mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
f2dafac922
Essentially, the cover function simply combines the loop level check and the function level scope into one call. This simplifies several callers and is (subjectively) less error prone.
1222 lines
41 KiB
C++
1222 lines
41 KiB
C++
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
|
// loops identified may actually be several natural loops that share the same
|
|
// header node... not just a single natural loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/LoopInfoImpl.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopNestAnalysis.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PrintPasses.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
|
|
template class llvm::LoopBase<BasicBlock, Loop>;
|
|
template class llvm::LoopInfoBase<BasicBlock, Loop>;
|
|
|
|
// Always verify loopinfo if expensive checking is enabled.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
bool llvm::VerifyLoopInfo = true;
|
|
#else
|
|
bool llvm::VerifyLoopInfo = false;
|
|
#endif
|
|
static cl::opt<bool, true>
|
|
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
|
|
cl::Hidden, cl::desc("Verify loop info (time consuming)"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop implementation
|
|
//
|
|
|
|
bool Loop::isLoopInvariant(const Value *V) const {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return !contains(I);
|
|
return true; // All non-instructions are loop invariant
|
|
}
|
|
|
|
bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
|
|
return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
|
|
}
|
|
|
|
bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
|
|
MemorySSAUpdater *MSSAU) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
|
|
return true; // All non-instructions are loop-invariant.
|
|
}
|
|
|
|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
|
|
Instruction *InsertPt,
|
|
MemorySSAUpdater *MSSAU) const {
|
|
// Test if the value is already loop-invariant.
|
|
if (isLoopInvariant(I))
|
|
return true;
|
|
if (!isSafeToSpeculativelyExecute(I))
|
|
return false;
|
|
if (I->mayReadFromMemory())
|
|
return false;
|
|
// EH block instructions are immobile.
|
|
if (I->isEHPad())
|
|
return false;
|
|
// Determine the insertion point, unless one was given.
|
|
if (!InsertPt) {
|
|
BasicBlock *Preheader = getLoopPreheader();
|
|
// Without a preheader, hoisting is not feasible.
|
|
if (!Preheader)
|
|
return false;
|
|
InsertPt = Preheader->getTerminator();
|
|
}
|
|
// Don't hoist instructions with loop-variant operands.
|
|
for (Value *Operand : I->operands())
|
|
if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
|
|
return false;
|
|
|
|
// Hoist.
|
|
I->moveBefore(InsertPt);
|
|
if (MSSAU)
|
|
if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
|
|
MSSAU->moveToPlace(MUD, InsertPt->getParent(),
|
|
MemorySSA::BeforeTerminator);
|
|
|
|
// There is possibility of hoisting this instruction above some arbitrary
|
|
// condition. Any metadata defined on it can be control dependent on this
|
|
// condition. Conservatively strip it here so that we don't give any wrong
|
|
// information to the optimizer.
|
|
I->dropUnknownNonDebugMetadata();
|
|
|
|
Changed = true;
|
|
return true;
|
|
}
|
|
|
|
bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
|
|
BasicBlock *&Backedge) const {
|
|
BasicBlock *H = getHeader();
|
|
|
|
Incoming = nullptr;
|
|
Backedge = nullptr;
|
|
pred_iterator PI = pred_begin(H);
|
|
assert(PI != pred_end(H) && "Loop must have at least one backedge!");
|
|
Backedge = *PI++;
|
|
if (PI == pred_end(H))
|
|
return false; // dead loop
|
|
Incoming = *PI++;
|
|
if (PI != pred_end(H))
|
|
return false; // multiple backedges?
|
|
|
|
if (contains(Incoming)) {
|
|
if (contains(Backedge))
|
|
return false;
|
|
std::swap(Incoming, Backedge);
|
|
} else if (!contains(Backedge))
|
|
return false;
|
|
|
|
assert(Incoming && Backedge && "expected non-null incoming and backedges");
|
|
return true;
|
|
}
|
|
|
|
PHINode *Loop::getCanonicalInductionVariable() const {
|
|
BasicBlock *H = getHeader();
|
|
|
|
BasicBlock *Incoming = nullptr, *Backedge = nullptr;
|
|
if (!getIncomingAndBackEdge(Incoming, Backedge))
|
|
return nullptr;
|
|
|
|
// Loop over all of the PHI nodes, looking for a canonical indvar.
|
|
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
|
|
if (CI->isZero())
|
|
if (Instruction *Inc =
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
|
if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
|
if (CI->isOne())
|
|
return PN;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get the latch condition instruction.
|
|
static ICmpInst *getLatchCmpInst(const Loop &L) {
|
|
if (BasicBlock *Latch = L.getLoopLatch())
|
|
if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
|
|
if (BI->isConditional())
|
|
return dyn_cast<ICmpInst>(BI->getCondition());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the final value of the loop induction variable if found.
