|
|
unsigned TmpI = MakeReg(MVT::i64);
|
|
|
|
BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI);
|
|
BuildMI(BB, IA64::XMAL, 3, ModulusResult)
|
|
.addReg(TmpF15).addReg(TmpF).addReg(TmpF1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult);
|
|
} else { // FP modulus! The horror... the horror....
|
|
assert(0 && "sorry, no FP modulus just yet!\n!\n");
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ZERO_EXTEND_INREG: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
MVTSDNode* MVN = dyn_cast<MVTSDNode>(Node);
|
|
switch(MVN->getExtraValueType())
|
|
{
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "don't know how to zero extend this type");
|
|
break;
|
|
case MVT::i8: Opc = IA64::ZXT1; break;
|
|
case MVT::i16: Opc = IA64::ZXT2; break;
|
|
case MVT::i32: Opc = IA64::ZXT4; break;
|
|
}
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
MVTSDNode* MVN = dyn_cast<MVTSDNode>(Node);
|
|
switch(MVN->getExtraValueType())
|
|
{
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "don't know how to sign extend this type");
|
|
break;
|
|
case MVT::i8: Opc = IA64::SXT1; break;
|
|
case MVT::i16: Opc = IA64::SXT2; break;
|
|
case MVT::i32: Opc = IA64::SXT4; break;
|
|
}
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SETCC: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
|
|
if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
|
|
switch (SetCC->getCondition()) {
|
|
default: assert(0 && "Unknown integer comparison!");
|
|
case ISD::SETEQ:
|
|
BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGT:
|
|
BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGE:
|
|
BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLT:
|
|
BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLE:
|
|
BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETNE:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULT:
|
|
BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGT:
|
|
BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULE:
|
|
BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGE:
|
|
BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
else { // if not integer, should be FP. FIXME: what about bools? ;)
|
|
assert(SetCC->getOperand(0).getValueType() != MVT::f32 &&
|
|
"error: SETCC should have had incoming f32 promoted to f64!\n");
|
|
switch (SetCC->getCondition()) {
|
|
default: assert(0 && "Unknown FP comparison!");
|
|
case ISD::SETEQ:
|
|
BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGT:
|
|
BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGE:
|
|
BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLT:
|
|
BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLE:
|
|
BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETNE:
|
|
BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULT:
|
|
BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGT:
|
|
BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULE:
|
|
BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGE:
|
|
BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
assert(0 && "this setcc not implemented yet");
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::LOAD: {
|
|
// Make sure we generate both values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
bool isBool=false;
|
|
|
|
if(opcode == ISD::LOAD) { // this is a LOAD
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Cannot load this type!");
|
|
case MVT::i1: Opc = IA64::LD1; isBool=true; break;
|
|
// FIXME: for now, we treat bool loads the same as i8 loads */
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::i64: Opc = IA64::LD8; break;
|
|
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
case MVT::f64: Opc = IA64::LDF8; break;
|
|
}
|
|
} else { // this is an EXTLOAD or ZEXTLOAD
|
|
MVT::ValueType TypeBeingLoaded = cast<MVTSDNode>(Node)->getExtraValueType();
|
|
switch (TypeBeingLoaded) {
|
|
default: assert(0 && "Cannot extload/zextload this type!");
|
|
// FIXME: bools?
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
}
|
|
}
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Address = N.getOperand(1);
|
|
|
|
if(Address.getOpcode() == ISD::GlobalAddress) {
|
|
Select(Chain);
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
unsigned dummy2 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy)
|
|
.addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal())
|
|
.addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy2);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy2);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
|
|
Select(Chain);
|
|
IA64Lowering.restoreGP(BB);
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CP->getIndex())
|
|
.addReg(IA64::r1); // CPI+GP
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else if(Address.getOpcode() == ISD::FrameIndex) {
|
|
Select(Chain); // FIXME ? what about bools?
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else { // none of the above...
|
|
Select(Chain);
|
|
Tmp2 = SelectExpr(Address);
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy).addReg(Tmp2);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::CopyFromReg: {
|
|
if (Result == 1)
|
|
Result = ExprMap[N.getValue(0)] =
|
|
MakeReg(N.getValue(0).getValueType());
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
|
|
Select(Chain);
|
|
unsigned r = dyn_cast<RegSDNode>(Node)->getReg();
|
|
|
|
if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, Result)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(r);
|
|
// (r) Result =cmp.eq.unc(r0,r0)
|
|
else
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV
|
|
return Result;
|
|
}
|
|
|
|
case ISD::CALL: {
|
|
Select(N.getOperand(0));
|
|
|
|
// The chain for this call is now lowered.
