1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/AsmParser/LLParser.cpp
Fangrui Song dd6e19a41c [IR] Rename comdat noduplicates to comdat nodeduplicate
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.

In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics.  The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D106319
2021-07-20 12:47:10 -07:00

9336 lines
313 KiB
C++

//===-- LLParser.cpp - Parser Class ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#include "llvm/AsmParser/LLParser.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/AsmParser/LLToken.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <vector>
using namespace llvm;
static std::string getTypeString(Type *T) {
std::string Result;
raw_string_ostream Tmp(Result);
Tmp << *T;
return Tmp.str();
}
/// Run: module ::= toplevelentity*
bool LLParser::Run(bool UpgradeDebugInfo,
DataLayoutCallbackTy DataLayoutCallback) {
// Prime the lexer.
Lex.Lex();
if (Context.shouldDiscardValueNames())
return error(
Lex.getLoc(),
"Can't read textual IR with a Context that discards named Values");
if (M) {
if (parseTargetDefinitions())
return true;
if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
M->setDataLayout(*LayoutOverride);
}
return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
validateEndOfIndex();
}
bool LLParser::parseStandaloneConstantValue(Constant *&C,
const SlotMapping *Slots) {
restoreParsingState(Slots);
Lex.Lex();
Type *Ty = nullptr;
if (parseType(Ty) || parseConstantValue(Ty, C))
return true;
if (Lex.getKind() != lltok::Eof)
return error(Lex.getLoc(), "expected end of string");
return false;
}
bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
const SlotMapping *Slots) {
restoreParsingState(Slots);
Lex.Lex();
Read = 0;
SMLoc Start = Lex.getLoc();
Ty = nullptr;
if (parseType(Ty))
return true;
SMLoc End = Lex.getLoc();
Read = End.getPointer() - Start.getPointer();
return false;
}
void LLParser::restoreParsingState(const SlotMapping *Slots) {
if (!Slots)
return;
NumberedVals = Slots->GlobalValues;
NumberedMetadata = Slots->MetadataNodes;
for (const auto &I : Slots->NamedTypes)
NamedTypes.insert(
std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
for (const auto &I : Slots->Types)
NumberedTypes.insert(
std::make_pair(I.first, std::make_pair(I.second, LocTy())));
}
/// validateEndOfModule - Do final validity and sanity checks at the end of the
/// module.
bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
if (!M)
return false;
// Handle any function attribute group forward references.
for (const auto &RAG : ForwardRefAttrGroups) {
Value *V = RAG.first;
const std::vector<unsigned> &Attrs = RAG.second;
AttrBuilder B;
for (const auto &Attr : Attrs)
B.merge(NumberedAttrBuilders[Attr]);
if (Function *Fn = dyn_cast<Function>(V)) {
AttributeList AS = Fn->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes());
AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
FnAttrs.merge(B);
// If the alignment was parsed as an attribute, move to the alignment
// field.
if (FnAttrs.hasAlignmentAttr()) {
Fn->setAlignment(FnAttrs.getAlignment());
FnAttrs.removeAttribute(Attribute::Alignment);
}
AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
AttributeSet::get(Context, FnAttrs));
Fn->setAttributes(AS);
} else if (CallInst *CI = dyn_cast<CallInst>(V)) {
AttributeList AS = CI->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes());
AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
FnAttrs.merge(B);
AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
AttributeSet::get(Context, FnAttrs));
CI->setAttributes(AS);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
AttributeList AS = II->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes());
AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
FnAttrs.merge(B);
AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
AttributeSet::get(Context, FnAttrs));
II->setAttributes(AS);
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
AttributeList AS = CBI->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes());
AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
FnAttrs.merge(B);
AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
AttributeSet::get(Context, FnAttrs));
CBI->setAttributes(AS);
} else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
AttrBuilder Attrs(GV->getAttributes());
Attrs.merge(B);
GV->setAttributes(AttributeSet::get(Context,Attrs));
} else {
llvm_unreachable("invalid object with forward attribute group reference");
}
}
// If there are entries in ForwardRefBlockAddresses at this point, the
// function was never defined.
if (!ForwardRefBlockAddresses.empty())
return error(ForwardRefBlockAddresses.begin()->first.Loc,
"expected function name in blockaddress");
for (const auto &NT : NumberedTypes)
if (NT.second.second.isValid())
return error(NT.second.second,
"use of undefined type '%" + Twine(NT.first) + "'");
for (StringMap<std::pair<Type*, LocTy> >::iterator I =
NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
if (I->second.second.isValid())
return error(I->second.second,
"use of undefined type named '" + I->getKey() + "'");
if (!ForwardRefComdats.empty())
return error(ForwardRefComdats.begin()->second,
"use of undefined comdat '$" +
ForwardRefComdats.begin()->first + "'");
if (!ForwardRefVals.empty())
return error(ForwardRefVals.begin()->second.second,
"use of undefined value '@" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '@" +
Twine(ForwardRefValIDs.begin()->first) + "'");
if (!ForwardRefMDNodes.empty())
return error(ForwardRefMDNodes.begin()->second.second,
"use of undefined metadata '!" +
Twine(ForwardRefMDNodes.begin()->first) + "'");
// Resolve metadata cycles.
for (auto &N : NumberedMetadata) {
if (N.second && !N.second->isResolved())
N.second->resolveCycles();
}
for (auto *Inst : InstsWithTBAATag) {
MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
auto *UpgradedMD = UpgradeTBAANode(*MD);
if (MD != UpgradedMD)
Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
}
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
// Some types could be renamed during loading if several modules are
// loaded in the same LLVMContext (LTO scenario). In this case we should
// remangle intrinsics names as well.
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
Function *F = &*FI++;
if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
F->replaceAllUsesWith(Remangled.getValue());
F->eraseFromParent();
}
}
if (UpgradeDebugInfo)
llvm::UpgradeDebugInfo(*M);
UpgradeModuleFlags(*M);
UpgradeSectionAttributes(*M);
if (!Slots)
return false;
// Initialize the slot mapping.
// Because by this point we've parsed and validated everything, we can "steal"
// the mapping from LLParser as it doesn't need it anymore.
Slots->GlobalValues = std::move(NumberedVals);
Slots->MetadataNodes = std::move(NumberedMetadata);
for (const auto &I : NamedTypes)
Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
for (const auto &I : NumberedTypes)
Slots->Types.insert(std::make_pair(I.first, I.second.first));
return false;
}
/// Do final validity and sanity checks at the end of the index.
bool LLParser::validateEndOfIndex() {
if (!Index)
return false;
if (!ForwardRefValueInfos.empty())
return error(ForwardRefValueInfos.begin()->second.front().second,
"use of undefined summary '^" +
Twine(ForwardRefValueInfos.begin()->first) + "'");
if (!ForwardRefAliasees.empty())
return error(ForwardRefAliasees.begin()->second.front().second,
"use of undefined summary '^" +
Twine(ForwardRefAliasees.begin()->first) + "'");
if (!ForwardRefTypeIds.empty())
return error(ForwardRefTypeIds.begin()->second.front().second,
"use of undefined type id summary '^" +
Twine(ForwardRefTypeIds.begin()->first) + "'");
return false;
}
//===----------------------------------------------------------------------===//
// Top-Level Entities
//===----------------------------------------------------------------------===//
bool LLParser::parseTargetDefinitions() {
while (true) {
switch (Lex.getKind()) {
case lltok::kw_target:
if (parseTargetDefinition())
return true;
break;
case lltok::kw_source_filename:
if (parseSourceFileName())
return true;
break;
default:
return false;
}
}
}
bool LLParser::parseTopLevelEntities() {
// If there is no Module, then parse just the summary index entries.
if (!M) {
while (true) {
switch (Lex.getKind()) {
case lltok::Eof:
return false;
case lltok::SummaryID:
if (parseSummaryEntry())
return true;
break;
case lltok::kw_source_filename:
if (parseSourceFileName())
return true;
break;
default:
// Skip everything else
Lex.Lex();
}
}
}
while (true) {
switch (Lex.getKind()) {
default:
return tokError("expected top-level entity");
case lltok::Eof: return false;
case lltok::kw_declare:
if (parseDeclare())
return true;
break;
case lltok::kw_define:
if (parseDefine())
return true;
break;
case lltok::kw_module:
if (parseModuleAsm())
return true;
break;
case lltok::LocalVarID:
if (parseUnnamedType())
return true;
break;
case lltok::LocalVar:
if (parseNamedType())
return true;
break;
case lltok::GlobalID:
if (parseUnnamedGlobal())
return true;
break;
case lltok::GlobalVar:
if (parseNamedGlobal())
return true;
break;
case lltok::ComdatVar: if (parseComdat()) return true; break;
case lltok::exclaim:
if (parseStandaloneMetadata())
return true;
break;
case lltok::SummaryID:
if (parseSummaryEntry())
return true;
break;
case lltok::MetadataVar:
if (parseNamedMetadata())
return true;
break;
case lltok::kw_attributes:
if (parseUnnamedAttrGrp())
return true;
break;
case lltok::kw_uselistorder:
if (parseUseListOrder())
return true;
break;
case lltok::kw_uselistorder_bb:
if (parseUseListOrderBB())
return true;
break;
}
}
}
/// toplevelentity
/// ::= 'module' 'asm' STRINGCONSTANT
bool LLParser::parseModuleAsm() {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
std::string AsmStr;
if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
parseStringConstant(AsmStr))
return true;
M->appendModuleInlineAsm(AsmStr);
return false;
}
/// toplevelentity
/// ::= 'target' 'triple' '=' STRINGCONSTANT
/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
bool LLParser::parseTargetDefinition() {
assert(Lex.getKind() == lltok::kw_target);
std::string Str;
switch (Lex.Lex()) {
default:
return tokError("unknown target property");
case lltok::kw_triple:
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' after target triple") ||
parseStringConstant(Str))
return true;
M->setTargetTriple(Str);
return false;
case lltok::kw_datalayout:
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
parseStringConstant(Str))
return true;
M->setDataLayout(Str);
return false;
}
}
/// toplevelentity
/// ::= 'source_filename' '=' STRINGCONSTANT
bool LLParser::parseSourceFileName() {
assert(Lex.getKind() == lltok::kw_source_filename);
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' after source_filename") ||
parseStringConstant(SourceFileName))
return true;
if (M)
M->setSourceFileName(SourceFileName);
return false;
}
/// parseUnnamedType:
/// ::= LocalVarID '=' 'type' type
bool LLParser::parseUnnamedType() {
LocTy TypeLoc = Lex.getLoc();
unsigned TypeID = Lex.getUIntVal();
Lex.Lex(); // eat LocalVarID;
if (parseToken(lltok::equal, "expected '=' after name") ||
parseToken(lltok::kw_type, "expected 'type' after '='"))
return true;
Type *Result = nullptr;
if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
if (Entry.first)
return error(TypeLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= LocalVar '=' 'type' type
bool LLParser::parseNamedType() {
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex(); // eat LocalVar.
if (parseToken(lltok::equal, "expected '=' after name") ||
parseToken(lltok::kw_type, "expected 'type' after name"))
return true;
Type *Result = nullptr;
if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
if (Entry.first)
return error(NameLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= 'declare' FunctionHeader
bool LLParser::parseDeclare() {
assert(Lex.getKind() == lltok::kw_declare);
Lex.Lex();
std::vector<std::pair<unsigned, MDNode *>> MDs;
while (Lex.getKind() == lltok::MetadataVar) {
unsigned MDK;
MDNode *N;
if (parseMetadataAttachment(MDK, N))
return true;
MDs.push_back({MDK, N});
}
Function *F;
if (parseFunctionHeader(F, false))
return true;
for (auto &MD : MDs)
F->addMetadata(MD.first, *MD.second);
return false;
}
/// toplevelentity
/// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
bool LLParser::parseDefine() {
assert(Lex.getKind() == lltok::kw_define);
Lex.Lex();
Function *F;
return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
parseFunctionBody(*F);
}
/// parseGlobalType
/// ::= 'constant'
/// ::= 'global'
bool LLParser::parseGlobalType(bool &IsConstant) {
if (Lex.getKind() == lltok::kw_constant)
IsConstant = true;
else if (Lex.getKind() == lltok::kw_global)
IsConstant = false;
else {
IsConstant = false;
return tokError("expected 'global' or 'constant'");
}
Lex.Lex();
return false;
}
bool LLParser::parseOptionalUnnamedAddr(
GlobalVariable::UnnamedAddr &UnnamedAddr) {
if (EatIfPresent(lltok::kw_unnamed_addr))
UnnamedAddr = GlobalValue::UnnamedAddr::Global;
else if (EatIfPresent(lltok::kw_local_unnamed_addr))
UnnamedAddr = GlobalValue::UnnamedAddr::Local;
else
UnnamedAddr = GlobalValue::UnnamedAddr::None;
return false;
}
/// parseUnnamedGlobal:
/// OptionalVisibility (ALIAS | IFUNC) ...
/// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
/// OptionalDLLStorageClass
/// ... -> global variable
/// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
/// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
/// OptionalVisibility
/// OptionalDLLStorageClass
/// ... -> global variable
bool LLParser::parseUnnamedGlobal() {
unsigned VarID = NumberedVals.size();
std::string Name;
LocTy NameLoc = Lex.getLoc();
// Handle the GlobalID form.
if (Lex.getKind() == lltok::GlobalID) {
if (Lex.getUIntVal() != VarID)
return error(Lex.getLoc(),
"variable expected to be numbered '%" + Twine(VarID) + "'");
Lex.Lex(); // eat GlobalID;
if (parseToken(lltok::equal, "expected '=' after name"))
return true;
}
bool HasLinkage;
unsigned Linkage, Visibility, DLLStorageClass;
bool DSOLocal;
GlobalVariable::ThreadLocalMode TLM;
GlobalVariable::UnnamedAddr UnnamedAddr;
if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
DSOLocal) ||
parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
return true;
if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
}
/// parseNamedGlobal:
/// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
/// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
/// OptionalVisibility OptionalDLLStorageClass
/// ... -> global variable
bool LLParser::parseNamedGlobal() {
assert(Lex.getKind() == lltok::GlobalVar);
LocTy NameLoc = Lex.getLoc();
std::string Name = Lex.getStrVal();
Lex.Lex();
bool HasLinkage;
unsigned Linkage, Visibility, DLLStorageClass;
bool DSOLocal;
GlobalVariable::ThreadLocalMode TLM;
GlobalVariable::UnnamedAddr UnnamedAddr;
if (parseToken(lltok::equal, "expected '=' in global variable") ||
parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
DSOLocal) ||
parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
return true;
if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
}
bool LLParser::parseComdat() {
assert(Lex.getKind() == lltok::ComdatVar);
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here"))
return true;
if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
return tokError("expected comdat type");
Comdat::SelectionKind SK;
switch (Lex.getKind()) {
default:
return tokError("unknown selection kind");
case lltok::kw_any:
SK = Comdat::Any;
break;
case lltok::kw_exactmatch:
SK = Comdat::ExactMatch;
break;
case lltok::kw_largest:
SK = Comdat::Largest;
break;
case lltok::kw_nodeduplicate:
SK = Comdat::NoDeduplicate;
break;
case lltok::kw_samesize:
SK = Comdat::SameSize;
break;
}
Lex.Lex();
// See if the comdat was forward referenced, if so, use the comdat.
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
return error(NameLoc, "redefinition of comdat '$" + Name + "'");
Comdat *C;
if (I != ComdatSymTab.end())
C = &I->second;
else
C = M->getOrInsertComdat(Name);
C->setSelectionKind(SK);
return false;
}
// MDString:
// ::= '!' STRINGCONSTANT
bool LLParser::parseMDString(MDString *&Result) {
std::string Str;
if (parseStringConstant(Str))
return true;
Result = MDString::get(Context, Str);
return false;
}
// MDNode:
// ::= '!' MDNodeNumber
bool LLParser::parseMDNodeID(MDNode *&Result) {
// !{ ..., !42, ... }
LocTy IDLoc = Lex.getLoc();
unsigned MID = 0;
if (parseUInt32(MID))
return true;
// If not a forward reference, just return it now.
if (NumberedMetadata.count(MID)) {
Result = NumberedMetadata[MID];
return false;
}
// Otherwise, create MDNode forward reference.
auto &FwdRef = ForwardRefMDNodes[MID];
FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
Result = FwdRef.first.get();
NumberedMetadata[MID].reset(Result);
return false;
}
/// parseNamedMetadata:
/// !foo = !{ !1, !2 }
bool LLParser::parseNamedMetadata() {
assert(Lex.getKind() == lltok::MetadataVar);
std::string Name = Lex.getStrVal();
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here") ||
parseToken(lltok::exclaim, "Expected '!' here") ||
parseToken(lltok::lbrace, "Expected '{' here"))
return true;
NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
if (Lex.getKind() != lltok::rbrace)
do {
MDNode *N = nullptr;
// parse DIExpressions inline as a special case. They are still MDNodes,
// so they can still appear in named metadata. Remove this logic if they
// become plain Metadata.
if (Lex.getKind() == lltok::MetadataVar &&
Lex.getStrVal() == "DIExpression") {
if (parseDIExpression(N, /*IsDistinct=*/false))
return true;
// DIArgLists should only appear inline in a function, as they may
// contain LocalAsMetadata arguments which require a function context.
} else if (Lex.getKind() == lltok::MetadataVar &&
Lex.getStrVal() == "DIArgList") {
return tokError("found DIArgList outside of function");
} else if (parseToken(lltok::exclaim, "Expected '!' here") ||
parseMDNodeID(N)) {
return true;
}
NMD->addOperand(N);
} while (EatIfPresent(lltok::comma));
return parseToken(lltok::rbrace, "expected end of metadata node");
}
/// parseStandaloneMetadata:
/// !42 = !{...}
bool LLParser::parseStandaloneMetadata() {
assert(Lex.getKind() == lltok::exclaim);
Lex.Lex();
unsigned MetadataID = 0;
MDNode *Init;
if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
return true;
// Detect common error, from old metadata syntax.
if (Lex.getKind() == lltok::Type)
return tokError("unexpected type in metadata definition");
bool IsDistinct = EatIfPresent(lltok::kw_distinct);
if (Lex.getKind() == lltok::MetadataVar) {
if (parseSpecializedMDNode(Init, IsDistinct))
return true;
} else if (parseToken(lltok::exclaim, "Expected '!' here") ||
parseMDTuple(Init, IsDistinct))
return true;
// See if this was forward referenced, if so, handle it.
auto FI = ForwardRefMDNodes.find(MetadataID);
if (FI != ForwardRefMDNodes.end()) {
FI->second.first->replaceAllUsesWith(Init);
ForwardRefMDNodes.erase(FI);
assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
} else {
if (NumberedMetadata.count(MetadataID))
return tokError("Metadata id is already used");
NumberedMetadata[MetadataID].reset(Init);
}
return false;
}
// Skips a single module summary entry.
bool LLParser::skipModuleSummaryEntry() {
// Each module summary entry consists of a tag for the entry
// type, followed by a colon, then the fields which may be surrounded by
// nested sets of parentheses. The "tag:" looks like a Label. Once parsing
// support is in place we will look for the tokens corresponding to the
// expected tags.
if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
Lex.getKind() != lltok::kw_blockcount)
return tokError(
"Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
"start of summary entry");
if (Lex.getKind() == lltok::kw_flags)
return parseSummaryIndexFlags();
if (Lex.getKind() == lltok::kw_blockcount)
return parseBlockCount();
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
parseToken(lltok::lparen, "expected '(' at start of summary entry"))
return true;
// Now walk through the parenthesized entry, until the number of open
// parentheses goes back down to 0 (the first '(' was parsed above).
unsigned NumOpenParen = 1;
do {
switch (Lex.getKind()) {
case lltok::lparen:
NumOpenParen++;
break;
case lltok::rparen:
NumOpenParen--;
break;
case lltok::Eof:
return tokError("found end of file while parsing summary entry");
default:
// Skip everything in between parentheses.
break;
}
Lex.Lex();
} while (NumOpenParen > 0);
return false;
}
/// SummaryEntry
/// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
bool LLParser::parseSummaryEntry() {
assert(Lex.getKind() == lltok::SummaryID);
unsigned SummaryID = Lex.getUIntVal();
// For summary entries, colons should be treated as distinct tokens,
// not an indication of the end of a label token.