|
|
static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
|
|
const Instruction &StepInst) {
|
|
ICmpInst *LatchCmpInst = getLatchCmpInst(L);
|
|
if (!LatchCmpInst)
|
|
return nullptr;
|
|
|
|
Value *Op0 = LatchCmpInst->getOperand(0);
|
|
Value *Op1 = LatchCmpInst->getOperand(1);
|
|
if (Op0 == &IndVar || Op0 == &StepInst)
|
|
return Op1;
|
|
|
|
if (Op1 == &IndVar || Op1 == &StepInst)
|
|
return Op0;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
|
|
PHINode &IndVar,
|
|
ScalarEvolution &SE) {
|
|
InductionDescriptor IndDesc;
|
|
if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
|
|
return None;
|
|
|
|
Value *InitialIVValue = IndDesc.getStartValue();
|
|
Instruction *StepInst = IndDesc.getInductionBinOp();
|
|
if (!InitialIVValue || !StepInst)
|
|
return None;
|
|
|
|
const SCEV *Step = IndDesc.getStep();
|
|
Value *StepInstOp1 = StepInst->getOperand(1);
|
|
Value *StepInstOp0 = StepInst->getOperand(0);
|
|
Value *StepValue = nullptr;
|
|
if (SE.getSCEV(StepInstOp1) == Step)
|
|
StepValue = StepInstOp1;
|
|
else if (SE.getSCEV(StepInstOp0) == Step)
|
|
StepValue = StepInstOp0;
|
|
|
|
Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
|
|
if (!FinalIVValue)
|
|
return None;
|
|
|
|
return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
|
|
SE);
|
|
}
|
|
|
|
using Direction = Loop::LoopBounds::Direction;
|
|
|
|
ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
|
|
BasicBlock *Latch = L.getLoopLatch();
|
|
assert(Latch && "Expecting valid latch");
|
|
|
|
BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
|
|
assert(BI && BI->isConditional() && "Expecting conditional latch branch");
|
|
|
|
ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
|
|
assert(LatchCmpInst &&
|
|
"Expecting the latch compare instruction to be a CmpInst");
|
|
|
|
// Need to inverse the predicate when first successor is not the loop
|
|
// header
|
|
ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
|
|
? LatchCmpInst->getPredicate()
|
|
: LatchCmpInst->getInversePredicate();
|
|
|
|
if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
|
|
// Need to flip strictness of the predicate when the latch compare instruction
|
|
// is not using StepInst
|
|
if (LatchCmpInst->getOperand(0) == &getStepInst() ||
|
|
LatchCmpInst->getOperand(1) == &getStepInst())
|
|
return Pred;
|
|
|
|
// Cannot flip strictness of NE and EQ
|
|
if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
|
|
return ICmpInst::getFlippedStrictnessPredicate(Pred);
|
|
|
|
Direction D = getDirection();
|
|
if (D == Direction::Increasing)
|
|
return ICmpInst::ICMP_SLT;
|
|
|
|
if (D == Direction::Decreasing)
|
|
return ICmpInst::ICMP_SGT;
|
|
|
|
// If cannot determine the direction, then unable to find the canonical
|
|
// predicate
|
|
return ICmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
Direction Loop::LoopBounds::getDirection() const {
|
|
if (const SCEVAddRecExpr *StepAddRecExpr =
|
|
dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
|
|
if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
|
|
if (SE.isKnownPositive(StepRecur))
|
|
return Direction::Increasing;
|
|
if (SE.isKnownNegative(StepRecur))
|
|
return Direction::Decreasing;
|
|
}
|
|
|
|
return Direction::Unknown;
|
|
}
|
|
|
|
Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
|
|
if (PHINode *IndVar = getInductionVariable(SE))
|
|
return LoopBounds::getBounds(*this, *IndVar, SE);
|
|
|
|
return None;
|
|
}
|
|
|
|
PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
|
|
if (!isLoopSimplifyForm())
|
|
return nullptr;
|
|
|
|
BasicBlock *Header = getHeader();
|
|
assert(Header && "Expected a valid loop header");
|
|
ICmpInst *CmpInst = getLatchCmpInst(*this);
|
|
if (!CmpInst)
|
|
return nullptr;
|
|
|
|
Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
|
|
Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
|
|
|
|
for (PHINode &IndVar : Header->phis()) {
|
|
InductionDescriptor IndDesc;
|
|
if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
|
|
continue;
|
|
|
|
Instruction *StepInst = IndDesc.getInductionBinOp();
|
|
|
|
// case 1:
|
|
// IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
|
|
// StepInst = IndVar + step
|
|
// cmp = StepInst < FinalValue
|
|
if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
|
|
return &IndVar;
|
|
|
|
// case 2:
|
|
// IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
|
|
// StepInst = IndVar + step
|
|
// cmp = IndVar < FinalValue
|
|
if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
|
|
return &IndVar;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool Loop::getInductionDescriptor(ScalarEvolution &SE,
|
|
InductionDescriptor &IndDesc) const {
|
|
if (PHINode *IndVar = getInductionVariable(SE))
|
|
return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
|
|
ScalarEvolution &SE) const {
|
|
// Located in the loop header
|
|
BasicBlock *Header = getHeader();
|
|
if (AuxIndVar.getParent() != Header)
|
|
return false;
|
|
|
|
// No uses outside of the loop
|
|
for (User *U : AuxIndVar.users())
|
|
if (const Instruction *I = dyn_cast<Instruction>(U))
|
|
if (!contains(I))
|
|
return false;
|
|
|
|
InductionDescriptor IndDesc;
|
|
if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
|
|
return false;
|
|
|
|
// The step instruction opcode should be add or sub.