|
|
ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
|
|
|
|
//grab the arguments
|
|
std::vector<unsigned> argvregs;
|
|
|
|
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
|
|
argvregs.push_back(SelectExpr(N.getOperand(i)));
|
|
|
|
// see section 8.5.8 of "Itanium Software Conventions and
|
|
// Runtime Architecture Guide to see some examples of what's going
|
|
// on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
|
|
// while FP args get mapped to F8->F15 as needed)
|
|
|
|
unsigned used_FPArgs=0; // how many FP Args have been used so far?
|
|
|
|
// in reg args
|
|
for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i)
|
|
{
|
|
unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
|
|
IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
|
|
unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
|
|
IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
|
|
|
|
switch(N.getOperand(i+2).getValueType())
|
|
{
|
|
default: // XXX do we need to support MVT::i1 here?
|
|
Node->dump();
|
|
N.getOperand(i).Val->dump();
|
|
std::cerr << "Type for " << i << " is: " <<
|
|
N.getOperand(i+2).getValueType() << std::endl;
|
|
assert(0 && "Unknown value type for call");
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]);
|
|
break;
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++])
|
|
.addReg(argvregs[i]);
|
|
// FIXME: we don't need to do this _all_ the time:
|
|
BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//in mem args
|
|
for (int i = 8, e = argvregs.size(); i < e; ++i)
|
|
{
|
|
unsigned tempAddr = MakeReg(MVT::i64);
|
|
|
|
switch(N.getOperand(i+2).getValueType()) {
|
|
default:
|
|
Node->dump();
|
|
N.getOperand(i).Val->dump();
|
|
std::cerr << "Type for " << i << " is: " <<
|
|
N.getOperand(i+2).getValueType() << "\n";
|
|
assert(0 && "Unknown value type for call");
|
|
case MVT::i1: // FIXME?
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
|
|
.addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
|
|
BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
|
|
.addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
|
|
BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* XXX we want to re-enable direct branches! crippling them now
|
|
* to stress-test indirect branches.:
|
|
//build the right kind of call
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
|
|
{
|
|
BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true);
|
|
IA64Lowering.restoreGP_SP_RP(BB);
|
|
}
|
|
^^^^^^^^^^^^^ we want this code one day XXX */
|
|
if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
|
|
{ // FIXME : currently need this case for correctness, to avoid
|
|
// "non-pic code with imm relocation against dynamic symbol" errors
|
|
BuildMI(BB, IA64::BRCALL, 1)
|
|
.addExternalSymbol(ESSDN->getSymbol(), true);
|
|
IA64Lowering.restoreGP_SP_RP(BB);
|
|
}
|
|
else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
|
|
unsigned targetEntryPoint=MakeReg(MVT::i64);
|
|
unsigned targetGPAddr=MakeReg(MVT::i64);
|
|
unsigned currentGP=MakeReg(MVT::i64);
|
|
|
|
// b6 is a scratch branch register, we load the target entry point
|
|
// from the base of the function descriptor
|
|
BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint);
|
|
|
|
// save the current GP:
|
|
BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1);
|
|
|
|
/* TODO: we need to make sure doing this never, ever loads a
|
|
* bogus value into r1 (GP). */
|
|
// load the target GP (which is at mem[functiondescriptor+8])
|
|
BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr)
|
|
.addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld
|
|
BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr);
|
|
|
|
// and then jump: (well, call)
|
|
BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6);
|
|
// and finally restore the old GP
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP);
|
|
IA64Lowering.restoreSP_RP(BB);
|
|
}
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Unknown value type for call result!");
|
|
case MVT::Other: return 1;
|
|
case MVT::i1:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result)
|
|
.addReg(IA64::r8).addReg(IA64::r0);
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8);
|
|
break;
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8);
|
|
break;
|
|
}
|
|
return Result+N.ResNo;
|
|
}
|
|
|
|
} // <- uhhh XXX
|
|
return 0;
|
|
}
|
|
|
|
void ISel::Select(SDOperand N) {
|
|
unsigned Tmp1, Tmp2, Opc;
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
if (!LoweredTokens.insert(N).second)
|
|
return; // Already selected.