Lex.setIgnoreColonInIdentifiers(true);
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here"))
return true;
// If we don't have an index object, skip the summary entry.
if (!Index)
return skipModuleSummaryEntry();
bool result = false;
switch (Lex.getKind()) {
case lltok::kw_gv:
result = parseGVEntry(SummaryID);
break;
case lltok::kw_module:
result = parseModuleEntry(SummaryID);
break;
case lltok::kw_typeid:
result = parseTypeIdEntry(SummaryID);
break;
case lltok::kw_typeidCompatibleVTable:
result = parseTypeIdCompatibleVtableEntry(SummaryID);
break;
case lltok::kw_flags:
result = parseSummaryIndexFlags();
break;
case lltok::kw_blockcount:
result = parseBlockCount();
break;
default:
result = error(Lex.getLoc(), "unexpected summary kind");
break;
}
Lex.setIgnoreColonInIdentifiers(false);
return result;
}
static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
(GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
}
// If there was an explicit dso_local, update GV. In the absence of an explicit
// dso_local we keep the default value.
static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
if (DSOLocal)
GV.setDSOLocal(true);
}
static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
Type *Ty2) {
std::string ErrString;
raw_string_ostream ErrOS(ErrString);
ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
return ErrOS.str();
}
/// parseIndirectSymbol:
/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
/// OptionalVisibility OptionalDLLStorageClass
/// OptionalThreadLocal OptionalUnnamedAddr
/// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
///
/// IndirectSymbol
/// ::= TypeAndValue
///
/// IndirectSymbolAttr
/// ::= ',' 'partition' StringConstant
///
/// Everything through OptionalUnnamedAddr has already been parsed.
///
bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
unsigned L, unsigned Visibility,
unsigned DLLStorageClass, bool DSOLocal,
GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr) {
bool IsAlias;
if (Lex.getKind() == lltok::kw_alias)
IsAlias = true;
else if (Lex.getKind() == lltok::kw_ifunc)
IsAlias = false;
else
llvm_unreachable("Not an alias or ifunc!");
Lex.Lex();
GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
return error(NameLoc, "invalid linkage type for alias");
if (!isValidVisibilityForLinkage(Visibility, L))
return error(NameLoc,
"symbol with local linkage must have default visibility");
Type *Ty;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (parseType(Ty) ||
parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
return true;
Constant *Aliasee;
LocTy AliaseeLoc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_bitcast &&
Lex.getKind() != lltok::kw_getelementptr &&
Lex.getKind() != lltok::kw_addrspacecast &&
Lex.getKind() != lltok::kw_inttoptr) {
if (parseGlobalTypeAndValue(Aliasee))
return true;
} else {
// The bitcast dest type is not present, it is implied by the dest type.
ValID ID;
if (parseValID(ID, /*PFS=*/nullptr))
return true;
if (ID.Kind != ValID::t_Constant)
return error(AliaseeLoc, "invalid aliasee");
Aliasee = ID.ConstantVal;
}
Type *AliaseeType = Aliasee->getType();
auto *PTy = dyn_cast<PointerType>(AliaseeType);
if (!PTy)
return error(AliaseeLoc, "An alias or ifunc must have pointer type");
unsigned AddrSpace = PTy->getAddressSpace();
if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
return error(
ExplicitTypeLoc,
typeComparisonErrorMessage(
"explicit pointee type doesn't match operand's pointee type", Ty,
PTy->getElementType()));
}
if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
return error(ExplicitTypeLoc,
"explicit pointee type should be a function type");
}
GlobalValue *GVal = nullptr;
// See if the alias was forward referenced, if so, prepare to replace the
// forward reference.
if (!Name.empty()) {
auto I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end()) {
GVal = I->second.first;
ForwardRefVals.erase(Name);
} else if (M->getNamedValue(Name)) {
return error(NameLoc, "redefinition of global '@" + Name + "'");
}
} else {
auto I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
GVal = I->second.first;
ForwardRefValIDs.erase(I);
}
}
// Okay, create the alias but do not insert it into the module yet.
std::unique_ptr<GlobalIndirectSymbol> GA;
if (IsAlias)
GA.reset(GlobalAlias::create(Ty, AddrSpace,
(GlobalValue::LinkageTypes)Linkage, Name,
Aliasee, /*Parent*/ nullptr));
else
GA.reset(GlobalIFunc::create(Ty, AddrSpace,
(GlobalValue::LinkageTypes)Linkage, Name,
Aliasee, /*Parent*/ nullptr));
GA->setThreadLocalMode(TLM);
GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
GA->setUnnamedAddr(UnnamedAddr);
maybeSetDSOLocal(DSOLocal, *GA);
// At this point we've parsed everything except for the IndirectSymbolAttrs.
// Now parse them if there are any.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
if (Lex.getKind() == lltok::kw_partition) {
Lex.Lex();
GA->setPartition(Lex.getStrVal());
if (parseToken(lltok::StringConstant, "expected partition string"))
return true;
} else {
return tokError("unknown alias or ifunc property!");
}
}
if (Name.empty())
NumberedVals.push_back(GA.get());
if (GVal) {
// Verify that types agree.
if (GVal->getType() != GA->getType())
return error(
ExplicitTypeLoc,
"forward reference and definition of alias have different types");
// If they agree, just RAUW the old value with the alias and remove the
// forward ref info.
GVal->replaceAllUsesWith(GA.get());
GVal->eraseFromParent();
}
// Insert into the module, we know its name won't collide now.
if (IsAlias)
M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
else
M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
assert(GA->getName() == Name && "Should not be a name conflict!");
// The module owns this now
GA.release();
return false;
}
/// parseGlobal
/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
/// OptionalVisibility OptionalDLLStorageClass
/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
/// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
/// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
/// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
/// Const OptionalAttrs
///
/// Everything up to and including OptionalUnnamedAddr has been parsed
/// already.
///
bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
unsigned Linkage, bool HasLinkage,
unsigned Visibility, unsigned DLLStorageClass,
bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr) {
if (!isValidVisibilityForLinkage(Visibility, Linkage))
return error(NameLoc,
"symbol with local linkage must have default visibility");
unsigned AddrSpace;
bool IsConstant, IsExternallyInitialized;
LocTy IsExternallyInitializedLoc;
LocTy TyLoc;
Type *Ty = nullptr;
if (parseOptionalAddrSpace(AddrSpace) ||
parseOptionalToken(lltok::kw_externally_initialized,
IsExternallyInitialized,
&IsExternallyInitializedLoc) ||
parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
return true;
// If the linkage is specified and is external, then no initializer is
// present.
Constant *Init = nullptr;
if (!HasLinkage ||
!GlobalValue::isValidDeclarationLinkage(
(GlobalValue::LinkageTypes)Linkage)) {
if (parseGlobalValue(Ty, Init))
return true;
}
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
return error(TyLoc, "invalid type for global variable");
GlobalValue *GVal = nullptr;
// See if the global was forward referenced, if so, use the global.
if (!Name.empty()) {
auto I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end()) {
GVal = I->second.first;
ForwardRefVals.erase(I);
} else if (M->getNamedValue(Name)) {
return error(NameLoc, "redefinition of global '@" + Name + "'");
}
} else {
auto I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
GVal = I->second.first;
ForwardRefValIDs.erase(I);
}
}
GlobalVariable *GV = new GlobalVariable(
*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
GlobalVariable::NotThreadLocal, AddrSpace);
if (Name.empty())
NumberedVals.push_back(GV);
// Set the parsed properties on the global.
if (Init)
GV->setInitializer(Init);
GV->setConstant(IsConstant);
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
maybeSetDSOLocal(DSOLocal, *GV);
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
GV->setExternallyInitialized(IsExternallyInitialized);
GV->setThreadLocalMode(TLM);
GV->setUnnamedAddr(UnnamedAddr);
if (GVal) {
if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
return error(
TyLoc,
"forward reference and definition of global have different types");
GVal->replaceAllUsesWith(GV);
GVal->eraseFromParent();
}
// parse attributes on the global.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
if (Lex.getKind() == lltok::kw_section) {
Lex.Lex();
GV->setSection(Lex.getStrVal());
if (parseToken(lltok::StringConstant, "expected global section string"))
return true;
} else if (Lex.getKind() == lltok::kw_partition) {
Lex.Lex();
GV->setPartition(Lex.getStrVal());
if (parseToken(lltok::StringConstant, "expected partition string"))
return true;
} else if (Lex.getKind() == lltok::kw_align) {
MaybeAlign Alignment;
if (parseOptionalAlignment(Alignment))
return true;
GV->setAlignment(Alignment);
} else if (Lex.getKind() == lltok::MetadataVar) {
if (parseGlobalObjectMetadataAttachment(*GV))
return true;
} else {
Comdat *C;
if (parseOptionalComdat(Name, C))
return true;
if (C)
GV->setComdat(C);
else
return tokError("unknown global variable property!");
}
}
AttrBuilder Attrs;
LocTy BuiltinLoc;
std::vector<unsigned> FwdRefAttrGrps;
if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
return true;
if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
GV->setAttributes(AttributeSet::get(Context, Attrs));
ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
}
return false;
}
/// parseUnnamedAttrGrp
/// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
bool LLParser::parseUnnamedAttrGrp() {
assert(Lex.getKind() == lltok::kw_attributes);
LocTy AttrGrpLoc = Lex.getLoc();
Lex.Lex();
if (Lex.getKind() != lltok::AttrGrpID)
return tokError("expected attribute group id");
unsigned VarID = Lex.getUIntVal();
std::vector<unsigned> unused;
LocTy BuiltinLoc;
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here") ||
parseToken(lltok::lbrace, "expected '{' here") ||
parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
BuiltinLoc) ||
parseToken(lltok::rbrace, "expected end of attribute group"))
return true;
if (!NumberedAttrBuilders[VarID].hasAttributes())
return error(AttrGrpLoc, "attribute group has no attributes");
return false;
}
static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
switch (Kind) {
#define GET_ATTR_NAMES
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
case lltok::kw_##DISPLAY_NAME: \
return Attribute::ENUM_NAME;
#include "llvm/IR/Attributes.inc"
default:
return Attribute::None;
}
}
bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
bool InAttrGroup) {
if (Attribute::isTypeAttrKind(Attr))
return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
switch (Attr) {
case Attribute::Alignment: {
MaybeAlign Alignment;
if (InAttrGroup) {
uint32_t Value = 0;
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
return true;
Alignment = Align(Value);
} else {
if (parseOptionalAlignment(Alignment, true))
return true;
}
B.addAlignmentAttr(Alignment);
return false;
}
case Attribute::StackAlignment: {
unsigned Alignment;
if (InAttrGroup) {
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' here") ||
parseUInt32(Alignment))
return true;
} else {
if (parseOptionalStackAlignment(Alignment))
return true;
}
B.addStackAlignmentAttr(Alignment);
return false;
}
case Attribute::AllocSize: {
unsigned ElemSizeArg;
Optional<unsigned> NumElemsArg;
if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
return true;
B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
return false;
}
case Attribute::VScaleRange: {
unsigned MinValue, MaxValue;
if (parseVScaleRangeArguments(MinValue, MaxValue))
return true;
B.addVScaleRangeAttr(MinValue, MaxValue);
return false;
}
case Attribute::Dereferenceable: {
uint64_t Bytes;
if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
return true;
B.addDereferenceableAttr(Bytes);
return false;
}
case Attribute::DereferenceableOrNull: {
uint64_t Bytes;
if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
return true;
B.addDereferenceableOrNullAttr(Bytes);
return false;
}
default:
B.addAttribute(Attr);
Lex.Lex();
return false;
}
}
/// parseFnAttributeValuePairs
/// ::= <attr> | <attr> '=' <value>
bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
std::vector<unsigned> &FwdRefAttrGrps,
bool InAttrGrp, LocTy &BuiltinLoc) {
bool HaveError = false;
B.clear();
while (true) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::rbrace)
return HaveError; // Finished.
if (Token == lltok::StringConstant) {
if (parseStringAttribute(B))
return true;
continue;
}
if (Token == lltok::AttrGrpID) {
// Allow a function to reference an attribute group:
//
// define void @foo() #1 { ... }
if (InAttrGrp) {
HaveError |= error(
Lex.getLoc(),
"cannot have an attribute group reference in an attribute group");
} else {
// Save the reference to the attribute group. We'll fill it in later.
FwdRefAttrGrps.push_back(Lex.getUIntVal());
}
Lex.Lex();
continue;
}
SMLoc Loc = Lex.getLoc();
if (Token == lltok::kw_builtin)
BuiltinLoc = Loc;
Attribute::AttrKind Attr = tokenToAttribute(Token);
if (Attr == Attribute::None) {
if (!InAttrGrp)
return HaveError;
return error(Lex.getLoc(), "unterminated attribute group");
}
if (parseEnumAttribute(Attr, B, InAttrGrp))
return true;
// As a hack, we allow function alignment to be initially parsed as an
// attribute on a function declaration/definition or added to an attribute
// group and later moved to the alignment field.
if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
HaveError |= error(Loc, "this attribute does not apply to functions");
}
}
//===----------------------------------------------------------------------===//
// GlobalValue Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
// For opaque pointers, the used global type does not matter. We will later
// RAUW it with a global/function of the correct type.
if (PTy->isOpaque())
return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
GlobalValue::ExternalWeakLinkage, nullptr, "",
nullptr, GlobalVariable::NotThreadLocal,
PTy->getAddressSpace());
if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
PTy->getAddressSpace(), "", M);
else
return new GlobalVariable(*M, PTy->getPointerElementType(), false,
GlobalValue::ExternalWeakLinkage, nullptr, "",
nullptr, GlobalVariable::NotThreadLocal,
PTy->getAddressSpace());
}
Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
Value *Val, bool IsCall) {
Type *ValTy = Val->getType();
if (ValTy == Ty)
return Val;
// For calls, we also allow opaque pointers.
if (IsCall && ValTy == PointerType::get(Ty->getContext(),
Ty->getPointerAddressSpace()))
return Val;
if (Ty->isLabelTy())
error(Loc, "'" + Name + "' is not a basic block");
else
error(Loc, "'" + Name + "' defined with type '" +
getTypeString(Val->getType()) + "' but expected '" +
getTypeString(Ty) + "'");
return nullptr;
}
/// getGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
LocTy Loc, bool IsCall) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) {
error(Loc, "global variable reference must have pointer type");
return nullptr;
}
// Look this name up in the normal function symbol table.
GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
auto I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val)
return cast_or_null<GlobalValue>(
checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
bool IsCall) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) {
error(Loc, "global variable reference must have pointer type");
return nullptr;
}
GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
auto I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val)
return cast_or_null<GlobalValue>(
checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
//===----------------------------------------------------------------------===//
// Comdat Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
// Look this name up in the comdat symbol table.
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
if (I != ComdatSymTab.end())
return &I->second;
// Otherwise, create a new forward reference for this value and remember it.
Comdat *C = M->getOrInsertComdat(Name);
ForwardRefComdats[Name] = Loc;
return C;
}
//===----------------------------------------------------------------------===//
// Helper Routines.
//===----------------------------------------------------------------------===//
/// parseToken - If the current token has the specified kind, eat it and return
/// success. Otherwise, emit the specified error and return failure.
bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
if (Lex.getKind() != T)
return tokError(ErrMsg);
Lex.Lex();
return false;
}
/// parseStringConstant
/// ::= StringConstant
bool LLParser::parseStringConstant(std::string &Result) {
if (Lex.getKind() != lltok::StringConstant)
return tokError("expected string constant");
Result = Lex.getStrVal();
Lex.Lex();
return false;
}
/// parseUInt32
/// ::= uint32
bool LLParser::parseUInt32(uint32_t &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return tokError("expected integer");
uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
if (Val64 != unsigned(Val64))
return tokError("expected 32-bit integer (too large)");
Val = Val64;
Lex.Lex();
return false;
}
/// parseUInt64
/// ::= uint64
bool LLParser::parseUInt64(uint64_t &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return tokError("expected integer");
Val = Lex.getAPSIntVal().getLimitedValue();
Lex.Lex();
return false;
}
/// parseTLSModel
/// := 'localdynamic'
/// := 'initialexec'
/// := 'localexec'
bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
switch (Lex.getKind()) {
default:
return tokError("expected localdynamic, initialexec or localexec");
case lltok::kw_localdynamic:
TLM = GlobalVariable::LocalDynamicTLSModel;
break;
case lltok::kw_initialexec:
TLM = GlobalVariable::InitialExecTLSModel;
break;
case lltok::kw_localexec:
TLM = GlobalVariable::LocalExecTLSModel;
break;
}
Lex.Lex();
return false;
}
/// parseOptionalThreadLocal
/// := /*empty*/
/// := 'thread_local'
/// := 'thread_local' '(' tlsmodel ')'
bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
TLM = GlobalVariable::NotThreadLocal;
if (!EatIfPresent(lltok::kw_thread_local))
return false;
TLM = GlobalVariable::GeneralDynamicTLSModel;
if (Lex.getKind() == lltok::lparen) {
Lex.Lex();
return parseTLSModel(TLM) ||
parseToken(lltok::rparen, "expected ')' after thread local model");
}
return false;
}
/// parseOptionalAddrSpace
/// := /*empty*/
/// := 'addrspace' '(' uint32 ')'
bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
AddrSpace = DefaultAS;
if (!EatIfPresent(lltok::kw_addrspace))
return false;
return parseToken(lltok::lparen, "expected '(' in address space") ||
parseUInt32(AddrSpace) ||
parseToken(lltok::rparen, "expected ')' in address space");
}
/// parseStringAttribute
/// := StringConstant
/// := StringConstant '=' StringConstant
bool LLParser::parseStringAttribute(AttrBuilder &B) {
std::string Attr = Lex.getStrVal();
Lex.Lex();
std::string Val;
if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
return true;
B.addAttribute(Attr, Val);
return false;
}
/// Parse a potentially empty list of parameter or return attributes.
bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
bool HaveError = false;
B.clear();
while (true) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::StringConstant) {
if (parseStringAttribute(B))
return true;
continue;
}
SMLoc Loc = Lex.getLoc();
Attribute::AttrKind Attr = tokenToAttribute(Token);
if (Attr == Attribute::None)
return HaveError;
if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
return true;
if (IsParam && !Attribute::canUseAsParamAttr(Attr))
HaveError |= error(Loc, "this attribute does not apply to parameters");
if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
HaveError |= error(Loc, "this attribute does not apply to return values");
}
}
static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
HasLinkage = true;
switch (Kind) {
default:
HasLinkage = false;
return GlobalValue::ExternalLinkage;
case lltok::kw_private:
return GlobalValue::PrivateLinkage;
case lltok::kw_internal:
return GlobalValue::InternalLinkage;
case lltok::kw_weak:
return GlobalValue::WeakAnyLinkage;
case lltok::kw_weak_odr:
return GlobalValue::WeakODRLinkage;
case lltok::kw_linkonce:
return GlobalValue::LinkOnceAnyLinkage;
case lltok::kw_linkonce_odr:
return GlobalValue::LinkOnceODRLinkage;
case lltok::kw_available_externally:
return GlobalValue::AvailableExternallyLinkage;
case lltok::kw_appending:
return GlobalValue::AppendingLinkage;
case lltok::kw_common:
return GlobalValue::CommonLinkage;
case lltok::kw_extern_weak:
return GlobalValue::ExternalWeakLinkage;
case lltok::kw_external:
return GlobalValue::ExternalLinkage;
}
}
/// parseOptionalLinkage
/// ::= /*empty*/
/// ::= 'private'
/// ::= 'internal'
/// ::= 'weak'
/// ::= 'weak_odr'
/// ::= 'linkonce'
/// ::= 'linkonce_odr'
/// ::= 'available_externally'
/// ::= 'appending'
/// ::= 'common'
/// ::= 'extern_weak'
/// ::= 'external'
bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
unsigned &Visibility,
unsigned &DLLStorageClass, bool &DSOLocal) {
Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
if (HasLinkage)
Lex.Lex();
parseOptionalDSOLocal(DSOLocal);
parseOptionalVisibility(Visibility);
parseOptionalDLLStorageClass(DLLStorageClass);
if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
}
return false;
}
void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
switch (Lex.getKind()) {
default:
DSOLocal = false;
break;
case lltok::kw_dso_local:
DSOLocal = true;
Lex.Lex();
break;
case lltok::kw_dso_preemptable:
DSOLocal = false;
Lex.Lex();
break;
}
}
/// parseOptionalVisibility
/// ::= /*empty*/
/// ::= 'default'
/// ::= 'hidden'
/// ::= 'protected'
///
void LLParser::parseOptionalVisibility(unsigned &Res) {
switch (Lex.getKind()) {
default:
Res = GlobalValue::DefaultVisibility;
return;
case lltok::kw_default:
Res = GlobalValue::DefaultVisibility;
break;
case lltok::kw_hidden:
Res = GlobalValue::HiddenVisibility;
break;
case lltok::kw_protected:
Res = GlobalValue::ProtectedVisibility;
break;
}
Lex.Lex();
}
/// parseOptionalDLLStorageClass
/// ::= /*empty*/
/// ::= 'dllimport'
/// ::= 'dllexport'
///
void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
switch (Lex.getKind()) {
default:
Res = GlobalValue::DefaultStorageClass;
return;
case lltok::kw_dllimport:
Res = GlobalValue::DLLImportStorageClass;
break;
case lltok::kw_dllexport:
Res = GlobalValue::DLLExportStorageClass;
break;
}
Lex.Lex();
}
/// parseOptionalCallingConv
/// ::= /*empty*/
/// ::= 'ccc'
/// ::= 'fastcc'
/// ::= 'intel_ocl_bicc'
/// ::= 'coldcc'
/// ::= 'cfguard_checkcc'
/// ::= 'x86_stdcallcc'
/// ::= 'x86_fastcallcc'
/// ::= 'x86_thiscallcc'
/// ::= 'x86_vectorcallcc'
/// ::= 'arm_apcscc'
/// ::= 'arm_aapcscc'
/// ::= 'arm_aapcs_vfpcc'
/// ::= 'aarch64_vector_pcs'
/// ::= 'aarch64_sve_vector_pcs'
/// ::= 'msp430_intrcc'
/// ::= 'avr_intrcc'
/// ::= 'avr_signalcc'
/// ::= 'ptx_kernel'
/// ::= 'ptx_device'
/// ::= 'spir_func'
/// ::= 'spir_kernel'
/// ::= 'x86_64_sysvcc'
/// ::= 'win64cc'
/// ::= 'webkit_jscc'
/// ::= 'anyregcc'
/// ::= 'preserve_mostcc'
/// ::= 'preserve_allcc'
/// ::= 'ghccc'
/// ::= 'swiftcc'
/// ::= 'swifttailcc'
/// ::= 'x86_intrcc'
/// ::= 'hhvmcc'
/// ::= 'hhvm_ccc'
/// ::= 'cxx_fast_tlscc'
/// ::= 'amdgpu_vs'
/// ::= 'amdgpu_ls'
/// ::= 'amdgpu_hs'
/// ::= 'amdgpu_es'
/// ::= 'amdgpu_gs'
/// ::= 'amdgpu_ps'
/// ::= 'amdgpu_cs'
/// ::= 'amdgpu_kernel'
/// ::= 'tailcc'
/// ::= 'cc' UINT
///
bool LLParser::parseOptionalCallingConv(unsigned &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
case lltok::kw_fastcc: CC = CallingConv::Fast; break;
case lltok::kw_coldcc: CC = CallingConv::Cold; break;
case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
case lltok::kw_aarch64_sve_vector_pcs:
CC = CallingConv::AArch64_SVE_VectorCall;
break;
case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
case lltok::kw_win64cc: CC = CallingConv::Win64; break;
case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
case lltok::kw_ghccc: CC = CallingConv::GHC; break;
case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
case lltok::kw_tailcc: CC = CallingConv::Tail; break;
case lltok::kw_cc: {
Lex.Lex();
return parseUInt32(CC);
}
}
Lex.Lex();
return false;
}
/// parseMetadataAttachment
/// ::= !dbg !42
bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
std::string Name = Lex.getStrVal();
Kind = M->getMDKindID(Name);
Lex.Lex();
return parseMDNode(MD);
}
/// parseInstructionMetadata
/// ::= !dbg !42 (',' !dbg !57)*
bool LLParser::parseInstructionMetadata(Instruction &Inst) {
do {
if (Lex.getKind() != lltok::MetadataVar)
return tokError("expected metadata after comma");
unsigned MDK;
MDNode *N;
if (parseMetadataAttachment(MDK, N))
return true;
Inst.setMetadata(MDK, N);
if (MDK == LLVMContext::MD_tbaa)
InstsWithTBAATag.push_back(&Inst);
// If this is the end of the list, we're done.
} while (EatIfPresent(lltok::comma));
return false;
}
/// parseGlobalObjectMetadataAttachment
/// ::= !dbg !57
bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
unsigned MDK;
MDNode *N;
if (parseMetadataAttachment(MDK, N))
return true;
GO.addMetadata(MDK, *N);
return false;
}
/// parseOptionalFunctionMetadata
/// ::= (!dbg !57)*
bool LLParser::parseOptionalFunctionMetadata(Function &F) {
while (Lex.getKind() == lltok::MetadataVar)
if (parseGlobalObjectMetadataAttachment(F))
return true;
return false;
}
/// parseOptionalAlignment
/// ::= /* empty */
/// ::= 'align' 4
bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
Alignment = None;
if (!EatIfPresent(lltok::kw_align))
return false;
LocTy AlignLoc = Lex.getLoc();
uint32_t Value = 0;
LocTy ParenLoc = Lex.getLoc();
bool HaveParens = false;
if (AllowParens) {
if (EatIfPresent(lltok::lparen))
HaveParens = true;
}
if (parseUInt32(Value))
return true;
if (HaveParens && !EatIfPresent(lltok::rparen))
return error(ParenLoc, "expected ')'");
if (!isPowerOf2_32(Value))
return error(AlignLoc, "alignment is not a power of two");
if (Value > Value::MaximumAlignment)
return error(AlignLoc, "huge alignments are not supported yet");
Alignment = Align(Value);
return false;
}
/// parseOptionalDerefAttrBytes
/// ::= /* empty */
/// ::= AttrKind '(' 4 ')'
///
/// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
uint64_t &Bytes) {
assert((AttrKind == lltok::kw_dereferenceable ||
AttrKind == lltok::kw_dereferenceable_or_null) &&
"contract!");
Bytes = 0;
if (!EatIfPresent(AttrKind))
return false;
LocTy ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return error(ParenLoc, "expected '('");
LocTy DerefLoc = Lex.getLoc();
if (parseUInt64(Bytes))
return true;
ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return error(ParenLoc, "expected ')'");
if (!Bytes)
return error(DerefLoc, "dereferenceable bytes must be non-zero");
return false;
}
/// parseOptionalCommaAlign
/// ::=
/// ::= ',' align 4
///
/// This returns with AteExtraComma set to true if it ate an excess comma at the
/// end.
bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
bool &AteExtraComma) {
AteExtraComma = false;
while (EatIfPresent(lltok::comma)) {
// Metadata at the end is an early exit.
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
return false;
}
if (Lex.getKind() != lltok::kw_align)
return error(Lex.getLoc(), "expected metadata or 'align'");
if (parseOptionalAlignment(Alignment))
return true;
}
return false;
}
/// parseOptionalCommaAddrSpace
/// ::=
/// ::= ',' addrspace(1)
///
/// This returns with AteExtraComma set to true if it ate an excess comma at the
/// end.
bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
bool &AteExtraComma) {
AteExtraComma = false;
while (EatIfPresent(lltok::comma)) {
// Metadata at the end is an early exit.
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
return false;
}
Loc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_addrspace)
return error(Lex.getLoc(), "expected metadata or 'addrspace'");
if (parseOptionalAddrSpace(AddrSpace))
return true;
}
return false;
}
bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
Optional<unsigned> &HowManyArg) {
Lex.Lex();
auto StartParen = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return error(StartParen, "expected '('");
if (parseUInt32(BaseSizeArg))
return true;
if (EatIfPresent(lltok::comma)) {
auto HowManyAt = Lex.getLoc();
unsigned HowMany;
if (parseUInt32(HowMany))
return true;
if (HowMany == BaseSizeArg)
return error(HowManyAt,
"'allocsize' indices can't refer to the same parameter");
HowManyArg = HowMany;
} else
HowManyArg = None;
auto EndParen = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return error(EndParen, "expected ')'");
return false;
}
bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
unsigned &MaxValue) {
Lex.Lex();
auto StartParen = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return error(StartParen, "expected '('");
if (parseUInt32(MinValue))
return true;
if (EatIfPresent(lltok::comma)) {
if (parseUInt32(MaxValue))
return true;
} else
MaxValue = MinValue;
auto EndParen = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return error(EndParen, "expected ')'");
return false;
}
/// parseScopeAndOrdering
/// if isAtomic: ::= SyncScope? AtomicOrdering
/// else: ::=
///
/// This sets Scope and Ordering to the parsed values.
bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
AtomicOrdering &Ordering) {
if (!IsAtomic)
return false;
return parseScope(SSID) || parseOrdering(Ordering);
}
/// parseScope
/// ::= syncscope("singlethread" | "<target scope>")?
///
/// This sets synchronization scope ID to the ID of the parsed value.
bool LLParser::parseScope(SyncScope::ID &SSID) {
SSID = SyncScope::System;
if (EatIfPresent(lltok::kw_syncscope)) {
auto StartParenAt = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return error(StartParenAt, "Expected '(' in syncscope");
std::string SSN;
auto SSNAt = Lex.getLoc();
if (parseStringConstant(SSN))
return error(SSNAt, "Expected synchronization scope name");
auto EndParenAt = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return error(EndParenAt, "Expected ')' in syncscope");
SSID = Context.getOrInsertSyncScopeID(SSN);
}
return false;
}
/// parseOrdering
/// ::= AtomicOrdering
///
/// This sets Ordering to the parsed value.
bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
switch (Lex.getKind()) {
default:
return tokError("Expected ordering on atomic instruction");
case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
// Not specified yet:
// case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
case lltok::kw_seq_cst:
Ordering = AtomicOrdering::SequentiallyConsistent;
break;
}
Lex.Lex();
return false;
}
/// parseOptionalStackAlignment
/// ::= /* empty */
/// ::= 'alignstack' '(' 4 ')'
bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_alignstack))
return false;
LocTy ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return error(ParenLoc, "expected '('");
LocTy AlignLoc = Lex.getLoc();
if (parseUInt32(Alignment))
return true;
ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return error(ParenLoc, "expected ')'");
if (!isPowerOf2_32(Alignment))
return error(AlignLoc, "stack alignment is not a power of two");
return false;
}
/// parseIndexList - This parses the index list for an insert/extractvalue
/// instruction. This sets AteExtraComma in the case where we eat an extra
/// comma at the end of the line and find that it is followed by metadata.
/// Clients that don't allow metadata can call the version of this function that
/// only takes one argument.
///
/// parseIndexList
/// ::= (',' uint32)+
///
bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
bool &AteExtraComma) {
AteExtraComma = false;
if (Lex.getKind() != lltok::comma)
return tokError("expected ',' as start of index list");
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
if (Indices.empty())
return tokError("expected index");
AteExtraComma = true;
return false;
}
unsigned Idx = 0;
if (parseUInt32(Idx))
return true;
Indices.push_back(Idx);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type Parsing.
//===----------------------------------------------------------------------===//
/// parseType - parse a type.
bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
SMLoc TypeLoc = Lex.getLoc();
switch (Lex.getKind()) {
default:
return tokError(Msg);
case lltok::Type:
// Type ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
Lex.Lex();
break;
case lltok::lbrace:
// Type ::= StructType
if (parseAnonStructType(Result, false))
return true;
break;
case lltok::lsquare:
// Type ::= '[' ... ']'
Lex.Lex(); // eat the lsquare.
if (parseArrayVectorType(Result, false))
return true;
break;
case lltok::less: // Either vector or packed struct.
// Type ::= '<' ... '>'
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
if (parseAnonStructType(Result, true) ||
parseToken(lltok::greater, "expected '>' at end of packed struct"))
return true;
} else if (parseArrayVectorType(Result, true))
return true;
break;
case lltok::LocalVar: {
// Type ::= %foo
std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (!Entry.first) {
Entry.first = StructType::create(Context, Lex.getStrVal());
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
case lltok::LocalVarID: {
// Type ::= %4
std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (!Entry.first) {
Entry.first = StructType::create(Context);
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
}
// Handle (explicit) opaque pointer types (not --force-opaque-pointers).
//
// Type ::= ptr ('addrspace' '(' uint32 ')')?
if (Result->isOpaquePointerTy()) {
unsigned AddrSpace;
if (parseOptionalAddrSpace(AddrSpace))
return true;
Result = PointerType::get(getContext(), AddrSpace);
// Give a nice error for 'ptr*'.
if (Lex.getKind() == lltok::star)
return tokError("ptr* is invalid - use ptr instead");
// Fall through to parsing the type suffixes only if this 'ptr' is a
// function return. Otherwise, return success, implicitly rejecting other
// suffixes.
if (Lex.getKind() != lltok::lparen)
return false;
}
// parse the type suffixes.
while (true) {
switch (Lex.getKind()) {
// End of type.
default:
if (!AllowVoid && Result->isVoidTy())
return error(TypeLoc, "void type only allowed for function results");
return false;
// Type ::= Type '*'
case lltok::star:
if (Result->isLabelTy())
return tokError("basic block pointers are invalid");
if (Result->isVoidTy())
return tokError("pointers to void are invalid - use i8* instead");
if (!PointerType::isValidElementType(Result))
return tokError("pointer to this type is invalid");
Result = PointerType::getUnqual(Result);
Lex.Lex();
break;
// Type ::= Type 'addrspace' '(' uint32 ')' '*'
case lltok::kw_addrspace: {
if (Result->isLabelTy())
return tokError("basic block pointers are invalid");
if (Result->isVoidTy())
return tokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result))
return tokError("pointer to this type is invalid");
unsigned AddrSpace;
if (parseOptionalAddrSpace(AddrSpace) ||
parseToken(lltok::star, "expected '*' in address space"))
return true;
Result = PointerType::get(Result, AddrSpace);
break;
}
/// Types '(' ArgTypeListI ')' OptFuncAttrs
case lltok::lparen:
if (parseFunctionType(Result))
return true;
break;
}
}
}
/// parseParameterList
/// ::= '(' ')'
/// ::= '(' Arg (',' Arg)* ')'
/// Arg
/// ::= Type OptionalAttributes Value OptionalAttributes
bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS, bool IsMustTailCall,
bool InVarArgsFunc) {
if (parseToken(lltok::lparen, "expected '(' in call"))
return true;
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first argument, we need a comma.
if (!ArgList.empty() &&
parseToken(lltok::comma, "expected ',' in argument list"))
return true;
// parse an ellipsis if this is a musttail call in a variadic function.
if (Lex.getKind() == lltok::dotdotdot) {
const char *Msg = "unexpected ellipsis in argument list for ";
if (!IsMustTailCall)
return tokError(Twine(Msg) + "non-musttail call");
if (!InVarArgsFunc)
return tokError(Twine(Msg) + "musttail call in non-varargs function");
Lex.Lex(); // Lex the '...', it is purely for readability.
return parseToken(lltok::rparen, "expected ')' at end of argument list");
}
// parse the argument.
LocTy ArgLoc;
Type *ArgTy = nullptr;
AttrBuilder ArgAttrs;
Value *V;
if (parseType(ArgTy, ArgLoc))
return true;
if (ArgTy->isMetadataTy()) {
if (parseMetadataAsValue(V, PFS))
return true;
} else {
// Otherwise, handle normal operands.
if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
return true;
}
ArgList.push_back(ParamInfo(
ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
}
if (IsMustTailCall && InVarArgsFunc)
return tokError("expected '...' at end of argument list for musttail call "
"in varargs function");
Lex.Lex(); // Lex the ')'.
return false;
}
/// parseRequiredTypeAttr
/// ::= attrname(<ty>)
bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
Attribute::AttrKind AttrKind) {
Type *Ty = nullptr;
if (!EatIfPresent(AttrToken))
return true;
if (!EatIfPresent(lltok::lparen))
return error(Lex.getLoc(), "expected '('");
if (parseType(Ty))
return true;
if (!EatIfPresent(lltok::rparen))
return error(Lex.getLoc(), "expected ')'");
B.addTypeAttr(AttrKind, Ty);
return false;
}
/// parseOptionalOperandBundles
/// ::= /*empty*/
/// ::= '[' OperandBundle [, OperandBundle ]* ']'
///
/// OperandBundle
/// ::= bundle-tag '(' ')'
/// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
///
/// bundle-tag ::= String Constant
bool LLParser::parseOptionalOperandBundles(
SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
LocTy BeginLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lsquare))
return false;
while (Lex.getKind() != lltok::rsquare) {
// If this isn't the first operand bundle, we need a comma.
if (!BundleList.empty() &&
parseToken(lltok::comma, "expected ',' in input list"))
return true;
std::string Tag;
if (parseStringConstant(Tag))
return true;
if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
return true;
std::vector<Value *> Inputs;
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first input, we need a comma.
if (!Inputs.empty() &&
parseToken(lltok::comma, "expected ',' in input list"))
return true;
Type *Ty = nullptr;
Value *Input = nullptr;
if (parseType(Ty) || parseValue(Ty, Input, PFS))
return true;
Inputs.push_back(Input);
}
BundleList.emplace_back(std::move(Tag), std::move(Inputs));
Lex.Lex(); // Lex the ')'.
}
if (BundleList.empty())
return error(BeginLoc, "operand bundle set must not be empty");
Lex.Lex(); // Lex the ']'.
return false;
}
/// parseArgumentList - parse the argument list for a function type or function
/// prototype.
/// ::= '(' ArgTypeListI ')'
/// ArgTypeListI
/// ::= /*empty*/
/// ::= '...'
/// ::= ArgTypeList ',' '...'
/// ::= ArgType (',' ArgType)*
///
bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
bool &IsVarArg) {
unsigned CurValID = 0;
IsVarArg = false;
assert(Lex.getKind() == lltok::lparen);
Lex.Lex(); // eat the (.
if (Lex.getKind() == lltok::rparen) {
// empty
} else if (Lex.getKind() == lltok::dotdotdot) {
IsVarArg = true;
Lex.Lex();
} else {
LocTy TypeLoc = Lex.getLoc();
Type *ArgTy = nullptr;
AttrBuilder Attrs;
std::string Name;
if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
return true;
if (ArgTy->isVoidTy())
return error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
} else if (Lex.getKind() == lltok::LocalVarID) {
if (Lex.getUIntVal() != CurValID)
return error(TypeLoc, "argument expected to be numbered '%" +
Twine(CurValID) + "'");
++CurValID;
Lex.Lex();
}
if (!FunctionType::isValidArgumentType(ArgTy))
return error(TypeLoc, "invalid type for function argument");
ArgList.emplace_back(TypeLoc, ArgTy,
AttributeSet::get(ArgTy->getContext(), Attrs),
std::move(Name));
while (EatIfPresent(lltok::comma)) {
// Handle ... at end of arg list.
if (EatIfPresent(lltok::dotdotdot)) {
IsVarArg = true;
break;
}
// Otherwise must be an argument type.