|
|
if (IndDesc.getInductionOpcode() != Instruction::Add &&
|
|
IndDesc.getInductionOpcode() != Instruction::Sub)
|
|
return false;
|
|
|
|
// Incremented by a loop invariant step for each loop iteration
|
|
return SE.isLoopInvariant(IndDesc.getStep(), this);
|
|
}
|
|
|
|
BranchInst *Loop::getLoopGuardBranch() const {
|
|
if (!isLoopSimplifyForm())
|
|
return nullptr;
|
|
|
|
BasicBlock *Preheader = getLoopPreheader();
|
|
assert(Preheader && getLoopLatch() &&
|
|
"Expecting a loop with valid preheader and latch");
|
|
|
|
// Loop should be in rotate form.
|
|
if (!isRotatedForm())
|
|
return nullptr;
|
|
|
|
// Disallow loops with more than one unique exit block, as we do not verify
|
|
// that GuardOtherSucc post dominates all exit blocks.
|
|
BasicBlock *ExitFromLatch = getUniqueExitBlock();
|
|
if (!ExitFromLatch)
|
|
return nullptr;
|
|
|
|
BasicBlock *GuardBB = Preheader->getUniquePredecessor();
|
|
if (!GuardBB)
|
|
return nullptr;
|
|
|
|
assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
|
|
|
|
BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
|
|
if (!GuardBI || GuardBI->isUnconditional())
|
|
return nullptr;
|
|
|
|
BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
|
|
? GuardBI->getSuccessor(1)
|
|
: GuardBI->getSuccessor(0);
|
|
|
|
// Check if ExitFromLatch (or any BasicBlock which is an empty unique
|
|
// successor of ExitFromLatch) is equal to GuardOtherSucc. If
|
|
// skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the
|
|
// loop is GuardBI (return GuardBI), otherwise return nullptr.
|
|
if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc,
|
|
/*CheckUniquePred=*/true) ==
|
|
GuardOtherSucc)
|
|
return GuardBI;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
bool Loop::isCanonical(ScalarEvolution &SE) const {
|
|
InductionDescriptor IndDesc;
|
|
if (!getInductionDescriptor(SE, IndDesc))
|
|
return false;
|
|
|
|
ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
|
|
if (!Init || !Init->isZero())
|
|
return false;
|
|
|
|
if (IndDesc.getInductionOpcode() != Instruction::Add)
|
|
return false;
|
|
|
|
ConstantInt *Step = IndDesc.getConstIntStepValue();
|
|
if (!Step || !Step->isOne())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check that 'BB' doesn't have any uses outside of the 'L'
|
|
static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
|
|
const DominatorTree &DT) {
|
|
for (const Instruction &I : BB) {
|
|
// Tokens can't be used in PHI nodes and live-out tokens prevent loop
|
|
// optimizations, so for the purposes of considered LCSSA form, we
|
|
// can ignore them.
|
|
if (I.getType()->isTokenTy())
|
|
continue;
|
|
|
|
for (const Use &U : I.uses()) {
|
|
const Instruction *UI = cast<Instruction>(U.getUser());
|
|
const BasicBlock *UserBB = UI->getParent();
|
|
|
|
// For practical purposes, we consider that the use in a PHI
|
|
// occurs in the respective predecessor block. For more info,
|
|
// see the `phi` doc in LangRef and the LCSSA doc.
|
|
if (const PHINode *P = dyn_cast<PHINode>(UI))
|
|
UserBB = P->getIncomingBlock(U);
|
|
|
|
// Check the current block, as a fast-path, before checking whether
|
|
// the use is anywhere in the loop. Most values are used in the same
|
|
// block they are defined in. Also, blocks not reachable from the
|
|
// entry are special; uses in them don't need to go through PHIs.
|
|
if (UserBB != &BB && !L.contains(UserBB) &&
|
|
DT.isReachableFromEntry(UserBB))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Loop::isLCSSAForm(const DominatorTree &DT) const {
|
|
// For each block we check that it doesn't have any uses outside of this loop.