|
|
|
|
SDNode *Node = N.Val;
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
Node->dump(); std::cerr << "\n";
|
|
assert(0 && "Node not handled yet!");
|
|
|
|
case ISD::EntryToken: return; // Noop
|
|
|
|
case ISD::TokenFactor: {
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
Select(Node->getOperand(i));
|
|
return;
|
|
}
|
|
|
|
case ISD::CopyToReg: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Tmp2 = cast<RegSDNode>(N)->getReg();
|
|
|
|
if (Tmp1 != Tmp2) {
|
|
if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1);
|
|
// (Tmp1) Tmp2 = cmp.eq.unc(r0,r0)
|
|
else
|
|
BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1);
|
|
// XXX is this the right way 'round? ;)
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ISD::RET: {
|
|
|
|
/* what the heck is going on here:
|
|
|
|
<_sabre_> ret with two operands is obvious: chain and value
|
|
<camel_> yep
|
|
<_sabre_> ret with 3 values happens when 'expansion' occurs
|
|
<_sabre_> e.g. i64 gets split into 2x i32
|
|
<camel_> oh right
|
|
<_sabre_> you don't have this case on ia64
|
|
<camel_> yep
|
|
<_sabre_> so the two returned values go into EAX/EDX on ia32
|
|
<camel_> ahhh *memories*
|
|
<_sabre_> :)
|
|
<camel_> ok, thanks :)
|
|
<_sabre_> so yeah, everything that has a side effect takes a 'token chain'
|
|
<_sabre_> this is the first operand always
|
|
<_sabre_> these operand often define chains, they are the last operand
|
|
<_sabre_> they are printed as 'ch' if you do DAG.dump()
|
|
*/
|
|
|
|
switch (N.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Unknown return instruction!");
|
|
case 2:
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "All other types should have been promoted!!");
|
|
// FIXME: do I need to add support for bools here?
|
|
// (return '0' or '1' r8, basically...)
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
|
|
break;
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
|
|
}
|
|
break;
|
|
case 1:
|
|
Select(N.getOperand(0));
|
|
break;
|
|
}
|
|
// before returning, restore the ar.pfs register (set by the 'alloc' up top)
|
|
BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
|
|
BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction
|
|
return;
|
|
}
|
|
|
|
case ISD::BR: {
|
|
Select(N.getOperand(0));
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
|
|
BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest);
|
|
// XXX HACK! we do _not_ need long branches all the time
|
|
return;
|
|
}
|
|
|
|
case ISD::ImplicitDef: {
|
|
Select(N.getOperand(0));
|
|
BuildMI(BB, IA64::IDEF, 0, cast<RegSDNode>(N)->getReg());
|
|
return;
|
|
}
|
|
|
|
case ISD::BRCOND: {
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
|
|
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest);
|
|
// XXX HACK! we do _not_ need long branches all the time
|
|
return;
|
|
}
|
|
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::SEXTLOAD:
|
|
case ISD::LOAD:
|
|
case ISD::CALL:
|
|
case ISD::CopyFromReg:
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
SelectExpr(N);
|
|
return;
|
|
|
|
case ISD::TRUNCSTORE:
|
|
case ISD::STORE: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1)); // value
|
|
|
|
bool isBool=false;
|
|
|
|
if(opcode == ISD::STORE) {
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "Cannot store this type!");
|
|
case MVT::i1: Opc = IA64::ST1; isBool=true; break;
|
|
// FIXME?: for now, we treat bool loads the same as i8 stores */
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::i64: Opc = IA64::ST8; break;
|
|
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
case MVT::f64: Opc = IA64::STF8; break;
|
|
}
|
|
} else { // truncstore
|
|
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
|
|
default: assert(0 && "unknown type in truncstore");
|
|
case MVT::i1: Opc = IA64::ST1; isBool=true; break;
|
|
//FIXME: DAG does not promote this load?
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
}
|
|
}
|
|
|
|
if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) {
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
unsigned dummy2 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy)
|
|
.addGlobalAddress(cast<GlobalAddressSDNode>
|
|
(N.getOperand(2))->getGlobal()).addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
|
|
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1);
|
|
else { // we are storing a bool, so emit a little pseudocode
|
|
// to store a predicate register as one byte
|
|
assert(Opc==IA64::ST1);
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
unsigned dummy4 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::CADDIMM22, 3, dummy4)
|
|
.addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
|
|
BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4);
|
|
}
|
|
} else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) {
|
|
|
|
// FIXME? (what about bools?)
|
|
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex());
|
|
BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1);
|
|
} else { // otherwise
|
|
Tmp2 = SelectExpr(N.getOperand(2)); //address
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1);
|
|
else { // we are storing a bool, so emit a little pseudocode
|
|
// to store a predicate register as one byte
|
|
assert(Opc==IA64::ST1);
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
unsigned dummy4 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::CADDIMM22, 3, dummy4)
|
|
.addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
|
|
BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ISD::ADJCALLSTACKDOWN:
|
|
case ISD::ADJCALLSTACKUP: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
|
|
|
|
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? IA64::ADJUSTCALLSTACKDOWN :
|
|
IA64::ADJUSTCALLSTACKUP;
|
|
BuildMI(BB, Opc, 1).addImm(Tmp1);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
assert(0 && "GAME OVER. INSERT COIN?");
|
|
}
|
|
|
|
|
|
/// createIA64PatternInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation using pattern matching and a machine
|
|
/// description file.
|
|
///
|
|
FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|
|
|
|
|