TypeLoc = Lex.getLoc();
if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
return true;
if (ArgTy->isVoidTy())
return error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
} else {
if (Lex.getKind() == lltok::LocalVarID) {
if (Lex.getUIntVal() != CurValID)
return error(TypeLoc, "argument expected to be numbered '%" +
Twine(CurValID) + "'");
Lex.Lex();
}
++CurValID;
Name = "";
}
if (!ArgTy->isFirstClassType())
return error(TypeLoc, "invalid type for function argument");
ArgList.emplace_back(TypeLoc, ArgTy,
AttributeSet::get(ArgTy->getContext(), Attrs),
std::move(Name));
}
}
return parseToken(lltok::rparen, "expected ')' at end of argument list");
}
/// parseFunctionType
/// ::= Type ArgumentList OptionalAttrs
bool LLParser::parseFunctionType(Type *&Result) {
assert(Lex.getKind() == lltok::lparen);
if (!FunctionType::isValidReturnType(Result))
return tokError("invalid function return type");
SmallVector<ArgInfo, 8> ArgList;
bool IsVarArg;
if (parseArgumentList(ArgList, IsVarArg))
return true;
// Reject names on the arguments lists.
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
if (!ArgList[i].Name.empty())
return error(ArgList[i].Loc, "argument name invalid in function type");
if (ArgList[i].Attrs.hasAttributes())
return error(ArgList[i].Loc,
"argument attributes invalid in function type");
}
SmallVector<Type*, 16> ArgListTy;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ArgListTy.push_back(ArgList[i].Ty);
Result = FunctionType::get(Result, ArgListTy, IsVarArg);
return false;
}
/// parseAnonStructType - parse an anonymous struct type, which is inlined into
/// other structs.
bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
SmallVector<Type*, 8> Elts;
if (parseStructBody(Elts))
return true;
Result = StructType::get(Context, Elts, Packed);
return false;
}
/// parseStructDefinition - parse a struct in a 'type' definition.
bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
std::pair<Type *, LocTy> &Entry,
Type *&ResultTy) {
// If the type was already defined, diagnose the redefinition.
if (Entry.first && !Entry.second.isValid())
return error(TypeLoc, "redefinition of type");
// If we have opaque, just return without filling in the definition for the
// struct. This counts as a definition as far as the .ll file goes.
if (EatIfPresent(lltok::kw_opaque)) {
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (!Entry.first)
Entry.first = StructType::create(Context, Name);
ResultTy = Entry.first;
return false;
}
// If the type starts with '<', then it is either a packed struct or a vector.
bool isPacked = EatIfPresent(lltok::less);
// If we don't have a struct, then we have a random type alias, which we
// accept for compatibility with old files. These types are not allowed to be
// forward referenced and not allowed to be recursive.
if (Lex.getKind() != lltok::lbrace) {
if (Entry.first)
return error(TypeLoc, "forward references to non-struct type");
ResultTy = nullptr;
if (isPacked)
return parseArrayVectorType(ResultTy, true);
return parseType(ResultTy);
}
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (!Entry.first)
Entry.first = StructType::create(Context, Name);
StructType *STy = cast<StructType>(Entry.first);
SmallVector<Type*, 8> Body;
if (parseStructBody(Body) ||
(isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
return true;
STy->setBody(Body, isPacked);
ResultTy = STy;
return false;
}
/// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
/// StructType
/// ::= '{' '}'
/// ::= '{' Type (',' Type)* '}'
/// ::= '<' '{' '}' '>'
/// ::= '<' '{' Type (',' Type)* '}' '>'
bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex(); // Consume the '{'
// Handle the empty struct.
if (EatIfPresent(lltok::rbrace))
return false;
LocTy EltTyLoc = Lex.getLoc();
Type *Ty = nullptr;
if (parseType(Ty))
return true;
Body.push_back(Ty);
if (!StructType::isValidElementType(Ty))
return error(EltTyLoc, "invalid element type for struct");
while (EatIfPresent(lltok::comma)) {
EltTyLoc = Lex.getLoc();
if (parseType(Ty))
return true;
if (!StructType::isValidElementType(Ty))
return error(EltTyLoc, "invalid element type for struct");
Body.push_back(Ty);
}
return parseToken(lltok::rbrace, "expected '}' at end of struct");
}
/// parseArrayVectorType - parse an array or vector type, assuming the first
/// token has already been consumed.
/// Type
/// ::= '[' APSINTVAL 'x' Types ']'
/// ::= '<' APSINTVAL 'x' Types '>'
/// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
bool Scalable = false;
if (IsVector && Lex.getKind() == lltok::kw_vscale) {
Lex.Lex(); // consume the 'vscale'
if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
return true;
Scalable = true;
}
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
Lex.getAPSIntVal().getBitWidth() > 64)
return tokError("expected number in address space");
LocTy SizeLoc = Lex.getLoc();
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Lex.Lex();
if (parseToken(lltok::kw_x, "expected 'x' after element count"))
return true;
LocTy TypeLoc = Lex.getLoc();
Type *EltTy = nullptr;
if (parseType(EltTy))
return true;
if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
"expected end of sequential type"))
return true;
if (IsVector) {
if (Size == 0)
return error(SizeLoc, "zero element vector is illegal");
if ((unsigned)Size != Size)
return error(SizeLoc, "size too large for vector");
if (!VectorType::isValidElementType(EltTy))
return error(TypeLoc, "invalid vector element type");
Result = VectorType::get(EltTy, unsigned(Size), Scalable);
} else {
if (!ArrayType::isValidElementType(EltTy))
return error(TypeLoc, "invalid array element type");
Result = ArrayType::get(EltTy, Size);
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Semantic Analysis.
//===----------------------------------------------------------------------===//
LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
int functionNumber)
: P(p), F(f), FunctionNumber(functionNumber) {
// Insert unnamed arguments into the NumberedVals list.
for (Argument &A : F.args())
if (!A.hasName())
NumberedVals.push_back(&A);
}
LLParser::PerFunctionState::~PerFunctionState() {
// If there were any forward referenced non-basicblock values, delete them.
for (const auto &P : ForwardRefVals) {
if (isa<BasicBlock>(P.second.first))
continue;
P.second.first->replaceAllUsesWith(
UndefValue::get(P.second.first->getType()));
P.second.first->deleteValue();
}
for (const auto &P : ForwardRefValIDs) {
if (isa<BasicBlock>(P.second.first))
continue;
P.second.first->replaceAllUsesWith(
UndefValue::get(P.second.first->getType()));
P.second.first->deleteValue();
}
}
bool LLParser::PerFunctionState::finishFunction() {
if (!ForwardRefVals.empty())
return P.error(ForwardRefVals.begin()->second.second,
"use of undefined value '%" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return P.error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '%" +
Twine(ForwardRefValIDs.begin()->first) + "'");
return false;
}
/// getVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
LocTy Loc, bool IsCall) {
// Look this name up in the normal function symbol table.
Value *Val = F.getValueSymbolTable()->lookup(Name);
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
auto I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val)
return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
// Don't make placeholders with invalid type.
if (!Ty->isFirstClassType()) {
P.error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy()) {
FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
} else {
FwdVal = new Argument(Ty, Name);
}
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
bool IsCall) {
// Look this name up in the normal function symbol table.
Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
auto I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val)
return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
if (!Ty->isFirstClassType()) {
P.error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy()) {
FwdVal = BasicBlock::Create(F.getContext(), "", &F);
} else {
FwdVal = new Argument(Ty);
}
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
/// setInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool LLParser::PerFunctionState::setInstName(int NameID,
const std::string &NameStr,
LocTy NameLoc, Instruction *Inst) {
// If this instruction has void type, it cannot have a name or ID specified.
if (Inst->getType()->isVoidTy()) {
if (NameID != -1 || !NameStr.empty())
return P.error(NameLoc, "instructions returning void cannot have a name");
return false;
}
// If this was a numbered instruction, verify that the instruction is the
// expected value and resolve any forward references.
if (NameStr.empty()) {
// If neither a name nor an ID was specified, just use the next ID.
if (NameID == -1)
NameID = NumberedVals.size();
if (unsigned(NameID) != NumberedVals.size())
return P.error(NameLoc, "instruction expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
auto FI = ForwardRefValIDs.find(NameID);
if (FI != ForwardRefValIDs.end()) {
Value *Sentinel = FI->second.first;
if (Sentinel->getType() != Inst->getType())
return P.error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) +
"'");
Sentinel->replaceAllUsesWith(Inst);
Sentinel->deleteValue();
ForwardRefValIDs.erase(FI);
}
NumberedVals.push_back(Inst);
return false;
}
// Otherwise, the instruction had a name. Resolve forward refs and set it.
auto FI = ForwardRefVals.find(NameStr);
if (FI != ForwardRefVals.end()) {
Value *Sentinel = FI->second.first;
if (Sentinel->getType() != Inst->getType())
return P.error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) +
"'");
Sentinel->replaceAllUsesWith(Inst);
Sentinel->deleteValue();
ForwardRefVals.erase(FI);
}
// Set the name on the instruction.
Inst->setName(NameStr);
if (Inst->getName() != NameStr)
return P.error(NameLoc, "multiple definition of local value named '" +
NameStr + "'");
return false;
}
/// getBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed.
BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
LocTy Loc) {
return dyn_cast_or_null<BasicBlock>(
getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
}
BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
return dyn_cast_or_null<BasicBlock>(
getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
}
/// defineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
int NameID, LocTy Loc) {
BasicBlock *BB;
if (Name.empty()) {
if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
P.error(Loc, "label expected to be numbered '" +
Twine(NumberedVals.size()) + "'");
return nullptr;
}
BB = getBB(NumberedVals.size(), Loc);
if (!BB) {
P.error(Loc, "unable to create block numbered '" +
Twine(NumberedVals.size()) + "'");
return nullptr;
}
} else {
BB = getBB(Name, Loc);
if (!BB) {
P.error(Loc, "unable to create block named '" + Name + "'");
return nullptr;
}
}
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
// Remove the block from forward ref sets.
if (Name.empty()) {
ForwardRefValIDs.erase(NumberedVals.size());
NumberedVals.push_back(BB);
} else {
// BB forward references are already in the function symbol table.
ForwardRefVals.erase(Name);
}
return BB;
}
//===----------------------------------------------------------------------===//
// Constants.
//===----------------------------------------------------------------------===//
/// parseValID - parse an abstract value that doesn't necessarily have a
/// type implied. For example, if we parse "4" we don't know what integer type
/// it has. The value will later be combined with its type and checked for
/// sanity. PFS is used to convert function-local operands of metadata (since
/// metadata operands are not just parsed here but also converted to values).
/// PFS can be null when we are not parsing metadata values inside a function.
bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
ID.Loc = Lex.getLoc();
switch (Lex.getKind()) {
default:
return tokError("expected value token");
case lltok::GlobalID: // @42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_GlobalID;
break;
case lltok::GlobalVar: // @foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_GlobalName;
break;
case lltok::LocalVarID: // %42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_LocalID;
break;
case lltok::LocalVar: // %foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_LocalName;
break;
case lltok::APSInt:
ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
break;
case lltok::APFloat:
ID.APFloatVal = Lex.getAPFloatVal();
ID.Kind = ValID::t_APFloat;
break;
case lltok::kw_true:
ID.ConstantVal = ConstantInt::getTrue(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_false:
ID.ConstantVal = ConstantInt::getFalse(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
case lltok::kw_none: ID.Kind = ValID::t_None; break;
case lltok::lbrace: {
// ValID ::= '{' ConstVector '}'
Lex.Lex();
SmallVector<Constant*, 16> Elts;
if (parseGlobalValueVector(Elts) ||
parseToken(lltok::rbrace, "expected end of struct constant"))
return true;
ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
ID.UIntVal = Elts.size();
memcpy(ID.ConstantStructElts.get(), Elts.data(),
Elts.size() * sizeof(Elts[0]));
ID.Kind = ValID::t_ConstantStruct;
return false;
}
case lltok::less: {
// ValID ::= '<' ConstVector '>' --> Vector.
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
Lex.Lex();
bool isPackedStruct = EatIfPresent(lltok::lbrace);
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (parseGlobalValueVector(Elts) ||
(isPackedStruct &&
parseToken(lltok::rbrace, "expected end of packed struct")) ||
parseToken(lltok::greater, "expected end of constant"))
return true;
if (isPackedStruct) {
ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
memcpy(ID.ConstantStructElts.get(), Elts.data(),
Elts.size() * sizeof(Elts[0]));
ID.UIntVal = Elts.size();
ID.Kind = ValID::t_PackedConstantStruct;
return false;
}
if (Elts.empty())
return error(ID.Loc, "constant vector must not be empty");
if (!Elts[0]->getType()->isIntegerTy() &&
!Elts[0]->getType()->isFloatingPointTy() &&
!Elts[0]->getType()->isPointerTy())
return error(
FirstEltLoc,
"vector elements must have integer, pointer or floating point type");
// Verify that all the vector elements have the same type.
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
if (Elts[i]->getType() != Elts[0]->getType())
return error(FirstEltLoc, "vector element #" + Twine(i) +
" is not of type '" +
getTypeString(Elts[0]->getType()));
ID.ConstantVal = ConstantVector::get(Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::lsquare: { // Array Constant
Lex.Lex();
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (parseGlobalValueVector(Elts) ||
parseToken(lltok::rsquare, "expected end of array constant"))
return true;
// Handle empty element.
if (Elts.empty()) {
// Use undef instead of an array because it's inconvenient to determine
// the element type at this point, there being no elements to examine.
ID.Kind = ValID::t_EmptyArray;
return false;
}
if (!Elts[0]->getType()->isFirstClassType())
return error(FirstEltLoc, "invalid array element type: " +
getTypeString(Elts[0]->getType()));
ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
// Verify all elements are correct type!
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
if (Elts[i]->getType() != Elts[0]->getType())
return error(FirstEltLoc, "array element #" + Twine(i) +
" is not of type '" +
getTypeString(Elts[0]->getType()));
}
ID.ConstantVal = ConstantArray::get(ATy, Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_c: // c "foo"
Lex.Lex();
ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
false);
if (parseToken(lltok::StringConstant, "expected string"))
return true;
ID.Kind = ValID::t_Constant;
return false;
case lltok::kw_asm: {
// ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
// STRINGCONSTANT
bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
Lex.Lex();
if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
parseOptionalToken(lltok::kw_unwind, CanThrow) ||
parseStringConstant(ID.StrVal) ||
parseToken(lltok::comma, "expected comma in inline asm expression") ||
parseToken(lltok::StringConstant, "expected constraint string"))
return true;
ID.StrVal2 = Lex.getStrVal();
ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
(unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
ID.Kind = ValID::t_InlineAsm;
return false;
}
case lltok::kw_blockaddress: {
// ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
Lex.Lex();
ValID Fn, Label;
if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
parseValID(Fn, PFS) ||
parseToken(lltok::comma,
"expected comma in block address expression") ||
parseValID(Label, PFS) ||
parseToken(lltok::rparen, "expected ')' in block address expression"))
return true;
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
return error(Fn.Loc, "expected function name in blockaddress");
if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
return error(Label.Loc, "expected basic block name in blockaddress");
// Try to find the function (but skip it if it's forward-referenced).
GlobalValue *GV = nullptr;
if (Fn.Kind == ValID::t_GlobalID) {
if (Fn.UIntVal < NumberedVals.size())
GV = NumberedVals[Fn.UIntVal];
} else if (!ForwardRefVals.count(Fn.StrVal)) {
GV = M->getNamedValue(Fn.StrVal);
}
Function *F = nullptr;
if (GV) {
// Confirm that it's actually a function with a definition.
if (!isa<Function>(GV))
return error(Fn.Loc, "expected function name in blockaddress");
F = cast<Function>(GV);
if (F->isDeclaration())
return error(Fn.Loc, "cannot take blockaddress inside a declaration");
}
if (!F) {
// Make a global variable as a placeholder for this reference.
GlobalValue *&FwdRef =
ForwardRefBlockAddresses.insert(std::make_pair(
std::move(Fn),
std::map<ValID, GlobalValue *>()))
.first->second.insert(std::make_pair(std::move(Label), nullptr))
.first->second;
if (!FwdRef) {
unsigned FwdDeclAS;
if (ExpectedTy) {
// If we know the type that the blockaddress is being assigned to,
// we can use the address space of that type.
if (!ExpectedTy->isPointerTy())
return error(ID.Loc,
"type of blockaddress must be a pointer and not '" +
getTypeString(ExpectedTy) + "'");
FwdDeclAS = ExpectedTy->getPointerAddressSpace();
} else if (PFS) {
// Otherwise, we default the address space of the current function.
FwdDeclAS = PFS->getFunction().getAddressSpace();
} else {
llvm_unreachable("Unknown address space for blockaddress");
}
FwdRef = new GlobalVariable(
*M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
}
ID.ConstantVal = FwdRef;
ID.Kind = ValID::t_Constant;
return false;
}
// We found the function; now find the basic block. Don't use PFS, since we
// might be inside a constant expression.
BasicBlock *BB;
if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
if (Label.Kind == ValID::t_LocalID)
BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
else
BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
if (!BB)
return error(Label.Loc, "referenced value is not a basic block");
} else {
if (Label.Kind == ValID::t_LocalID)
return error(Label.Loc, "cannot take address of numeric label after "
"the function is defined");
BB = dyn_cast_or_null<BasicBlock>(
F->getValueSymbolTable()->lookup(Label.StrVal));
if (!BB)
return error(Label.Loc, "referenced value is not a basic block");
}
ID.ConstantVal = BlockAddress::get(F, BB);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_dso_local_equivalent: {
// ValID ::= 'dso_local_equivalent' @foo
Lex.Lex();
ValID Fn;
if (parseValID(Fn, PFS))
return true;
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
return error(Fn.Loc,
"expected global value name in dso_local_equivalent");
// Try to find the function (but skip it if it's forward-referenced).
GlobalValue *GV = nullptr;
if (Fn.Kind == ValID::t_GlobalID) {
if (Fn.UIntVal < NumberedVals.size())
GV = NumberedVals[Fn.UIntVal];
} else if (!ForwardRefVals.count(Fn.StrVal)) {
GV = M->getNamedValue(Fn.StrVal);
}
assert(GV && "Could not find a corresponding global variable");
if (!GV->getValueType()->isFunctionTy())
return error(Fn.Loc, "expected a function, alias to function, or ifunc "
"in dso_local_equivalent");
ID.ConstantVal = DSOLocalEquivalent::get(GV);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_addrspacecast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: {
unsigned Opc = Lex.getUIntVal();
Type *DestTy = nullptr;
Constant *SrcVal;
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
parseGlobalTypeAndValue(SrcVal) ||
parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
parseType(DestTy) ||
parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
return error(ID.Loc, "invalid cast opcode for cast from '" +
getTypeString(SrcVal->getType()) + "' to '" +
getTypeString(DestTy) + "'");
ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
SrcVal, DestTy);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_extractvalue: {
Lex.Lex();
Constant *Val;
SmallVector<unsigned, 4> Indices;
if (parseToken(lltok::lparen,
"expected '(' in extractvalue constantexpr") ||
parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
return true;
if (!Val->getType()->isAggregateType())
return error(ID.Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return error(ID.Loc, "invalid indices for extractvalue");
ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_insertvalue: {
Lex.Lex();
Constant *Val0, *Val1;
SmallVector<unsigned, 4> Indices;
if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
parseGlobalTypeAndValue(Val0) ||
parseToken(lltok::comma,
"expected comma in insertvalue constantexpr") ||
parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
return true;
if (!Val0->getType()->isAggregateType())
return error(ID.Loc, "insertvalue operand must be aggregate type");
Type *IndexedType =
ExtractValueInst::getIndexedType(Val0->getType(), Indices);
if (!IndexedType)
return error(ID.Loc, "invalid indices for insertvalue");
if (IndexedType != Val1->getType())
return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
getTypeString(Val1->getType()) +
"' instead of '" + getTypeString(IndexedType) +
"'");
ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_icmp:
case lltok::kw_fcmp: {
unsigned PredVal, Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (parseCmpPredicate(PredVal, Opc) ||
parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
parseGlobalTypeAndValue(Val0) ||
parseToken(lltok::comma, "expected comma in compare constantexpr") ||
parseGlobalTypeAndValue(Val1) ||
parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return error(ID.Loc, "compare operands must have the same type");
CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
if (Opc == Instruction::FCmp) {
if (!Val0->getType()->isFPOrFPVectorTy())
return error(ID.Loc, "fcmp requires floating point operands");
ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
} else {
assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
if (!Val0->getType()->isIntOrIntVectorTy() &&
!Val0->getType()->isPtrOrPtrVectorTy())
return error(ID.Loc, "icmp requires pointer or integer operands");
ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
}
ID.Kind = ValID::t_Constant;
return false;
}
// Unary Operators.
case lltok::kw_fneg: {
unsigned Opc = Lex.getUIntVal();
Constant *Val;
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
parseGlobalTypeAndValue(Val) ||
parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
return true;
// Check that the type is valid for the operator.
switch (Opc) {
case Instruction::FNeg:
if (!Val->getType()->isFPOrFPVectorTy())
return error(ID.Loc, "constexpr requires fp operands");
break;
default: llvm_unreachable("Unknown unary operator!");
}
unsigned Flags = 0;
Constant *C = ConstantExpr::get(Opc, Val, Flags);
ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
}
// Binary Operators.
case lltok::kw_add:
case lltok::kw_fadd:
case lltok::kw_sub:
case lltok::kw_fsub:
case lltok::kw_mul:
case lltok::kw_fmul:
case lltok::kw_udiv:
case lltok::kw_sdiv:
case lltok::kw_fdiv:
case lltok::kw_urem:
case lltok::kw_srem:
case lltok::kw_frem:
case lltok::kw_shl:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool NUW = false;
bool NSW = false;
bool Exact = false;
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (Opc == Instruction::Add || Opc == Instruction::Sub ||
Opc == Instruction::Mul || Opc == Instruction::Shl) {
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
if (EatIfPresent(lltok::kw_nsw)) {
NSW = true;
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
}
} else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
Opc == Instruction::LShr || Opc == Instruction::AShr) {
if (EatIfPresent(lltok::kw_exact))
Exact = true;
}
if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
parseGlobalTypeAndValue(Val0) ||
parseToken(lltok::comma, "expected comma in binary constantexpr") ||
parseGlobalTypeAndValue(Val1) ||
parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return error(ID.Loc, "operands of constexpr must have same type");
// Check that the type is valid for the operator.