|
|
return all_of(this->blocks(), [&](const BasicBlock *BB) {
|
|
return isBlockInLCSSAForm(*this, *BB, DT);
|
|
});
|
|
}
|
|
|
|
bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT,
|
|
const LoopInfo &LI) const {
|
|
// For each block we check that it doesn't have any uses outside of its
|
|
// innermost loop. This process will transitively guarantee that the current
|
|
// loop and all of the nested loops are in LCSSA form.
|
|
return all_of(this->blocks(), [&](const BasicBlock *BB) {
|
|
return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
|
|
});
|
|
}
|
|
|
|
bool Loop::isLoopSimplifyForm() const {
|
|
// Normal-form loops have a preheader, a single backedge, and all of their
|
|
// exits have all their predecessors inside the loop.
|
|
return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
|
|
}
|
|
|
|
// Routines that reform the loop CFG and split edges often fail on indirectbr.
|
|
bool Loop::isSafeToClone() const {
|
|
// Return false if any loop blocks contain indirectbrs, or there are any calls
|
|
// to noduplicate functions.
|
|
// FIXME: it should be ok to clone CallBrInst's if we correctly update the
|
|
// operand list to reflect the newly cloned labels.
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
if (isa<IndirectBrInst>(BB->getTerminator()) ||
|
|
isa<CallBrInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
for (Instruction &I : *BB)
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
if (CB->cannotDuplicate())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MDNode *Loop::getLoopID() const {
|
|
MDNode *LoopID = nullptr;
|
|
|
|
// Go through the latch blocks and check the terminator for the metadata.
|
|
SmallVector<BasicBlock *, 4> LatchesBlocks;
|
|
getLoopLatches(LatchesBlocks);
|
|
for (BasicBlock *BB : LatchesBlocks) {
|
|
Instruction *TI = BB->getTerminator();
|
|
MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
|
|
|
|
if (!MD)
|
|
return nullptr;
|
|
|
|
if (!LoopID)
|
|
LoopID = MD;
|
|
else if (MD != LoopID)
|
|
return nullptr;
|
|
}
|
|
if (!LoopID || LoopID->getNumOperands() == 0 ||
|
|
LoopID->getOperand(0) != LoopID)
|
|
return nullptr;
|
|
return LoopID;
|
|
}
|
|
|
|
void Loop::setLoopID(MDNode *LoopID) const {
|
|
assert((!LoopID || LoopID->getNumOperands() > 0) &&
|
|
"Loop ID needs at least one operand");
|
|
assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
|
|
"Loop ID should refer to itself");
|
|
|
|
SmallVector<BasicBlock *, 4> LoopLatches;
|
|
getLoopLatches(LoopLatches);
|
|
for (BasicBlock *BB : LoopLatches)
|
|
BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
|
|
}
|
|
|
|
void Loop::setLoopAlreadyUnrolled() {
|
|
LLVMContext &Context = getHeader()->getContext();
|
|
|
|
MDNode *DisableUnrollMD =
|
|
MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
|
|
MDNode *LoopID = getLoopID();
|
|
MDNode *NewLoopID = makePostTransformationMetadata(
|
|
Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
|
|
setLoopID(NewLoopID);
|
|
}
|
|
|
|
void Loop::setLoopMustProgress() {
|
|
LLVMContext &Context = getHeader()->getContext();
|
|
|
|
MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress");
|
|
|
|
if (MustProgress)
|
|
return;
|
|
|
|
MDNode *MustProgressMD =
|
|
MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress"));
|
|
MDNode *LoopID = getLoopID();
|
|
MDNode *NewLoopID =
|
|
makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD});
|
|
setLoopID(NewLoopID);
|
|
}
|
|
|
|
bool Loop::isAnnotatedParallel() const {
|
|
MDNode *DesiredLoopIdMetadata = getLoopID();
|
|
|
|
if (!DesiredLoopIdMetadata)
|
|
return false;
|
|
|
|
MDNode *ParallelAccesses =
|
|
findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
|
|
SmallPtrSet<MDNode *, 4>
|
|
ParallelAccessGroups; // For scalable 'contains' check.
|
|
if (ParallelAccesses) {
|
|
for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) {
|
|
MDNode *AccGroup = cast<MDNode>(MD.get());
|
|
assert(isValidAsAccessGroup(AccGroup) &&
|
|
"List item must be an access group");
|
|
ParallelAccessGroups.insert(AccGroup);
|
|
}
|
|
}
|
|
|
|
// The loop branch contains the parallel loop metadata. In order to ensure
|
|
// that any parallel-loop-unaware optimization pass hasn't added loop-carried
|
|
// dependencies (thus converted the loop back to a sequential loop), check
|
|
// that all the memory instructions in the loop belong to an access group that
|
|
// is parallel to this loop.