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr:
if (!Val0->getType()->isIntOrIntVectorTy())
return error(ID.Loc, "constexpr requires integer operands");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
if (!Val0->getType()->isFPOrFPVectorTy())
return error(ID.Loc, "constexpr requires fp operands");
break;
default: llvm_unreachable("Unknown binary operator!");
}
unsigned Flags = 0;
if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Exact) Flags |= PossiblyExactOperator::IsExact;
Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
}
// Logical Operations
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: {
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
parseGlobalTypeAndValue(Val0) ||
parseToken(lltok::comma, "expected comma in logical constantexpr") ||
parseGlobalTypeAndValue(Val1) ||
parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVectorTy())
return error(ID.Loc,
"constexpr requires integer or integer vector operands");
ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_getelementptr:
case lltok::kw_shufflevector:
case lltok::kw_insertelement:
case lltok::kw_extractelement:
case lltok::kw_select: {
unsigned Opc = Lex.getUIntVal();
SmallVector<Constant*, 16> Elts;
bool InBounds = false;
Type *Ty;
Lex.Lex();
if (Opc == Instruction::GetElementPtr)
InBounds = EatIfPresent(lltok::kw_inbounds);
if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
return true;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (Opc == Instruction::GetElementPtr) {
if (parseType(Ty) ||
parseToken(lltok::comma, "expected comma after getelementptr's type"))
return true;
}
Optional<unsigned> InRangeOp;
if (parseGlobalValueVector(
Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
parseToken(lltok::rparen, "expected ')' in constantexpr"))
return true;
if (Opc == Instruction::GetElementPtr) {
if (Elts.size() == 0 ||
!Elts[0]->getType()->isPtrOrPtrVectorTy())
return error(ID.Loc, "base of getelementptr must be a pointer");
Type *BaseType = Elts[0]->getType();
auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
return error(
ExplicitTypeLoc,
typeComparisonErrorMessage(
"explicit pointee type doesn't match operand's pointee type",
Ty, BasePointerType->getElementType()));
}
unsigned GEPWidth =
BaseType->isVectorTy()
? cast<FixedVectorType>(BaseType)->getNumElements()
: 0;
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
for (Constant *Val : Indices) {
Type *ValTy = Val->getType();
if (!ValTy->isIntOrIntVectorTy())
return error(ID.Loc, "getelementptr index must be an integer");
if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
if (GEPWidth && (ValNumEl != GEPWidth))
return error(
ID.Loc,
"getelementptr vector index has a wrong number of elements");
// GEPWidth may have been unknown because the base is a scalar,
// but it is known now.
GEPWidth = ValNumEl;
}
}
SmallPtrSet<Type*, 4> Visited;
if (!Indices.empty() && !Ty->isSized(&Visited))
return error(ID.Loc, "base element of getelementptr must be sized");
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
return error(ID.Loc, "invalid getelementptr indices");
if (InRangeOp) {
if (*InRangeOp == 0)
return error(ID.Loc,
"inrange keyword may not appear on pointer operand");
--*InRangeOp;
}
ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
InBounds, InRangeOp);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return error(ID.Loc, "expected three operands to select");
if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
Elts[2]))
return error(ID.Loc, Reason);
ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
} else if (Opc == Instruction::ShuffleVector) {
if (Elts.size() != 3)
return error(ID.Loc, "expected three operands to shufflevector");
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return error(ID.Loc, "invalid operands to shufflevector");
SmallVector<int, 16> Mask;
ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
} else if (Opc == Instruction::ExtractElement) {
if (Elts.size() != 2)
return error(ID.Loc, "expected two operands to extractelement");
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
return error(ID.Loc, "invalid extractelement operands");
ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
} else {
assert(Opc == Instruction::InsertElement && "Unknown opcode");
if (Elts.size() != 3)
return error(ID.Loc, "expected three operands to insertelement");
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return error(ID.Loc, "invalid insertelement operands");
ID.ConstantVal =
ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
}
ID.Kind = ValID::t_Constant;
return false;
}
}
Lex.Lex();
return false;
}
/// parseGlobalValue - parse a global value with the specified type.
bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
C = nullptr;
ValID ID;
Value *V = nullptr;
bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
if (V && !(C = dyn_cast<Constant>(V)))
return error(ID.Loc, "global values must be constants");
return Parsed;
}
bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
Type *Ty = nullptr;
return parseType(Ty) || parseGlobalValue(Ty, V);
}
bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
C = nullptr;
LocTy KwLoc = Lex.getLoc();
if (!EatIfPresent(lltok::kw_comdat))
return false;
if (EatIfPresent(lltok::lparen)) {
if (Lex.getKind() != lltok::ComdatVar)
return tokError("expected comdat variable");
C = getComdat(Lex.getStrVal(), Lex.getLoc());
Lex.Lex();
if (parseToken(lltok::rparen, "expected ')' after comdat var"))
return true;
} else {
if (GlobalName.empty())
return tokError("comdat cannot be unnamed");
C = getComdat(std::string(GlobalName), KwLoc);
}
return false;
}
/// parseGlobalValueVector
/// ::= /*empty*/
/// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
Optional<unsigned> *InRangeOp) {
// Empty list.
if (Lex.getKind() == lltok::rbrace ||
Lex.getKind() == lltok::rsquare ||
Lex.getKind() == lltok::greater ||
Lex.getKind() == lltok::rparen)
return false;
do {
if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
*InRangeOp = Elts.size();
Constant *C;
if (parseGlobalTypeAndValue(C))
return true;
Elts.push_back(C);
} while (EatIfPresent(lltok::comma));
return false;
}
bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
SmallVector<Metadata *, 16> Elts;
if (parseMDNodeVector(Elts))
return true;
MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
return false;
}
/// MDNode:
/// ::= !{ ... }
/// ::= !7
/// ::= !DILocation(...)
bool LLParser::parseMDNode(MDNode *&N) {
if (Lex.getKind() == lltok::MetadataVar)
return parseSpecializedMDNode(N);
return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
}
bool LLParser::parseMDNodeTail(MDNode *&N) {
// !{ ... }
if (Lex.getKind() == lltok::lbrace)
return parseMDTuple(N);
// !42
return parseMDNodeID(N);
}
namespace {
/// Structure to represent an optional metadata field.
template <class FieldTy> struct MDFieldImpl {
typedef MDFieldImpl ImplTy;
FieldTy Val;
bool Seen;
void assign(FieldTy Val) {
Seen = true;
this->Val = std::move(Val);
}
explicit MDFieldImpl(FieldTy Default)
: Val(std::move(Default)), Seen(false) {}
};
/// Structure to represent an optional metadata field that
/// can be of either type (A or B) and encapsulates the
/// MD<typeofA>Field and MD<typeofB>Field structs, so not
/// to reimplement the specifics for representing each Field.
template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
FieldTypeA A;
FieldTypeB B;
bool Seen;
enum {
IsInvalid = 0,
IsTypeA = 1,
IsTypeB = 2
} WhatIs;
void assign(FieldTypeA A) {
Seen = true;
this->A = std::move(A);
WhatIs = IsTypeA;
}
void assign(FieldTypeB B) {
Seen = true;
this->B = std::move(B);
WhatIs = IsTypeB;
}
explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
: A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
WhatIs(IsInvalid) {}
};
struct MDUnsignedField : public MDFieldImpl<uint64_t> {
uint64_t Max;
MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
: ImplTy(Default), Max(Max) {}
};
struct LineField : public MDUnsignedField {
LineField() : MDUnsignedField(0, UINT32_MAX) {}
};
struct ColumnField : public MDUnsignedField {
ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
};
struct DwarfTagField : public MDUnsignedField {
DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField(dwarf::Tag DefaultTag)
: MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
};
struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
: MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
};
struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
};
struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
};
struct DwarfLangField : public MDUnsignedField {
DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
};
struct DwarfCCField : public MDUnsignedField {
DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
};
struct EmissionKindField : public MDUnsignedField {
EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
};
struct NameTableKindField : public MDUnsignedField {
NameTableKindField()
: MDUnsignedField(
0, (unsigned)
DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
};
struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
};
struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
};
struct MDAPSIntField : public MDFieldImpl<APSInt> {
MDAPSIntField() : ImplTy(APSInt()) {}
};
struct MDSignedField : public MDFieldImpl<int64_t> {
int64_t Min;
int64_t Max;
MDSignedField(int64_t Default = 0)
: ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField(int64_t Default, int64_t Min, int64_t Max)
: ImplTy(Default), Min(Min), Max(Max) {}
};
struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField(bool Default = false) : ImplTy(Default) {}
};
struct MDField : public MDFieldImpl<Metadata *> {
bool AllowNull;
MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
};
struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant() : ImplTy(nullptr) {}
};
struct MDStringField : public MDFieldImpl<MDString *> {
bool AllowEmpty;
MDStringField(bool AllowEmpty = true)
: ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
};
struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
};
struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
};
struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
: ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
bool AllowNull = true)
: ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
bool isMDSignedField() const { return WhatIs == IsTypeA; }
bool isMDField() const { return WhatIs == IsTypeB; }
int64_t getMDSignedValue() const {
assert(isMDSignedField() && "Wrong field type");
return A.Val;
}
Metadata *getMDFieldValue() const {
assert(isMDField() && "Wrong field type");
return B.Val;
}
};
struct MDSignedOrUnsignedField
: MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
bool isMDSignedField() const { return WhatIs == IsTypeA; }
bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
int64_t getMDSignedValue() const {
assert(isMDSignedField() && "Wrong field type");
return A.Val;
}
uint64_t getMDUnsignedValue() const {
assert(isMDUnsignedField() && "Wrong field type");
return B.Val;
}
};
} // end anonymous namespace
namespace llvm {
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
if (Lex.getKind() != lltok::APSInt)
return tokError("expected integer");
Result.assign(Lex.getAPSIntVal());
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
MDUnsignedField &Result) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return tokError("expected unsigned integer");
auto &U = Lex.getAPSIntVal();
if (U.ugt(Result.Max))
return tokError("value for '" + Name + "' too large, limit is " +
Twine(Result.Max));
Result.assign(U.getZExtValue());
assert(Result.Val <= Result.Max && "Expected value in range");
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfTag)
return tokError("expected DWARF tag");
unsigned Tag = dwarf::getTag(Lex.getStrVal());
if (Tag == dwarf::DW_TAG_invalid)
return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
assert(Tag <= Result.Max && "Expected valid DWARF tag");
Result.assign(Tag);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
DwarfMacinfoTypeField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfMacinfo)
return tokError("expected DWARF macinfo type");
unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
if (Macinfo == dwarf::DW_MACINFO_invalid)
return tokError("invalid DWARF macinfo type" + Twine(" '") +
Lex.getStrVal() + "'");
assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
Result.assign(Macinfo);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
DwarfVirtualityField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfVirtuality)
return tokError("expected DWARF virtuality code");
unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
return tokError("invalid DWARF virtuality code" + Twine(" '") +
Lex.getStrVal() + "'");
assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
Result.assign(Virtuality);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfLang)
return tokError("expected DWARF language");
unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
if (!Lang)
return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
"'");
assert(Lang <= Result.Max && "Expected valid DWARF language");
Result.assign(Lang);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfCC)
return tokError("expected DWARF calling convention");
unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
if (!CC)
return tokError("invalid DWARF calling convention" + Twine(" '") +
Lex.getStrVal() + "'");
assert(CC <= Result.Max && "Expected valid DWARF calling convention");
Result.assign(CC);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
EmissionKindField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::EmissionKind)
return tokError("expected emission kind");
auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
if (!Kind)
return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
"'");
assert(*Kind <= Result.Max && "Expected valid emission kind");
Result.assign(*Kind);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
NameTableKindField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::NameTableKind)
return tokError("expected nameTable kind");
auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
if (!Kind)
return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
"'");
assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
Result.assign((unsigned)*Kind);
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
DwarfAttEncodingField &Result) {
if (Lex.getKind() == lltok::APSInt)
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfAttEncoding)
return tokError("expected DWARF type attribute encoding");
unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
if (!Encoding)
return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
Lex.getStrVal() + "'");
assert(Encoding <= Result.Max && "Expected valid DWARF language");
Result.assign(Encoding);
Lex.Lex();
return false;
}
/// DIFlagField
/// ::= uint32
/// ::= DIFlagVector
/// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
// parser for a single flag.
auto parseFlag = [&](DINode::DIFlags &Val) {
if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
uint32_t TempVal = static_cast<uint32_t>(Val);
bool Res = parseUInt32(TempVal);
Val = static_cast<DINode::DIFlags>(TempVal);
return Res;
}
if (Lex.getKind() != lltok::DIFlag)
return tokError("expected debug info flag");
Val = DINode::getFlag(Lex.getStrVal());
if (!Val)
return tokError(Twine("invalid debug info flag flag '") +
Lex.getStrVal() + "'");
Lex.Lex();
return false;
};
// parse the flags and combine them together.
DINode::DIFlags Combined = DINode::FlagZero;
do {
DINode::DIFlags Val;
if (parseFlag(Val))
return true;
Combined |= Val;
} while (EatIfPresent(lltok::bar));
Result.assign(Combined);
return false;
}
/// DISPFlagField
/// ::= uint32
/// ::= DISPFlagVector
/// ::= DISPFlagVector '|' DISPFlag* '|' uint32
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
// parser for a single flag.
auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
uint32_t TempVal = static_cast<uint32_t>(Val);
bool Res = parseUInt32(TempVal);
Val = static_cast<DISubprogram::DISPFlags>(TempVal);
return Res;
}
if (Lex.getKind() != lltok::DISPFlag)
return tokError("expected debug info flag");
Val = DISubprogram::getFlag(Lex.getStrVal());
if (!Val)
return tokError(Twine("invalid subprogram debug info flag '") +
Lex.getStrVal() + "'");
Lex.Lex();
return false;
};
// parse the flags and combine them together.
DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
do {
DISubprogram::DISPFlags Val;
if (parseFlag(Val))
return true;
Combined |= Val;
} while (EatIfPresent(lltok::bar));
Result.assign(Combined);
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
if (Lex.getKind() != lltok::APSInt)
return tokError("expected signed integer");
auto &S = Lex.getAPSIntVal();
if (S < Result.Min)
return tokError("value for '" + Name + "' too small, limit is " +
Twine(Result.Min));
if (S > Result.Max)
return tokError("value for '" + Name + "' too large, limit is " +
Twine(Result.Max));
Result.assign(S.getExtValue());
assert(Result.Val >= Result.Min && "Expected value in range");
assert(Result.Val <= Result.Max && "Expected value in range");
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
switch (Lex.getKind()) {
default:
return tokError("expected 'true' or 'false'");
case lltok::kw_true:
Result.assign(true);
break;
case lltok::kw_false:
Result.assign(false);
break;
}
Lex.Lex();
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
if (Lex.getKind() == lltok::kw_null) {
if (!Result.AllowNull)
return tokError("'" + Name + "' cannot be null");
Lex.Lex();
Result.assign(nullptr);
return false;
}
Metadata *MD;
if (parseMetadata(MD, nullptr))
return true;
Result.assign(MD);
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
MDSignedOrMDField &Result) {
// Try to parse a signed int.
if (Lex.getKind() == lltok::APSInt) {
MDSignedField Res = Result.A;
if (!parseMDField(Loc, Name, Res)) {
Result.assign(Res);
return false;
}
return true;
}
// Otherwise, try to parse as an MDField.
MDField Res = Result.B;
if (!parseMDField(Loc, Name, Res)) {
Result.assign(Res);
return false;
}
return true;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
LocTy ValueLoc = Lex.getLoc();
std::string S;
if (parseStringConstant(S))
return true;
if (!Result.AllowEmpty && S.empty())
return error(ValueLoc, "'" + Name + "' cannot be empty");
Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
SmallVector<Metadata *, 4> MDs;
if (parseMDNodeVector(MDs))
return true;
Result.assign(std::move(MDs));
return false;
}
template <>
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
ChecksumKindField &Result) {
Optional<DIFile::ChecksumKind> CSKind =
DIFile::getChecksumKind(Lex.getStrVal());
if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
"'");
Result.assign(*CSKind);
Lex.Lex();
return false;
}
} // end namespace llvm
template <class ParserTy>
bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
do {
if (Lex.getKind() != lltok::LabelStr)
return tokError("expected field label here");
if (ParseField())
return true;
} while (EatIfPresent(lltok::comma));
return false;
}
template <class ParserTy>
bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' here"))
return true;
if (Lex.getKind() != lltok::rparen)
if (parseMDFieldsImplBody(ParseField))
return true;
ClosingLoc = Lex.getLoc();
return parseToken(lltok::rparen, "expected ')' here");
}
template <class FieldTy>
bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
if (Result.Seen)
return tokError("field '" + Name + "' cannot be specified more than once");
LocTy Loc = Lex.getLoc();
Lex.Lex();
return parseMDField(Loc, Name, Result);
}
bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
if (Lex.getStrVal() == #CLASS) \
return parse##CLASS(N, IsDistinct);
#include "llvm/IR/Metadata.def"
return tokError("expected metadata type");
}
#define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
#define NOP_FIELD(NAME, TYPE, INIT)
#define REQUIRE_FIELD(NAME, TYPE, INIT) \
if (!NAME.Seen) \
return error(ClosingLoc, "missing required field '" #NAME "'");
#define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
if (Lex.getStrVal() == #NAME) \
return parseMDField(#NAME, NAME);
#define PARSE_MD_FIELDS() \
VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
do { \
LocTy ClosingLoc; \
if (parseMDFieldsImpl( \
[&]() -> bool { \
VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
return tokError(Twine("invalid field '") + Lex.getStrVal() + \
"'"); \
}, \
ClosingLoc)) \
return true; \
VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
} while (false)
#define GET_OR_DISTINCT(CLASS, ARGS) \
(IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
/// parseDILocationFields:
/// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
/// isImplicitCode: true)
bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(line, LineField, ); \
OPTIONAL(column, ColumnField, ); \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(inlinedAt, MDField, ); \
OPTIONAL(isImplicitCode, MDBoolField, (false));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result =
GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
inlinedAt.Val, isImplicitCode.Val));
return false;
}
/// parseGenericDINode:
/// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(header, MDStringField, ); \
OPTIONAL(operands, MDFieldList, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(GenericDINode,
(Context, tag.Val, header.Val, operands.Val));
return false;
}
/// parseDISubrange:
/// ::= !DISubrange(count: 30, lowerBound: 2)
/// ::= !DISubrange(count: !node, lowerBound: 2)
/// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
OPTIONAL(lowerBound, MDSignedOrMDField, ); \
OPTIONAL(upperBound, MDSignedOrMDField, ); \
OPTIONAL(stride, MDSignedOrMDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Metadata *Count = nullptr;
Metadata *LowerBound = nullptr;
Metadata *UpperBound = nullptr;
Metadata *Stride = nullptr;
auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
if (Bound.isMDSignedField())
return ConstantAsMetadata::get(ConstantInt::getSigned(
Type::getInt64Ty(Context), Bound.getMDSignedValue()));
if (Bound.isMDField())
return Bound.getMDFieldValue();
return nullptr;
};
Count = convToMetadata(count);
LowerBound = convToMetadata(lowerBound);
UpperBound = convToMetadata(upperBound);
Stride = convToMetadata(stride);
Result = GET_OR_DISTINCT(DISubrange,
(Context, Count, LowerBound, UpperBound, Stride));
return false;
}
/// parseDIGenericSubrange:
/// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
/// !node3)
bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(count, MDSignedOrMDField, ); \
OPTIONAL(lowerBound, MDSignedOrMDField, ); \
OPTIONAL(upperBound, MDSignedOrMDField, ); \
OPTIONAL(stride, MDSignedOrMDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
if (Bound.isMDSignedField())
return DIExpression::get(
Context, {dwarf::DW_OP_consts,
static_cast<uint64_t>(Bound.getMDSignedValue())});
if (Bound.isMDField())
return Bound.getMDFieldValue();
return nullptr;
};
Metadata *Count = ConvToMetadata(count);
Metadata *LowerBound = ConvToMetadata(lowerBound);
Metadata *UpperBound = ConvToMetadata(upperBound);
Metadata *Stride = ConvToMetadata(stride);
Result = GET_OR_DISTINCT(DIGenericSubrange,
(Context, Count, LowerBound, UpperBound, Stride));
return false;
}
/// parseDIEnumerator:
/// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(name, MDStringField, ); \
REQUIRED(value, MDAPSIntField, ); \
OPTIONAL(isUnsigned, MDBoolField, (false));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
if (isUnsigned.Val && value.Val.isNegative())
return tokError("unsigned enumerator with negative value");
APSInt Value(value.Val);
// Add a leading zero so that unsigned values with the msb set are not
// mistaken for negative values when used for signed enumerators.
if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
Value = Value.zext(Value.getBitWidth() + 1);
Result =
GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
return false;
}
/// parseDIBasicType:
/// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
/// encoding: DW_ATE_encoding, flags: 0)
bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(encoding, DwarfAttEncodingField, ); \
OPTIONAL(flags, DIFlagField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
align.Val, encoding.Val, flags.Val));
return false;
}
/// parseDIStringType:
/// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(stringLength, MDField, ); \
OPTIONAL(stringLengthExpression, MDField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(encoding, DwarfAttEncodingField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIStringType,
(Context, tag.Val, name.Val, stringLength.Val,
stringLengthExpression.Val, size.Val, align.Val,
encoding.Val));
return false;
}
/// parseDIDerivedType:
/// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
/// line: 7, scope: !1, baseType: !2, size: 32,
/// align: 32, offset: 0, flags: 0, extraData: !3,
/// dwarfAddressSpace: 3)
bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(scope, MDField, ); \
REQUIRED(baseType, MDField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(extraData, MDField, ); \
OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Optional<unsigned> DWARFAddressSpace;
if (dwarfAddressSpace.Val != UINT32_MAX)
DWARFAddressSpace = dwarfAddressSpace.Val;
Result = GET_OR_DISTINCT(DIDerivedType,
(Context, tag.Val, name.Val, file.Val, line.Val,
scope.Val, baseType.Val, size.Val, align.Val,
offset.Val, DWARFAddressSpace, flags.Val,
extraData.Val));
return false;
}
bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(scope, MDField, ); \
OPTIONAL(baseType, MDField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(elements, MDField, ); \
OPTIONAL(runtimeLang, DwarfLangField, ); \
OPTIONAL(vtableHolder, MDField, ); \
OPTIONAL(templateParams, MDField, ); \
OPTIONAL(identifier, MDStringField, ); \
OPTIONAL(discriminator, MDField, ); \
OPTIONAL(dataLocation, MDField, ); \
OPTIONAL(associated, MDField, ); \
OPTIONAL(allocated, MDField, ); \
OPTIONAL(rank, MDSignedOrMDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Metadata *Rank = nullptr;
if (rank.isMDSignedField())
Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
Type::getInt64Ty(Context), rank.getMDSignedValue()));
else if (rank.isMDField())
Rank = rank.getMDFieldValue();
// If this has an identifier try to build an ODR type.
if (identifier.Val)
if (auto *CT = DICompositeType::buildODRType(
Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
Rank)) {
Result = CT;
return false;
}
// Create a new node, and save it in the context if it belongs in the type
// map.
Result = GET_OR_DISTINCT(
DICompositeType,
(Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
size.Val, align.Val, offset.Val, flags.Val, elements.Val,
runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
Rank));
return false;
}
bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(cc, DwarfCCField, ); \
REQUIRED(types, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DISubroutineType,
(Context, flags.Val, cc.Val, types.Val));
return false;
}
/// parseDIFileType:
/// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
/// checksumkind: CSK_MD5,
/// checksum: "000102030405060708090a0b0c0d0e0f",
/// source: "source file contents")
bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
// The default constructed value for checksumkind is required, but will never
// be used, as the parser checks if the field was actually Seen before using
// the Val.
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(filename, MDStringField, ); \
REQUIRED(directory, MDStringField, ); \
OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
OPTIONAL(checksum, MDStringField, ); \
OPTIONAL(source, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
if (checksumkind.Seen && checksum.Seen)
OptChecksum.emplace(checksumkind.Val, checksum.Val);
else if (checksumkind.Seen || checksum.Seen)
return Lex.Error("'checksumkind' and 'checksum' must be provided together");
Optional<MDString *> OptSource;
if (source.Seen)
OptSource = source.Val;
Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
OptChecksum, OptSource));
return false;
}
/// parseDICompileUnit:
/// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
/// isOptimized: true, flags: "-O2", runtimeVersion: 1,
/// splitDebugFilename: "abc.debug",
/// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
/// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
/// sysroot: "/", sdk: "MacOSX.sdk")
bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
if (!IsDistinct)
return Lex.Error("missing 'distinct', required for !DICompileUnit");
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(language, DwarfLangField, ); \
REQUIRED(file, MDField, (/* AllowNull */ false)); \
OPTIONAL(producer, MDStringField, ); \
OPTIONAL(isOptimized, MDBoolField, ); \
OPTIONAL(flags, MDStringField, ); \
OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(splitDebugFilename, MDStringField, ); \
OPTIONAL(emissionKind, EmissionKindField, ); \
OPTIONAL(enums, MDField, ); \
OPTIONAL(retainedTypes, MDField, ); \
OPTIONAL(globals, MDField, ); \
OPTIONAL(imports, MDField, ); \
OPTIONAL(macros, MDField, ); \
OPTIONAL(dwoId, MDUnsignedField, ); \
OPTIONAL(splitDebugInlining, MDBoolField, = true); \
OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
OPTIONAL(nameTableKind, NameTableKindField, ); \
OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
OPTIONAL(sysroot, MDStringField, ); \
OPTIONAL(sdk, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = DICompileUnit::getDistinct(
Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
rangesBaseAddress.Val, sysroot.Val, sdk.Val);
return false;
}
/// parseDISubprogram:
/// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
/// file: !1, line: 7, type: !2, isLocal: false,
/// isDefinition: true, scopeLine: 8, containingType: !3,
/// virtuality: DW_VIRTUALTIY_pure_virtual,
/// virtualIndex: 10, thisAdjustment: 4, flags: 11,
/// spFlags: 10, isOptimized: false, templateParams: !4,
/// declaration: !5, retainedNodes: !6, thrownTypes: !7)
bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
auto Loc = Lex.getLoc();
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(scope, MDField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(linkageName, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(isLocal, MDBoolField, ); \
OPTIONAL(isDefinition, MDBoolField, (true)); \
OPTIONAL(scopeLine, LineField, ); \
OPTIONAL(containingType, MDField, ); \
OPTIONAL(virtuality, DwarfVirtualityField, ); \
OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(spFlags, DISPFlagField, ); \
OPTIONAL(isOptimized, MDBoolField, ); \
OPTIONAL(unit, MDField, ); \
OPTIONAL(templateParams, MDField, ); \
OPTIONAL(declaration, MDField, ); \
OPTIONAL(retainedNodes, MDField, ); \
OPTIONAL(thrownTypes, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
// An explicit spFlags field takes precedence over individual fields in
// older IR versions.
DISubprogram::DISPFlags SPFlags =
spFlags.Seen ? spFlags.Val
: DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
isOptimized.Val, virtuality.Val);
if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
return Lex.Error(
Loc,
"missing 'distinct', required for !DISubprogram that is a Definition");
Result = GET_OR_DISTINCT(
DISubprogram,
(Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
declaration.Val, retainedNodes.Val, thrownTypes.Val));
return false;
}
/// parseDILexicalBlock:
/// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(column, ColumnField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
return false;
}
/// parseDILexicalBlockFile:
/// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(file, MDField, ); \
REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DILexicalBlockFile,
(Context, scope.Val, file.Val, discriminator.Val));
return false;
}
/// parseDICommonBlock:
/// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, ); \
OPTIONAL(declaration, MDField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DICommonBlock,
(Context, scope.Val, declaration.Val, name.Val,
file.Val, line.Val));
return false;
}
/// parseDINamespace:
/// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(exportSymbols, MDBoolField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DINamespace,
(Context, scope.Val, name.Val, exportSymbols.Val));
return false;
}
/// parseDIMacro:
/// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
/// "SomeValue")
bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(type, DwarfMacinfoTypeField, ); \
OPTIONAL(line, LineField, ); \
REQUIRED(name, MDStringField, ); \
OPTIONAL(value, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIMacro,
(Context, type.Val, line.Val, name.Val, value.Val));
return false;
}
/// parseDIMacroFile:
/// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
OPTIONAL(line, LineField, ); \
REQUIRED(file, MDField, ); \
OPTIONAL(nodes, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIMacroFile,
(Context, type.Val, line.Val, file.Val, nodes.Val));
return false;
}
/// parseDIModule:
/// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
/// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
/// file: !1, line: 4, isDecl: false)
bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, ); \
REQUIRED(name, MDStringField, ); \
OPTIONAL(configMacros, MDStringField, ); \
OPTIONAL(includePath, MDStringField, ); \
OPTIONAL(apinotes, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(isDecl, MDBoolField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
configMacros.Val, includePath.Val,
apinotes.Val, line.Val, isDecl.Val));
return false;
}
/// parseDITemplateTypeParameter:
/// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(name, MDStringField, ); \
REQUIRED(type, MDField, ); \
OPTIONAL(defaulted, MDBoolField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DITemplateTypeParameter,
(Context, name.Val, type.Val, defaulted.Val));
return false;
}
/// parseDITemplateValueParameter:
/// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
/// name: "V", type: !1, defaulted: false,
/// value: i32 7)
bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(defaulted, MDBoolField, ); \
REQUIRED(value, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DITemplateValueParameter,
(Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
return false;
}
/// parseDIGlobalVariable:
/// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
/// file: !1, line: 7, type: !2, isLocal: false,
/// isDefinition: true, templateParams: !3,
/// declaration: !4, align: 8)
bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
OPTIONAL(scope, MDField, ); \
OPTIONAL(linkageName, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(isLocal, MDBoolField, ); \
OPTIONAL(isDefinition, MDBoolField, (true)); \
OPTIONAL(templateParams, MDField, ); \
OPTIONAL(declaration, MDField, ); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result =
GET_OR_DISTINCT(DIGlobalVariable,
(Context, scope.Val, name.Val, linkageName.Val, file.Val,
line.Val, type.Val, isLocal.Val, isDefinition.Val,
declaration.Val, templateParams.Val, align.Val));
return false;
}
/// parseDILocalVariable:
/// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
/// align: 8)
/// ::= !DILocalVariable(scope: !0, name: "foo",
/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
/// align: 8)
bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DILocalVariable,
(Context, scope.Val, name.Val, file.Val, line.Val,
type.Val, arg.Val, flags.Val, align.Val));
return false;
}
/// parseDILabel:
/// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
REQUIRED(name, MDStringField, ); \
REQUIRED(file, MDField, ); \
REQUIRED(line, LineField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DILabel,
(Context, scope.Val, name.Val, file.Val, line.Val));
return false;
}
/// parseDIExpression:
/// ::= !DIExpression(0, 7, -1)
bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' here"))
return true;
SmallVector<uint64_t, 8> Elements;
if (Lex.getKind() != lltok::rparen)
do {
if (Lex.getKind() == lltok::DwarfOp) {
if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
Lex.Lex();
Elements.push_back(Op);
continue;
}
return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
}
if (Lex.getKind() == lltok::DwarfAttEncoding) {
if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
Lex.Lex();
Elements.push_back(Op);
continue;
}
return tokError(Twine("invalid DWARF attribute encoding '") +
Lex.getStrVal() + "'");
}
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return tokError("expected unsigned integer");
auto &U = Lex.getAPSIntVal();
if (U.ugt(UINT64_MAX))
return tokError("element too large, limit is " + Twine(UINT64_MAX));
Elements.push_back(U.getZExtValue());
Lex.Lex();
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
return false;
}
bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
return parseDIArgList(Result, IsDistinct, nullptr);
}
/// ParseDIArgList:
/// ::= !DIArgList(i32 7, i64 %0)
bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
PerFunctionState *PFS) {
assert(PFS && "Expected valid function state");
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
Lex.Lex();
if (parseToken(lltok::lparen, "expected '(' here"))
return true;
SmallVector<ValueAsMetadata *, 4> Args;
if (Lex.getKind() != lltok::rparen)
do {
Metadata *MD;
if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
return true;
Args.push_back(dyn_cast<ValueAsMetadata>(MD));
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
return false;
}
/// parseDIGlobalVariableExpression:
/// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(var, MDField, ); \
REQUIRED(expr, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result =
GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
return false;
}
/// parseDIObjCProperty:
/// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
/// getter: "getFoo", attributes: 7, type: !2)
bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(setter, MDStringField, ); \
OPTIONAL(getter, MDStringField, ); \
OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(type, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIObjCProperty,
(Context, name.Val, file.Val, line.Val, setter.Val,
getter.Val, attributes.Val, type.Val));
return false;
}
/// parseDIImportedEntity:
/// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
/// line: 7, name: "foo")
bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
REQUIRED(scope, MDField, ); \
OPTIONAL(entity, MDField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(name, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DIImportedEntity,
(Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
return false;
}
#undef PARSE_MD_FIELD
#undef NOP_FIELD
#undef REQUIRE_FIELD
#undef DECLARE_FIELD
/// parseMetadataAsValue
/// ::= metadata i32 %local
/// ::= metadata i32 @global
/// ::= metadata i32 7
/// ::= metadata !0
/// ::= metadata !{...}
/// ::= metadata !"string"
bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
// Note: the type 'metadata' has already been parsed.
Metadata *MD;
if (parseMetadata(MD, &PFS))
return true;
V = MetadataAsValue::get(Context, MD);
return false;
}
/// parseValueAsMetadata
/// ::= i32 %local
/// ::= i32 @global
/// ::= i32 7
bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
PerFunctionState *PFS) {
Type *Ty;
LocTy Loc;
if (parseType(Ty, TypeMsg, Loc))
return true;
if (Ty->isMetadataTy())
return error(Loc, "invalid metadata-value-metadata roundtrip");
Value *V;
if (parseValue(Ty, V, PFS))
return true;
MD = ValueAsMetadata::get(V);
return false;
}
/// parseMetadata
/// ::= i32 %local
/// ::= i32 @global
/// ::= i32 7
/// ::= !42
/// ::= !{...}
/// ::= !"string"
/// ::= !DILocation(...)
bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
if (Lex.getKind() == lltok::MetadataVar) {
MDNode *N;
// DIArgLists are a special case, as they are a list of ValueAsMetadata and
// so parsing this requires a Function State.
if (Lex.getStrVal() == "DIArgList") {
if (parseDIArgList(N, false, PFS))
return true;
} else if (parseSpecializedMDNode(N)) {
return true;
}
MD = N;
return false;
}
// ValueAsMetadata:
// <type> <value>
if (Lex.getKind() != lltok::exclaim)
return parseValueAsMetadata(MD, "expected metadata operand", PFS);
// '!'.
assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
Lex.Lex();
// MDString:
// ::= '!' STRINGCONSTANT
if (Lex.getKind() == lltok::StringConstant) {
MDString *S;
if (parseMDString(S))
return true;
MD = S;
return false;
}
// MDNode:
// !{ ... }
// !7
MDNode *N;
if (parseMDNodeTail(N))
return true;
MD = N;
return false;
}
//===----------------------------------------------------------------------===//
// Function Parsing.
//===----------------------------------------------------------------------===//
bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
PerFunctionState *PFS, bool IsCall) {
if (Ty->isFunctionTy())
return error(ID.Loc, "functions are not values, refer to them as pointers");
switch (ID.Kind) {
case ValID::t_LocalID:
if (!PFS)
return error(ID.Loc, "invalid use of function-local name");
V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
return V == nullptr;
case ValID::t_LocalName:
if (!PFS)
return error(ID.Loc, "invalid use of function-local name");
V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
return V == nullptr;
case ValID::t_InlineAsm: {
if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
return error(ID.Loc, "invalid type for inline asm constraint string");
V = InlineAsm::get(
ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
return false;
}
case ValID::t_GlobalName:
V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
return V == nullptr;
case ValID::t_GlobalID:
V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
return V == nullptr;
case ValID::t_APSInt:
if (!Ty->isIntegerTy())
return error(ID.Loc, "integer constant must have integer type");
ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
V = ConstantInt::get(Context, ID.APSIntVal);
return false;
case ValID::t_APFloat:
if (!Ty->isFloatingPointTy() ||
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
return error(ID.Loc, "floating point constant invalid for type");
// The lexer has no type info, so builds all half, bfloat, float, and double
// FP constants as double. Fix this here. Long double does not need this.
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
// Check for signaling before potentially converting and losing that info.
bool IsSNAN = ID.APFloatVal.isSignaling();
bool Ignored;
if (Ty->isHalfTy())
ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
&Ignored);
else if (Ty->isBFloatTy())
ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
&Ignored);
else if (Ty->isFloatTy())
ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&Ignored);
if (IsSNAN) {
// The convert call above may quiet an SNaN, so manufacture another
// SNaN. The bitcast works because the payload (significand) parameter
// is truncated to fit.