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
for (Instruction &I : *BB) {
|
|
if (!I.mayReadOrWriteMemory())
|
|
continue;
|
|
|
|
if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
|
|
auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
|
|
if (AG->getNumOperands() == 0) {
|
|
assert(isValidAsAccessGroup(AG) && "Item must be an access group");
|
|
return ParallelAccessGroups.count(AG);
|
|
}
|
|
|
|
for (const MDOperand &AccessListItem : AG->operands()) {
|
|
MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
|
|
assert(isValidAsAccessGroup(AccGroup) &&
|
|
"List item must be an access group");
|
|
if (ParallelAccessGroups.count(AccGroup))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (ContainsAccessGroup(AccessGroup))
|
|
continue;
|
|
}
|
|
|
|
// The memory instruction can refer to the loop identifier metadata
|
|
// directly or indirectly through another list metadata (in case of
|
|
// nested parallel loops). The loop identifier metadata refers to
|
|
// itself so we can check both cases with the same routine.
|
|
MDNode *LoopIdMD =
|
|
I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
|
|
|
|
if (!LoopIdMD)
|
|
return false;
|
|
|
|
if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
|
|
|
|
Loop::LocRange Loop::getLocRange() const {
|
|
// If we have a debug location in the loop ID, then use it.
|
|
if (MDNode *LoopID = getLoopID()) {
|
|
DebugLoc Start;
|
|
// We use the first DebugLoc in the header as the start location of the loop
|
|
// and if there is a second DebugLoc in the header we use it as end location
|
|
// of the loop.
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
|
|
if (!Start)
|
|
Start = DebugLoc(L);
|
|
else
|
|
return LocRange(Start, DebugLoc(L));
|
|
}
|
|
}
|
|
|
|
if (Start)
|
|
return LocRange(Start);
|
|
}
|
|
|
|
// Try the pre-header first.
|
|
if (BasicBlock *PHeadBB = getLoopPreheader())
|
|
if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
|
|
return LocRange(DL);
|
|
|
|
// If we have no pre-header or there are no instructions with debug
|
|
// info in it, try the header.
|
|
if (BasicBlock *HeadBB = getHeader())
|
|
return LocRange(HeadBB->getTerminator()->getDebugLoc());
|
|
|
|
return LocRange();
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
|
|
|
|
LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
|
|
print(dbgs(), /*Verbose=*/true);
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnloopUpdater implementation
|
|
//
|
|
|
|
namespace {
|
|
/// Find the new parent loop for all blocks within the "unloop" whose last
|
|
/// backedges has just been removed.
|
|
class UnloopUpdater {
|
|
Loop &Unloop;
|
|
LoopInfo *LI;
|
|
|
|
LoopBlocksDFS DFS;
|
|
|
|
// Map unloop's immediate subloops to their nearest reachable parents. Nested
|
|
// loops within these subloops will not change parents. However, an immediate
|
|
// subloop's new parent will be the nearest loop reachable from either its own
|
|
// exits *or* any of its nested loop's exits.
|
|
DenseMap<Loop *, Loop *> SubloopParents;
|
|
|
|
// Flag the presence of an irreducible backedge whose destination is a block
|
|
// directly contained by the original unloop.
|
|
bool FoundIB;
|
|
|
|
public:
|
|
UnloopUpdater(Loop *UL, LoopInfo *LInfo)
|
|
: Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
|
|
|
|
void updateBlockParents();
|
|
|
|
void removeBlocksFromAncestors();
|
|
|
|
void updateSubloopParents();
|
|
|
|
protected:
|
|
Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Update the parent loop for all blocks that are directly contained within the
|
|
/// original "unloop".
|
|
void UnloopUpdater::updateBlockParents() {
|
|
if (Unloop.getNumBlocks()) {
|
|
// Perform a post order CFG traversal of all blocks within this loop,
|
|
// propagating the nearest loop from successors to predecessors.
|
|
LoopBlocksTraversal Traversal(DFS, LI);
|
|
for (BasicBlock *POI : Traversal) {
|
|
|
|
Loop *L = LI->getLoopFor(POI);
|
|
Loop *NL = getNearestLoop(POI, L);
|
|
|
|
if (NL != L) {
|
|
// For reducible loops, NL is now an ancestor of Unloop.
|
|
assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
|
|
"uninitialized successor");
|
|
LI->changeLoopFor(POI, NL);
|
|
} else {
|
|
// Or the current block is part of a subloop, in which case its parent
|
|
// is unchanged.
|
|
assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
|
|
}
|
|
}
|
|
}
|
|
// Each irreducible loop within the unloop induces a round of iteration using
|
|
// the DFS result cached by Traversal.
|
|
bool Changed = FoundIB;
|
|
for (unsigned NIters = 0; Changed; ++NIters) {
|
|
assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
|
|
|
|
// Iterate over the postorder list of blocks, propagating the nearest loop
|
|
// from successors to predecessors as before.