APInt Payload = ID.APFloatVal.bitcastToAPInt();
ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
ID.APFloatVal.isNegative(), &Payload);
}
}
V = ConstantFP::get(Context, ID.APFloatVal);
if (V->getType() != Ty)
return error(ID.Loc, "floating point constant does not have type '" +
getTypeString(Ty) + "'");
return false;
case ValID::t_Null:
if (!Ty->isPointerTy())
return error(ID.Loc, "null must be a pointer type");
V = ConstantPointerNull::get(cast<PointerType>(Ty));
return false;
case ValID::t_Undef:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return error(ID.Loc, "invalid type for undef constant");
V = UndefValue::get(Ty);
return false;
case ValID::t_EmptyArray:
if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
return error(ID.Loc, "invalid empty array initializer");
V = UndefValue::get(Ty);
return false;
case ValID::t_Zero:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return error(ID.Loc, "invalid type for null constant");
V = Constant::getNullValue(Ty);
return false;
case ValID::t_None:
if (!Ty->isTokenTy())
return error(ID.Loc, "invalid type for none constant");
V = Constant::getNullValue(Ty);
return false;
case ValID::t_Poison:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return error(ID.Loc, "invalid type for poison constant");
V = PoisonValue::get(Ty);
return false;
case ValID::t_Constant:
if (ID.ConstantVal->getType() != Ty)
return error(ID.Loc, "constant expression type mismatch: got type '" +
getTypeString(ID.ConstantVal->getType()) +
"' but expected '" + getTypeString(Ty) + "'");
V = ID.ConstantVal;
return false;
case ValID::t_ConstantStruct:
case ValID::t_PackedConstantStruct:
if (StructType *ST = dyn_cast<StructType>(Ty)) {
if (ST->getNumElements() != ID.UIntVal)
return error(ID.Loc,
"initializer with struct type has wrong # elements");
if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
return error(ID.Loc, "packed'ness of initializer and type don't match");
// Verify that the elements are compatible with the structtype.
for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
return error(
ID.Loc,
"element " + Twine(i) +
" of struct initializer doesn't match struct element type");
V = ConstantStruct::get(
ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
} else
return error(ID.Loc, "constant expression type mismatch");
return false;
}
llvm_unreachable("Invalid ValID");
}
bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
C = nullptr;
ValID ID;
auto Loc = Lex.getLoc();
if (parseValID(ID, /*PFS=*/nullptr))
return true;
switch (ID.Kind) {
case ValID::t_APSInt:
case ValID::t_APFloat:
case ValID::t_Undef:
case ValID::t_Constant:
case ValID::t_ConstantStruct:
case ValID::t_PackedConstantStruct: {
Value *V;
if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
return true;
assert(isa<Constant>(V) && "Expected a constant value");
C = cast<Constant>(V);
return false;
}
case ValID::t_Null:
C = Constant::getNullValue(Ty);
return false;
default:
return error(Loc, "expected a constant value");
}
}
bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
V = nullptr;
ValID ID;
return parseValID(ID, PFS, Ty) ||
convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
}
bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
Type *Ty = nullptr;
return parseType(Ty) || parseValue(Ty, V, PFS);
}
bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
PerFunctionState &PFS) {
Value *V;
Loc = Lex.getLoc();
if (parseTypeAndValue(V, PFS))
return true;
if (!isa<BasicBlock>(V))
return error(Loc, "expected a basic block");
BB = cast<BasicBlock>(V);
return false;
}
/// FunctionHeader
/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
/// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
/// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
/// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
// parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
unsigned Linkage;
unsigned Visibility;
unsigned DLLStorageClass;
bool DSOLocal;
AttrBuilder RetAttrs;
unsigned CC;
bool HasLinkage;
Type *RetType = nullptr;
LocTy RetTypeLoc = Lex.getLoc();
if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
DSOLocal) ||
parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
parseType(RetType, RetTypeLoc, true /*void allowed*/))
return true;
// Verify that the linkage is ok.
switch ((GlobalValue::LinkageTypes)Linkage) {
case GlobalValue::ExternalLinkage:
break; // always ok.
case GlobalValue::ExternalWeakLinkage:
if (IsDefine)
return error(LinkageLoc, "invalid linkage for function definition");
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (!IsDefine)
return error(LinkageLoc, "invalid linkage for function declaration");
break;
case GlobalValue::AppendingLinkage:
case GlobalValue::CommonLinkage:
return error(LinkageLoc, "invalid function linkage type");
}
if (!isValidVisibilityForLinkage(Visibility, Linkage))
return error(LinkageLoc,
"symbol with local linkage must have default visibility");
if (!FunctionType::isValidReturnType(RetType))
return error(RetTypeLoc, "invalid function return type");
LocTy NameLoc = Lex.getLoc();
std::string FunctionName;
if (Lex.getKind() == lltok::GlobalVar) {
FunctionName = Lex.getStrVal();
} else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
unsigned NameID = Lex.getUIntVal();
if (NameID != NumberedVals.size())
return tokError("function expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
} else {
return tokError("expected function name");
}
Lex.Lex();
if (Lex.getKind() != lltok::lparen)
return tokError("expected '(' in function argument list");
SmallVector<ArgInfo, 8> ArgList;
bool IsVarArg;
AttrBuilder FuncAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy BuiltinLoc;
std::string Section;
std::string Partition;
MaybeAlign Alignment;
std::string GC;
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
unsigned AddrSpace = 0;
Constant *Prefix = nullptr;
Constant *Prologue = nullptr;
Constant *PersonalityFn = nullptr;
Comdat *C;
if (parseArgumentList(ArgList, IsVarArg) ||
parseOptionalUnnamedAddr(UnnamedAddr) ||
parseOptionalProgramAddrSpace(AddrSpace) ||
parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
BuiltinLoc) ||
(EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
(EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
parseOptionalComdat(FunctionName, C) ||
parseOptionalAlignment(Alignment) ||
(EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
(EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
(EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
(EatIfPresent(lltok::kw_personality) &&
parseGlobalTypeAndValue(PersonalityFn)))
return true;
if (FuncAttrs.contains(Attribute::Builtin))
return error(BuiltinLoc, "'builtin' attribute not valid on function");
// If the alignment was parsed as an attribute, move to the alignment field.
if (FuncAttrs.hasAlignmentAttr()) {
Alignment = FuncAttrs.getAlignment();
FuncAttrs.removeAttribute(Attribute::Alignment);
}
// Okay, if we got here, the function is syntactically valid. Convert types
// and do semantic checks.
std::vector<Type*> ParamTypeList;
SmallVector<AttributeSet, 8> Attrs;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
ParamTypeList.push_back(ArgList[i].Ty);
Attrs.push_back(ArgList[i].Attrs);
}
AttributeList PAL =
AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
AttributeSet::get(Context, RetAttrs), Attrs);
if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
return error(RetTypeLoc, "functions with 'sret' argument must return void");
FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
PointerType *PFT = PointerType::get(FT, AddrSpace);
Fn = nullptr;
GlobalValue *FwdFn = nullptr;
if (!FunctionName.empty()) {
// If this was a definition of a forward reference, remove the definition
// from the forward reference table and fill in the forward ref.
auto FRVI = ForwardRefVals.find(FunctionName);
if (FRVI != ForwardRefVals.end()) {
FwdFn = FRVI->second.first;
if (!FwdFn->getType()->isOpaque()) {
if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
return error(FRVI->second.second, "invalid forward reference to "
"function as global value!");
if (FwdFn->getType() != PFT)
return error(FRVI->second.second,
"invalid forward reference to "
"function '" +
FunctionName +
"' with wrong type: "
"expected '" +
getTypeString(PFT) + "' but was '" +
getTypeString(FwdFn->getType()) + "'");
}
ForwardRefVals.erase(FRVI);
} else if ((Fn = M->getFunction(FunctionName))) {
// Reject redefinitions.
return error(NameLoc,
"invalid redefinition of function '" + FunctionName + "'");
} else if (M->getNamedValue(FunctionName)) {
return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
}
} else {
// If this is a definition of a forward referenced function, make sure the
// types agree.
auto I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
FwdFn = cast<Function>(I->second.first);
if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
return error(NameLoc, "type of definition and forward reference of '@" +
Twine(NumberedVals.size()) +
"' disagree: "
"expected '" +
getTypeString(PFT) + "' but was '" +
getTypeString(FwdFn->getType()) + "'");
ForwardRefValIDs.erase(I);
}
}
Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
FunctionName, M);
assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
if (FunctionName.empty())
NumberedVals.push_back(Fn);
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
maybeSetDSOLocal(DSOLocal, *Fn);
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
Fn->setCallingConv(CC);
Fn->setAttributes(PAL);
Fn->setUnnamedAddr(UnnamedAddr);
Fn->setAlignment(MaybeAlign(Alignment));
Fn->setSection(Section);
Fn->setPartition(Partition);
Fn->setComdat(C);
Fn->setPersonalityFn(PersonalityFn);
if (!GC.empty()) Fn->setGC(GC);
Fn->setPrefixData(Prefix);
Fn->setPrologueData(Prologue);
ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
// Add all of the arguments we parsed to the function.
Function::arg_iterator ArgIt = Fn->arg_begin();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
// If the argument has a name, insert it into the argument symbol table.
if (ArgList[i].Name.empty()) continue;
// Set the name, if it conflicted, it will be auto-renamed.
ArgIt->setName(ArgList[i].Name);
if (ArgIt->getName() != ArgList[i].Name)
return error(ArgList[i].Loc,
"redefinition of argument '%" + ArgList[i].Name + "'");
}
if (FwdFn) {
FwdFn->replaceAllUsesWith(Fn);
FwdFn->eraseFromParent();
}
if (IsDefine)
return false;
// Check the declaration has no block address forward references.
ValID ID;
if (FunctionName.empty()) {
ID.Kind = ValID::t_GlobalID;
ID.UIntVal = NumberedVals.size() - 1;
} else {
ID.Kind = ValID::t_GlobalName;
ID.StrVal = FunctionName;
}
auto Blocks = ForwardRefBlockAddresses.find(ID);
if (Blocks != ForwardRefBlockAddresses.end())
return error(Blocks->first.Loc,
"cannot take blockaddress inside a declaration");
return false;
}
bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
ValID ID;
if (FunctionNumber == -1) {
ID.Kind = ValID::t_GlobalName;
ID.StrVal = std::string(F.getName());
} else {
ID.Kind = ValID::t_GlobalID;
ID.UIntVal = FunctionNumber;
}
auto Blocks = P.ForwardRefBlockAddresses.find(ID);
if (Blocks == P.ForwardRefBlockAddresses.end())
return false;
for (const auto &I : Blocks->second) {
const ValID &BBID = I.first;
GlobalValue *GV = I.second;
assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
"Expected local id or name");
BasicBlock *BB;
if (BBID.Kind == ValID::t_LocalName)
BB = getBB(BBID.StrVal, BBID.Loc);
else
BB = getBB(BBID.UIntVal, BBID.Loc);
if (!BB)
return P.error(BBID.Loc, "referenced value is not a basic block");
Value *ResolvedVal = BlockAddress::get(&F, BB);
ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
ResolvedVal, false);
if (!ResolvedVal)
return true;
GV->replaceAllUsesWith(ResolvedVal);
GV->eraseFromParent();
}
P.ForwardRefBlockAddresses.erase(Blocks);
return false;
}
/// parseFunctionBody
/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
bool LLParser::parseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace)
return tokError("expected '{' in function body");
Lex.Lex(); // eat the {.
int FunctionNumber = -1;
if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
PerFunctionState PFS(*this, Fn, FunctionNumber);
// Resolve block addresses and allow basic blocks to be forward-declared
// within this function.
if (PFS.resolveForwardRefBlockAddresses())
return true;
SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
// We need at least one basic block.
if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
return tokError("function body requires at least one basic block");
while (Lex.getKind() != lltok::rbrace &&
Lex.getKind() != lltok::kw_uselistorder)
if (parseBasicBlock(PFS))
return true;
while (Lex.getKind() != lltok::rbrace)
if (parseUseListOrder(&PFS))
return true;
// Eat the }.
Lex.Lex();
// Verify function is ok.
return PFS.finishFunction();
}
/// parseBasicBlock
/// ::= (LabelStr|LabelID)? Instruction*
bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
// If this basic block starts out with a name, remember it.
std::string Name;
int NameID = -1;
LocTy NameLoc = Lex.getLoc();
if (Lex.getKind() == lltok::LabelStr) {
Name = Lex.getStrVal();
Lex.Lex();
} else if (Lex.getKind() == lltok::LabelID) {
NameID = Lex.getUIntVal();
Lex.Lex();
}
BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
if (!BB)
return true;
std::string NameStr;
// parse the instructions in this block until we get a terminator.
Instruction *Inst;
do {
// This instruction may have three possibilities for a name: a) none
// specified, b) name specified "%foo =", c) number specified: "%4 =".
LocTy NameLoc = Lex.getLoc();
int NameID = -1;
NameStr = "";
if (Lex.getKind() == lltok::LocalVarID) {
NameID = Lex.getUIntVal();
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' after instruction id"))
return true;
} else if (Lex.getKind() == lltok::LocalVar) {
NameStr = Lex.getStrVal();
Lex.Lex();
if (parseToken(lltok::equal, "expected '=' after instruction name"))
return true;
}
switch (parseInstruction(Inst, BB, PFS)) {
default:
llvm_unreachable("Unknown parseInstruction result!");
case InstError: return true;
case InstNormal:
BB->getInstList().push_back(Inst);
// With a normal result, we check to see if the instruction is followed by
// a comma and metadata.
if (EatIfPresent(lltok::comma))
if (parseInstructionMetadata(*Inst))
return true;
break;
case InstExtraComma:
BB->getInstList().push_back(Inst);
// If the instruction parser ate an extra comma at the end of it, it
// *must* be followed by metadata.
if (parseInstructionMetadata(*Inst))
return true;
break;
}
// Set the name on the instruction.
if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
return true;
} while (!Inst->isTerminator());
return false;
}
//===----------------------------------------------------------------------===//
// Instruction Parsing.
//===----------------------------------------------------------------------===//
/// parseInstruction - parse one of the many different instructions.
///
int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::Eof)
return tokError("found end of file when expecting more instructions");
LocTy Loc = Lex.getLoc();
unsigned KeywordVal = Lex.getUIntVal();
Lex.Lex(); // Eat the keyword.
switch (Token) {
default:
return error(Loc, "expected instruction opcode");
// Terminator Instructions.
case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
case lltok::kw_ret:
return parseRet(Inst, BB, PFS);
case lltok::kw_br:
return parseBr(Inst, PFS);
case lltok::kw_switch:
return parseSwitch(Inst, PFS);
case lltok::kw_indirectbr:
return parseIndirectBr(Inst, PFS);
case lltok::kw_invoke:
return parseInvoke(Inst, PFS);
case lltok::kw_resume:
return parseResume(Inst, PFS);
case lltok::kw_cleanupret:
return parseCleanupRet(Inst, PFS);
case lltok::kw_catchret:
return parseCatchRet(Inst, PFS);
case lltok::kw_catchswitch:
return parseCatchSwitch(Inst, PFS);
case lltok::kw_catchpad:
return parseCatchPad(Inst, PFS);
case lltok::kw_cleanuppad:
return parseCleanupPad(Inst, PFS);
case lltok::kw_callbr:
return parseCallBr(Inst, PFS);
// Unary Operators.
case lltok::kw_fneg: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
if (Res != 0)
return Res;
if (FMF.any())
Inst->setFastMathFlags(FMF);
return false;
}
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
case lltok::kw_mul:
case lltok::kw_shl: {
bool NUW = EatIfPresent(lltok::kw_nuw);
bool NSW = EatIfPresent(lltok::kw_nsw);
if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
return true;
if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
return false;
}
case lltok::kw_fadd:
case lltok::kw_fsub:
case lltok::kw_fmul:
case lltok::kw_fdiv:
case lltok::kw_frem: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
if (Res != 0)
return Res;
if (FMF.any())
Inst->setFastMathFlags(FMF);
return 0;
}
case lltok::kw_sdiv:
case lltok::kw_udiv:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool Exact = EatIfPresent(lltok::kw_exact);
if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
return true;
if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
return false;
}
case lltok::kw_urem:
case lltok::kw_srem:
return parseArithmetic(Inst, PFS, KeywordVal,
/*IsFP*/ false);
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor:
return parseLogical(Inst, PFS, KeywordVal);
case lltok::kw_icmp:
return parseCompare(Inst, PFS, KeywordVal);
case lltok::kw_fcmp: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = parseCompare(Inst, PFS, KeywordVal);
if (Res != 0)
return Res;
if (FMF.any())
Inst->setFastMathFlags(FMF);
return 0;
}
// Casts.
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_addrspacecast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint:
return parseCast(Inst, PFS, KeywordVal);
// Other.
case lltok::kw_select: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = parseSelect(Inst, PFS);
if (Res != 0)
return Res;
if (FMF.any()) {
if (!isa<FPMathOperator>(Inst))
return error(Loc, "fast-math-flags specified for select without "
"floating-point scalar or vector return type");
Inst->setFastMathFlags(FMF);
}
return 0;
}
case lltok::kw_va_arg:
return parseVAArg(Inst, PFS);
case lltok::kw_extractelement:
return parseExtractElement(Inst, PFS);
case lltok::kw_insertelement:
return parseInsertElement(Inst, PFS);
case lltok::kw_shufflevector:
return parseShuffleVector(Inst, PFS);
case lltok::kw_phi: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = parsePHI(Inst, PFS);
if (Res != 0)
return Res;
if (FMF.any()) {
if (!isa<FPMathOperator>(Inst))
return error(Loc, "fast-math-flags specified for phi without "
"floating-point scalar or vector return type");
Inst->setFastMathFlags(FMF);
}
return 0;
}
case lltok::kw_landingpad:
return parseLandingPad(Inst, PFS);
case lltok::kw_freeze:
return parseFreeze(Inst, PFS);
// Call.
case lltok::kw_call:
return parseCall(Inst, PFS, CallInst::TCK_None);
case lltok::kw_tail:
return parseCall(Inst, PFS, CallInst::TCK_Tail);
case lltok::kw_musttail:
return parseCall(Inst, PFS, CallInst::TCK_MustTail);
case lltok::kw_notail:
return parseCall(Inst, PFS, CallInst::TCK_NoTail);
// Memory.
case lltok::kw_alloca:
return parseAlloc(Inst, PFS);
case lltok::kw_load:
return parseLoad(Inst, PFS);
case lltok::kw_store:
return parseStore(Inst, PFS);
case lltok::kw_cmpxchg:
return parseCmpXchg(Inst, PFS);
case lltok::kw_atomicrmw:
return parseAtomicRMW(Inst, PFS);
case lltok::kw_fence:
return parseFence(Inst, PFS);
case lltok::kw_getelementptr:
return parseGetElementPtr(Inst, PFS);
case lltok::kw_extractvalue:
return parseExtractValue(Inst, PFS);
case lltok::kw_insertvalue:
return parseInsertValue(Inst, PFS);
}
}
/// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
if (Opc == Instruction::FCmp) {
switch (Lex.getKind()) {
default:
return tokError("expected fcmp predicate (e.g. 'oeq')");
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
}
} else {
switch (Lex.getKind()) {
default:
return tokError("expected icmp predicate (e.g. 'eq')");
case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
}
}
Lex.Lex();
return false;
}
//===----------------------------------------------------------------------===//
// Terminator Instructions.
//===----------------------------------------------------------------------===//
/// parseRet - parse a return instruction.
/// ::= 'ret' void (',' !dbg, !1)*
/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
SMLoc TypeLoc = Lex.getLoc();
Type *Ty = nullptr;
if (parseType(Ty, true /*void allowed*/))
return true;
Type *ResType = PFS.getFunction().getReturnType();
if (Ty->isVoidTy()) {
if (!ResType->isVoidTy())
return error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context);
return false;
}
Value *RV;
if (parseValue(Ty, RV, PFS))
return true;
if (ResType != RV->getType())
return error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context, RV);
return false;
}
/// parseBr
/// ::= 'br' TypeAndValue
/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc, Loc2;
Value *Op0;
BasicBlock *Op1, *Op2;
if (parseTypeAndValue(Op0, Loc, PFS))
return true;
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
Inst = BranchInst::Create(BB);
return false;
}
if (Op0->getType() != Type::getInt1Ty(Context))
return error(Loc, "branch condition must have 'i1' type");
if (parseToken(lltok::comma, "expected ',' after branch condition") ||
parseTypeAndBasicBlock(Op1, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after true destination") ||
parseTypeAndBasicBlock(Op2, Loc2, PFS))
return true;
Inst = BranchInst::Create(Op1, Op2, Op0);
return false;
}
/// parseSwitch
/// Instruction
/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
/// JumpTable
/// ::= (TypeAndValue ',' TypeAndValue)*
bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CondLoc, BBLoc;
Value *Cond;
BasicBlock *DefaultBB;
if (parseTypeAndValue(Cond, CondLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after switch condition") ||
parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
parseToken(lltok::lsquare, "expected '[' with switch table"))
return true;
if (!Cond->getType()->isIntegerTy())
return error(CondLoc, "switch condition must have integer type");
// parse the jump table pairs.