|
|
Changed = false;
|
|
for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
|
|
POE = DFS.endPostorder();
|
|
POI != POE; ++POI) {
|
|
|
|
Loop *L = LI->getLoopFor(*POI);
|
|
Loop *NL = getNearestLoop(*POI, L);
|
|
if (NL != L) {
|
|
assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
|
|
"uninitialized successor");
|
|
LI->changeLoopFor(*POI, NL);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove unloop's blocks from all ancestors below their new parents.
|
|
void UnloopUpdater::removeBlocksFromAncestors() {
|
|
// Remove all unloop's blocks (including those in nested subloops) from
|
|
// ancestors below the new parent loop.
|
|
for (BasicBlock *BB : Unloop.blocks()) {
|
|
Loop *OuterParent = LI->getLoopFor(BB);
|
|
if (Unloop.contains(OuterParent)) {
|
|
while (OuterParent->getParentLoop() != &Unloop)
|
|
OuterParent = OuterParent->getParentLoop();
|
|
OuterParent = SubloopParents[OuterParent];
|
|
}
|
|
// Remove blocks from former Ancestors except Unloop itself which will be
|
|
// deleted.
|
|
for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
|
|
OldParent = OldParent->getParentLoop()) {
|
|
assert(OldParent && "new loop is not an ancestor of the original");
|
|
OldParent->removeBlockFromLoop(BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Update the parent loop for all subloops directly nested within unloop.
|
|
void UnloopUpdater::updateSubloopParents() {
|
|
while (!Unloop.isInnermost()) {
|
|
Loop *Subloop = *std::prev(Unloop.end());
|
|
Unloop.removeChildLoop(std::prev(Unloop.end()));
|
|
|
|
assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
|
|
if (Loop *Parent = SubloopParents[Subloop])
|
|
Parent->addChildLoop(Subloop);
|
|
else
|
|
LI->addTopLevelLoop(Subloop);
|
|
}
|
|
}
|
|
|
|
/// Return the nearest parent loop among this block's successors. If a successor
|
|
/// is a subloop header, consider its parent to be the nearest parent of the
|
|
/// subloop's exits.
|
|
///
|
|
/// For subloop blocks, simply update SubloopParents and return NULL.
|
|
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
|
|
|
|
// Initially for blocks directly contained by Unloop, NearLoop == Unloop and
|
|
// is considered uninitialized.
|
|
Loop *NearLoop = BBLoop;
|
|
|
|
Loop *Subloop = nullptr;
|
|
if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
|
|
Subloop = NearLoop;
|
|
// Find the subloop ancestor that is directly contained within Unloop.
|
|
while (Subloop->getParentLoop() != &Unloop) {
|
|
Subloop = Subloop->getParentLoop();
|
|
assert(Subloop && "subloop is not an ancestor of the original loop");
|
|
}
|
|
// Get the current nearest parent of the Subloop exits, initially Unloop.
|
|
NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
|
|
}
|
|
|
|
succ_iterator I = succ_begin(BB), E = succ_end(BB);
|
|
if (I == E) {
|
|
assert(!Subloop && "subloop blocks must have a successor");
|
|
NearLoop = nullptr; // unloop blocks may now exit the function.
|
|
}
|
|
for (; I != E; ++I) {
|
|
if (*I == BB)
|
|
continue; // self loops are uninteresting
|
|
|
|
Loop *L = LI->getLoopFor(*I);
|
|
if (L == &Unloop) {
|
|
// This successor has not been processed. This path must lead to an
|
|
// irreducible backedge.
|
|
assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
|
|
FoundIB = true;
|
|
}
|
|
if (L != &Unloop && Unloop.contains(L)) {
|
|
// Successor is in a subloop.
|
|
if (Subloop)
|
|
continue; // Branching within subloops. Ignore it.
|
|
|
|
// BB branches from the original into a subloop header.
|
|
assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
|
|
|
|
// Get the current nearest parent of the Subloop's exits.
|
|
L = SubloopParents[L];
|
|
// L could be Unloop if the only exit was an irreducible backedge.
|
|
}
|
|
if (L == &Unloop) {
|
|
continue;
|
|
}
|
|
// Handle critical edges from Unloop into a sibling loop.
|
|
if (L && !L->contains(&Unloop)) {
|
|
L = L->getParentLoop();
|
|
}
|
|
// Remember the nearest parent loop among successors or subloop exits.
|
|
if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
|
|
NearLoop = L;
|
|
}
|
|
if (Subloop) {
|
|
SubloopParents[Subloop] = NearLoop;
|
|
return BBLoop;
|
|
}
|
|
return NearLoop;
|
|
}
|
|
|
|
LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
|
|
|
|
bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis, all analyses on functions, or the function's
|
|
// CFG have been preserved.
|
|
auto PAC = PA.getChecker<LoopAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
|
|
PAC.preservedSet<CFGAnalyses>());
|
|
}
|
|
|
|
void LoopInfo::erase(Loop *Unloop) {
|
|
assert(!Unloop->isInvalid() && "Loop has already been erased!");
|
|
|
|
auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
|
|
|
|
// First handle the special case of no parent loop to simplify the algorithm.
|
|
if (Unloop->isOutermost()) {
|
|
// Since BBLoop had no parent, Unloop blocks are no longer in a loop.
|
|
for (BasicBlock *BB : Unloop->blocks()) {
|
|
// Don't reparent blocks in subloops.
|
|
if (getLoopFor(BB) != Unloop)
|
|
continue;
|
|
|
|
// Blocks no longer have a parent but are still referenced by Unloop until
|
|
// the Unloop object is deleted.
|
|
changeLoopFor(BB, nullptr);
|
|
}
|
|
|
|
// Remove the loop from the top-level LoopInfo object.
|
|
for (iterator I = begin();; ++I) {
|
|
assert(I != end() && "Couldn't find loop");
|
|
if (*I == Unloop) {
|
|
removeLoop(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Move all of the subloops to the top-level.
|
|
while (!Unloop->isInnermost())
|
|
addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
|
|
|
|
return;
|
|
}
|
|
|
|
// Update the parent loop for all blocks within the loop. Blocks within
|
|
// subloops will not change parents.
|
|
UnloopUpdater Updater(Unloop, this);
|
|
Updater.updateBlockParents();
|
|
|
|
// Remove blocks from former ancestor loops.
|
|
Updater.removeBlocksFromAncestors();
|
|
|
|
// Add direct subloops as children in their new parent loop.
|
|
Updater.updateSubloopParents();
|
|
|
|
// Remove unloop from its parent loop.
|
|
Loop *ParentLoop = Unloop->getParentLoop();
|
|
for (Loop::iterator I = ParentLoop->begin();; ++I) {
|
|
assert(I != ParentLoop->end() && "Couldn't find loop");
|
|
if (*I == Unloop) {
|
|
ParentLoop->removeChildLoop(I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
|
|
const BasicBlock *ExitBB) const {
|
|
if (V->getType()->isTokenTy())
|
|
// We can't form PHIs of token type, so the definition of LCSSA excludes
|
|
// values of that type.
|
|
return false;
|
|
|
|
const Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
const Loop *L = getLoopFor(I->getParent());
|
|
if (!L)
|
|
return false;
|
|
if (L->contains(ExitBB))
|
|
// Could be an exit bb of a subloop and contained in defining loop
|
|
return false;
|
|
|
|
// We found a (new) out-of-loop use location, for a value defined in-loop.
|
|
// (Note that because of LCSSA, we don't have to account for values defined
|
|
// in sibling loops. Such values will have LCSSA phis of their own in the
|
|
// common parent loop.)
|
|
return true;
|
|
}
|
|
|
|
AnalysisKey LoopAnalysis::Key;
|
|
|
|
LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
|
|
// FIXME: Currently we create a LoopInfo from scratch for every function.
|
|
// This may prove to be too wasteful due to deallocating and re-allocating
|
|
// memory each time for the underlying map and vector datastructures. At some
|
|
// point it may prove worthwhile to use a freelist and recycle LoopInfo
|
|
// objects. I don't want to add that kind of complexity until the scope of
|
|
// the problem is better understood.
|
|
LoopInfo LI;
|
|
LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
|
|
return LI;
|
|
}
|
|
|
|
PreservedAnalyses LoopPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<LoopAnalysis>(F).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
|
|
|
|
if (forcePrintModuleIR()) {
|
|
// handling -print-module-scope
|
|
OS << Banner << " (loop: ";
|
|
L.getHeader()->printAsOperand(OS, false);
|
|
OS << ")\n";
|
|
|
|
// printing whole module
|
|
OS << *L.getHeader()->getModule();
|
|
return;
|
|
}
|
|
|
|
OS << Banner;
|
|
|
|
auto *PreHeader = L.getLoopPreheader();
|
|
if (PreHeader) {
|
|
OS << "\n; Preheader:";
|
|
PreHeader->print(OS);
|
|
OS << "\n; Loop:";
|
|
}
|
|
|
|
for (auto *Block : L.blocks())
|
|
if (Block)
|
|
Block->print(OS);
|
|
else
|
|
OS << "Printing <null> block";
|
|
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L.getExitBlocks(ExitBlocks);
|
|
if (!ExitBlocks.empty()) {
|
|
OS << "\n; Exit blocks";
|
|
for (auto *Block : ExitBlocks)
|
|
if (Block)
|
|
Block->print(OS);
|
|
else
|
|
OS << "Printing <null> block";
|
|
}
|
|
}
|
|
|
|
MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
|
|
// No loop metadata node, no loop properties.
|
|
if (!LoopID)
|
|
return nullptr;
|
|
|
|
// First operand should refer to the metadata node itself, for legacy reasons.
|
|
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
|
|
|
|
// Iterate over the metdata node operands and look for MDString metadata.
|
|
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
|
|
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
|
|
if (!MD || MD->getNumOperands() < 1)
|
|
continue;
|
|
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
if (!S)
|
|
continue;
|
|
// Return the operand node if MDString holds expected metadata.
|
|
if (Name.equals(S->getString()))
|
|
return MD;
|
|
}
|
|
|
|
// Loop property not found.
|
|
return nullptr;
|
|
}
|
|
|
|
MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
|
|
return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
|
|
}
|
|
|
|
/// Find string metadata for loop
|
|
///
|
|
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
|
|
/// operand or null otherwise. If the string metadata is not found return
|
|
/// Optional's not-a-value.
|
|
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
|
|
StringRef Name) {
|
|
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
return nullptr;
|
|
case 2:
|
|
return &MD->getOperand(1);
|
|
default:
|
|
llvm_unreachable("loop metadata has 0 or 1 operand");
|
|
}
|
|
}
|
|
|
|
Optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop,
|
|
StringRef Name) {
|
|
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
// When the value is absent it is interpreted as 'attribute set'.
|
|
return true;
|
|
case 2:
|
|
if (ConstantInt *IntMD =
|
|
mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
|
|
return IntMD->getZExtValue();
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected number of options");
|
|
}
|
|
|
|
bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
|
|
return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
|
|
}
|
|
|
|
llvm::Optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop,
|
|
StringRef Name) {
|
|
const MDOperand *AttrMD =
|
|
findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
|
|
if (!AttrMD)
|
|
return None;
|
|
|
|
ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
|
|
if (!IntMD)
|
|
return None;
|
|
|
|
return IntMD->getSExtValue();
|
|
}
|
|
|
|
static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
|
|
|
|
bool llvm::hasMustProgress(const Loop *L) {
|
|
return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
|
|
}
|
|
|
|
bool llvm::isMustProgress(const Loop *L) {
|
|
return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L);
|
|
}
|
|
|
|
bool llvm::isValidAsAccessGroup(MDNode *Node) {
|
|
return Node->getNumOperands() == 0 && Node->isDistinct();
|
|
}
|
|
|
|
MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
|
|
MDNode *OrigLoopID,
|
|
ArrayRef<StringRef> RemovePrefixes,
|
|
ArrayRef<MDNode *> AddAttrs) {
|
|
// First remove any existing loop metadata related to this transformation.
|
|
SmallVector<Metadata *, 4> MDs;
|
|
|
|
// Reserve first location for self reference to the LoopID metadata node.
|
|
MDs.push_back(nullptr);
|
|
|
|
// Remove metadata for the transformation that has been applied or that became
|
|
// outdated.
|
|
if (OrigLoopID) {
|
|
for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
|
|
bool IsVectorMetadata = false;
|
|
Metadata *Op = OrigLoopID->getOperand(i);
|
|
if (MDNode *MD = dyn_cast<MDNode>(Op)) {
|
|
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
if (S)
|
|
IsVectorMetadata =
|
|
llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
|
|
return S->getString().startswith(Prefix);
|
|
});
|
|
}
|
|
if (!IsVectorMetadata)
|
|
MDs.push_back(Op);
|
|
}
|
|
}
|
|
|
|
// Add metadata to avoid reapplying a transformation, such as
|
|
// llvm.loop.unroll.disable and llvm.loop.isvectorized.
|
|
MDs.append(AddAttrs.begin(), AddAttrs.end());
|
|
|
|
MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
|
|
// Replace the temporary node with a self-reference.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
return NewLoopID;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopInfo implementation
|
|
//
|
|
|
|
LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
|
|
initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
char LoopInfoWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
|
|
true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
|
|
true, true)
|
|
|
|
bool LoopInfoWrapperPass::runOnFunction(Function &) {
|
|
releaseMemory();
|
|
LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
|
|
return false;
|
|
}
|
|
|
|
void LoopInfoWrapperPass::verifyAnalysis() const {
|
|
// LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
|
|
// function each time verifyAnalysis is called is very expensive. The
|
|
// -verify-loop-info option can enable this. In order to perform some
|
|
// checking by default, LoopPass has been taught to call verifyLoop manually
|
|
// during loop pass sequences.
|
|
if (VerifyLoopInfo) {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI.verify(DT);
|
|
}
|
|
}
|
|
|
|
void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
LI.print(OS);
|
|
}
|
|
|
|
PreservedAnalyses LoopVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
LI.verify(DT);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopBlocksDFS implementation
|
|
//
|
|
|
|
/// Traverse the loop blocks and store the DFS result.
|
|
/// Useful for clients that just want the final DFS result and don't need to
|
|
/// visit blocks during the initial traversal.
|
|
void LoopBlocksDFS::perform(LoopInfo *LI) {
|
|
LoopBlocksTraversal Traversal(*this, LI);
|
|
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
|
|
POE = Traversal.end();
|
|
POI != POE; ++POI)
|
|
;
|
|
}
|