SmallPtrSet<Value*, 32> SeenCases;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
while (Lex.getKind() != lltok::rsquare) {
Value *Constant;
BasicBlock *DestBB;
if (parseTypeAndValue(Constant, CondLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after case value") ||
parseTypeAndBasicBlock(DestBB, PFS))
return true;
if (!SeenCases.insert(Constant).second)
return error(CondLoc, "duplicate case value in switch");
if (!isa<ConstantInt>(Constant))
return error(CondLoc, "case value is not a constant integer");
Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
}
Lex.Lex(); // Eat the ']'.
SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
for (unsigned i = 0, e = Table.size(); i != e; ++i)
SI->addCase(Table[i].first, Table[i].second);
Inst = SI;
return false;
}
/// parseIndirectBr
/// Instruction
/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy AddrLoc;
Value *Address;
if (parseTypeAndValue(Address, AddrLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after indirectbr address") ||
parseToken(lltok::lsquare, "expected '[' with indirectbr"))
return true;
if (!Address->getType()->isPointerTy())
return error(AddrLoc, "indirectbr address must have pointer type");
// parse the destination list.
SmallVector<BasicBlock*, 16> DestList;
if (Lex.getKind() != lltok::rsquare) {
BasicBlock *DestBB;
if (parseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
while (EatIfPresent(lltok::comma)) {
if (parseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
}
}
if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
return true;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
for (unsigned i = 0, e = DestList.size(); i != e; ++i)
IBI->addDestination(DestList[i]);
Inst = IBI;
return false;
}
/// parseInvoke
/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy NoBuiltinLoc;
unsigned CC;
unsigned InvokeAddrSpace;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
SmallVector<OperandBundleDef, 2> BundleList;
BasicBlock *NormalBB, *UnwindBB;
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
NoBuiltinLoc) ||
parseOptionalOperandBundles(BundleList, PFS) ||
parseToken(lltok::kw_to, "expected 'to' in invoke") ||
parseTypeAndBasicBlock(NormalBB, PFS) ||
parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
parseTypeAndBasicBlock(UnwindBB, PFS))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
FunctionType *Ty = dyn_cast<FunctionType>(RetType);
if (!Ty) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
}
CalleeID.FTy = Ty;
// Look up the callee.
Value *Callee;
if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
Callee, &PFS, /*IsCall=*/true))
return true;
// Set up the Attribute for the function.
SmallVector<Value *, 8> Args;
SmallVector<AttributeSet, 8> ArgAttrs;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = nullptr;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
ArgAttrs.push_back(ArgList[i].Attrs);
}
if (I != E)
return error(CallLoc, "not enough parameters specified for call");
if (FnAttrs.hasAlignmentAttr())
return error(CallLoc, "invoke instructions may not have an alignment");
// Finish off the Attribute and check them
AttributeList PAL =
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
AttributeSet::get(Context, RetAttrs), ArgAttrs);
InvokeInst *II =
InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
II->setCallingConv(CC);
II->setAttributes(PAL);
ForwardRefAttrGroups[II] = FwdRefAttrGrps;
Inst = II;
return false;
}
/// parseResume
/// ::= 'resume' TypeAndValue
bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
Value *Exn; LocTy ExnLoc;
if (parseTypeAndValue(Exn, ExnLoc, PFS))
return true;
ResumeInst *RI = ResumeInst::Create(Exn);
Inst = RI;
return false;
}
bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
PerFunctionState &PFS) {
if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
return true;
while (Lex.getKind() != lltok::rsquare) {
// If this isn't the first argument, we need a comma.
if (!Args.empty() &&
parseToken(lltok::comma, "expected ',' in argument list"))
return true;
// parse the argument.
LocTy ArgLoc;
Type *ArgTy = nullptr;
if (parseType(ArgTy, ArgLoc))
return true;
Value *V;
if (ArgTy->isMetadataTy()) {
if (parseMetadataAsValue(V, PFS))
return true;
} else {
if (parseValue(ArgTy, V, PFS))
return true;
}
Args.push_back(V);
}
Lex.Lex(); // Lex the ']'.
return false;
}
/// parseCleanupRet
/// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
Value *CleanupPad = nullptr;
if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
return true;
if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
return true;
if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
return true;
BasicBlock *UnwindBB = nullptr;
if (Lex.getKind() == lltok::kw_to) {
Lex.Lex();
if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
return true;
} else {
if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
return true;
}
}
Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
return false;
}
/// parseCatchRet
/// ::= 'catchret' from Parent Value 'to' TypeAndValue
bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
Value *CatchPad = nullptr;
if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
return true;
if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
return true;
BasicBlock *BB;
if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
parseTypeAndBasicBlock(BB, PFS))
return true;
Inst = CatchReturnInst::Create(CatchPad, BB);
return false;
}
/// parseCatchSwitch
/// ::= 'catchswitch' within Parent
bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
Value *ParentPad;
if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
return true;
if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
Lex.getKind() != lltok::LocalVarID)
return tokError("expected scope value for catchswitch");
if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
return true;
if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
return true;
SmallVector<BasicBlock *, 32> Table;
do {
BasicBlock *DestBB;
if (parseTypeAndBasicBlock(DestBB, PFS))
return true;
Table.push_back(DestBB);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
return true;
if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
return true;
BasicBlock *UnwindBB = nullptr;
if (EatIfPresent(lltok::kw_to)) {
if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
return true;
} else {
if (parseTypeAndBasicBlock(UnwindBB, PFS))
return true;
}
auto *CatchSwitch =
CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
for (BasicBlock *DestBB : Table)
CatchSwitch->addHandler(DestBB);
Inst = CatchSwitch;
return false;
}
/// parseCatchPad
/// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
Value *CatchSwitch = nullptr;
if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
return true;
if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
return tokError("expected scope value for catchpad");
if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
return true;
SmallVector<Value *, 8> Args;
if (parseExceptionArgs(Args, PFS))
return true;
Inst = CatchPadInst::Create(CatchSwitch, Args);
return false;
}
/// parseCleanupPad
/// ::= 'cleanuppad' within Parent ParamList
bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
Value *ParentPad = nullptr;
if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
return true;
if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
Lex.getKind() != lltok::LocalVarID)
return tokError("expected scope value for cleanuppad");
if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
return true;
SmallVector<Value *, 8> Args;
if (parseExceptionArgs(Args, PFS))
return true;
Inst = CleanupPadInst::Create(ParentPad, Args);
return false;
}
//===----------------------------------------------------------------------===//
// Unary Operators.
//===----------------------------------------------------------------------===//
/// parseUnaryOp
/// ::= UnaryOp TypeAndValue ',' Value
///
/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
/// operand is allowed.
bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, bool IsFP) {
LocTy Loc; Value *LHS;
if (parseTypeAndValue(LHS, Loc, PFS))
return true;
bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
: LHS->getType()->isIntOrIntVectorTy();
if (!Valid)
return error(Loc, "invalid operand type for instruction");
Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
return false;
}
/// parseCallBr
/// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
/// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
/// '[' LabelList ']'
bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy NoBuiltinLoc;
unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
SmallVector<OperandBundleDef, 2> BundleList;
BasicBlock *DefaultDest;
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
NoBuiltinLoc) ||
parseOptionalOperandBundles(BundleList, PFS) ||
parseToken(lltok::kw_to, "expected 'to' in callbr") ||
parseTypeAndBasicBlock(DefaultDest, PFS) ||
parseToken(lltok::lsquare, "expected '[' in callbr"))
return true;
// parse the destination list.
SmallVector<BasicBlock *, 16> IndirectDests;
if (Lex.getKind() != lltok::rsquare) {
BasicBlock *DestBB;
if (parseTypeAndBasicBlock(DestBB, PFS))
return true;
IndirectDests.push_back(DestBB);
while (EatIfPresent(lltok::comma)) {
if (parseTypeAndBasicBlock(DestBB, PFS))
return true;
IndirectDests.push_back(DestBB);
}
}
if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
FunctionType *Ty = dyn_cast<FunctionType>(RetType);
if (!Ty) {
// Pull out the types of all of the arguments...
std::vector<Type *> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
}
CalleeID.FTy = Ty;
// Look up the callee.
Value *Callee;
if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
/*IsCall=*/true))
return true;
// Set up the Attribute for the function.
SmallVector<Value *, 8> Args;
SmallVector<AttributeSet, 8> ArgAttrs;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = nullptr;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
ArgAttrs.push_back(ArgList[i].Attrs);
}
if (I != E)
return error(CallLoc, "not enough parameters specified for call");
if (FnAttrs.hasAlignmentAttr())
return error(CallLoc, "callbr instructions may not have an alignment");
// Finish off the Attribute and check them
AttributeList PAL =
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
AttributeSet::get(Context, RetAttrs), ArgAttrs);
CallBrInst *CBI =
CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
BundleList);
CBI->setCallingConv(CC);
CBI->setAttributes(PAL);
ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
Inst = CBI;
return false;
}
//===----------------------------------------------------------------------===//
// Binary Operators.
//===----------------------------------------------------------------------===//
/// parseArithmetic
/// ::= ArithmeticOps TypeAndValue ',' Value
///
/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
/// operand is allowed.
bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, bool IsFP) {
LocTy Loc; Value *LHS, *RHS;
if (parseTypeAndValue(LHS, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
parseValue(LHS->getType(), RHS, PFS))
return true;
bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
: LHS->getType()->isIntOrIntVectorTy();
if (!Valid)
return error(Loc, "invalid operand type for instruction");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// parseLogical
/// ::= ArithmeticOps TypeAndValue ',' Value {
bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *LHS, *RHS;
if (parseTypeAndValue(LHS, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' in logical operation") ||
parseValue(LHS->getType(), RHS, PFS))
return true;
if (!LHS->getType()->isIntOrIntVectorTy())
return error(Loc,
"instruction requires integer or integer vector operands");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// parseCompare
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
// parse the integer/fp comparison predicate.
LocTy Loc;
unsigned Pred;
Value *LHS, *RHS;
if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after compare value") ||
parseValue(LHS->getType(), RHS, PFS))
return true;
if (Opc == Instruction::FCmp) {
if (!LHS->getType()->isFPOrFPVectorTy())
return error(Loc, "fcmp requires floating point operands");
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else {
assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
if (!LHS->getType()->isIntOrIntVectorTy() &&
!LHS->getType()->isPtrOrPtrVectorTy())
return error(Loc, "icmp requires integer operands");
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
}
return false;
}
//===----------------------------------------------------------------------===//
// Other Instructions.
//===----------------------------------------------------------------------===//
/// parseCast
/// ::= CastOpc TypeAndValue 'to' Type
bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc;
Value *Op;
Type *DestTy = nullptr;
if (parseTypeAndValue(Op, Loc, PFS) ||
parseToken(lltok::kw_to, "expected 'to' after cast value") ||
parseType(DestTy))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
return error(Loc, "invalid cast opcode for cast from '" +
getTypeString(Op->getType()) + "' to '" +
getTypeString(DestTy) + "'");
}
Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
return false;
}
/// parseSelect
/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (parseTypeAndValue(Op0, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after select condition") ||
parseTypeAndValue(Op1, PFS) ||
parseToken(lltok::comma, "expected ',' after select value") ||
parseTypeAndValue(Op2, PFS))
return true;
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
return error(Loc, Reason);
Inst = SelectInst::Create(Op0, Op1, Op2);
return false;
}
/// parseVAArg
/// ::= 'va_arg' TypeAndValue ',' Type
bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Op;
Type *EltTy = nullptr;
LocTy TypeLoc;
if (parseTypeAndValue(Op, PFS) ||
parseToken(lltok::comma, "expected ',' after vaarg operand") ||
parseType(EltTy, TypeLoc))
return true;
if (!EltTy->isFirstClassType())
return error(TypeLoc, "va_arg requires operand with first class type");
Inst = new VAArgInst(Op, EltTy);
return false;
}
/// parseExtractElement
/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1;
if (parseTypeAndValue(Op0, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after extract value") ||
parseTypeAndValue(Op1, PFS))
return true;
if (!ExtractElementInst::isValidOperands(Op0, Op1))
return error(Loc, "invalid extractelement operands");
Inst = ExtractElementInst::Create(Op0, Op1);
return false;
}
/// parseInsertElement
/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (parseTypeAndValue(Op0, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after insertelement value") ||
parseTypeAndValue(Op1, PFS) ||
parseToken(lltok::comma, "expected ',' after insertelement value") ||
parseTypeAndValue(Op2, PFS))
return true;
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
return error(Loc, "invalid insertelement operands");
Inst = InsertElementInst::Create(Op0, Op1, Op2);
return false;
}
/// parseShuffleVector
/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (parseTypeAndValue(Op0, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after shuffle mask") ||
parseTypeAndValue(Op1, PFS) ||
parseToken(lltok::comma, "expected ',' after shuffle value") ||
parseTypeAndValue(Op2, PFS))
return true;
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return error(Loc, "invalid shufflevector operands");
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
return false;
}
/// parsePHI
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = nullptr; LocTy TypeLoc;
Value *Op0, *Op1;
if (parseType(Ty, TypeLoc) ||
parseToken(lltok::lsquare, "expected '[' in phi value list") ||
parseValue(Ty, Op0, PFS) ||
parseToken(lltok::comma, "expected ',' after insertelement value") ||
parseValue(Type::getLabelTy(Context), Op1, PFS) ||
parseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
bool AteExtraComma = false;
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
while (true) {
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
if (!EatIfPresent(lltok::comma))
break;
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
parseValue(Ty, Op0, PFS) ||
parseToken(lltok::comma, "expected ',' after insertelement value") ||
parseValue(Type::getLabelTy(Context), Op1, PFS) ||
parseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
}
if (!Ty->isFirstClassType())
return error(TypeLoc, "phi node must have first class type");
PHINode *PN = PHINode::Create(Ty, PHIVals.size());
for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
Inst = PN;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseLandingPad
/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
/// Clause
/// ::= 'catch' TypeAndValue
/// ::= 'filter'
/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = nullptr; LocTy TyLoc;
if (parseType(Ty, TyLoc))
return true;
std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
LandingPadInst::ClauseType CT;
if (EatIfPresent(lltok::kw_catch))
CT = LandingPadInst::Catch;
else if (EatIfPresent(lltok::kw_filter))
CT = LandingPadInst::Filter;
else
return tokError("expected 'catch' or 'filter' clause type");
Value *V;
LocTy VLoc;
if (parseTypeAndValue(V, VLoc, PFS))
return true;
// A 'catch' type expects a non-array constant. A filter clause expects an
// array constant.
if (CT == LandingPadInst::Catch) {
if (isa<ArrayType>(V->getType()))
error(VLoc, "'catch' clause has an invalid type");
} else {
if (!isa<ArrayType>(V->getType()))
error(VLoc, "'filter' clause has an invalid type");
}
Constant *CV = dyn_cast<Constant>(V);
if (!CV)
return error(VLoc, "clause argument must be a constant");
LP->addClause(CV);
}
Inst = LP.release();
return false;
}
/// parseFreeze
/// ::= 'freeze' Type Value
bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op;
if (parseTypeAndValue(Op, Loc, PFS))
return true;
Inst = new FreezeInst(Op);
return false;
}
/// parseCall
/// ::= 'call' OptionalFastMathFlags OptionalCallingConv
/// OptionalAttrs Type Value ParameterList OptionalAttrs
/// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
/// OptionalAttrs Type Value ParameterList OptionalAttrs
/// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
/// OptionalAttrs Type Value ParameterList OptionalAttrs
/// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
/// OptionalAttrs Type Value ParameterList OptionalAttrs
bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
CallInst::TailCallKind TCK) {
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy BuiltinLoc;
unsigned CallAddrSpace;
unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
SmallVector<OperandBundleDef, 2> BundleList;
LocTy CallLoc = Lex.getLoc();
if (TCK != CallInst::TCK_None &&
parseToken(lltok::kw_call,
"expected 'tail call', 'musttail call', or 'notail call'"))
return true;
FastMathFlags FMF = EatFastMathFlagsIfPresent();
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
parseOptionalProgramAddrSpace(CallAddrSpace) ||
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
parseValID(CalleeID, &PFS) ||
parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
PFS.getFunction().isVarArg()) ||
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
parseOptionalOperandBundles(BundleList, PFS))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
FunctionType *Ty = dyn_cast<FunctionType>(RetType);
if (!Ty) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
}
CalleeID.FTy = Ty;
// Look up the callee.
Value *Callee;
if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
&PFS, /*IsCall=*/true))
return true;
// Set up the Attribute for the function.
SmallVector<AttributeSet, 8> Attrs;
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = nullptr;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
Attrs.push_back(ArgList[i].Attrs);
}
if (I != E)
return error(CallLoc, "not enough parameters specified for call");
if (FnAttrs.hasAlignmentAttr())
return error(CallLoc, "call instructions may not have an alignment");
// Finish off the Attribute and check them
AttributeList PAL =
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
AttributeSet::get(Context, RetAttrs), Attrs);
CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
CI->setTailCallKind(TCK);
CI->setCallingConv(CC);
if (FMF.any()) {
if (!isa<FPMathOperator>(CI)) {
CI->deleteValue();
return error(CallLoc, "fast-math-flags specified for call without "
"floating-point scalar or vector return type");
}
CI->setFastMathFlags(FMF);
}
CI->setAttributes(PAL);
ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
Inst = CI;
return false;
}
//===----------------------------------------------------------------------===//
// Memory Instructions.
//===----------------------------------------------------------------------===//
/// parseAlloc
/// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
/// (',' 'align' i32)? (',', 'addrspace(n))?
int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
Value *Size = nullptr;
LocTy SizeLoc, TyLoc, ASLoc;
MaybeAlign Alignment;
unsigned AddrSpace = 0;
Type *Ty = nullptr;
bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
if (parseType(Ty, TyLoc))
return true;
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
return error(TyLoc, "invalid type for alloca");
bool AteExtraComma = false;
if (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::kw_align) {
if (parseOptionalAlignment(Alignment))
return true;
if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
return true;
} else if (Lex.getKind() == lltok::kw_addrspace) {
ASLoc = Lex.getLoc();
if (parseOptionalAddrSpace(AddrSpace))
return true;
} else if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
} else {
if (parseTypeAndValue(Size, SizeLoc, PFS))
return true;
if (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::kw_align) {
if (parseOptionalAlignment(Alignment))
return true;
if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
return true;
} else if (Lex.getKind() == lltok::kw_addrspace) {
ASLoc = Lex.getLoc();
if (parseOptionalAddrSpace(AddrSpace))
return true;
} else if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
}
}
}
}
if (Size && !Size->getType()->isIntegerTy())
return error(SizeLoc, "element count must have integer type");
SmallPtrSet<Type *, 4> Visited;
if (!Alignment && !Ty->isSized(&Visited))
return error(TyLoc, "Cannot allocate unsized type");
if (!Alignment)
Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
AI->setUsedWithInAlloca(IsInAlloca);
AI->setSwiftError(IsSwiftError);
Inst = AI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseLoad
/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
MaybeAlign Alignment;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
SyncScope::ID SSID = SyncScope::System;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
Type *Ty;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (parseType(Ty) ||
parseToken(lltok::comma, "expected comma after load's type") ||
parseTypeAndValue(Val, Loc, PFS) ||
parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
parseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
return error(Loc, "load operand must be a pointer to a first class type");
if (isAtomic && !Alignment)
return error(Loc, "atomic load must have explicit non-zero alignment");
if (Ordering == AtomicOrdering::Release ||
Ordering == AtomicOrdering::AcquireRelease)
return error(Loc, "atomic load cannot use Release ordering");
if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
return error(
ExplicitTypeLoc,
typeComparisonErrorMessage(
"explicit pointee type doesn't match operand's pointee type", Ty,
cast<PointerType>(Val->getType())->getElementType()));
}
SmallPtrSet<Type *, 4> Visited;
if (!Alignment && !Ty->isSized(&Visited))
return error(ExplicitTypeLoc, "loading unsized types is not allowed");
if (!Alignment)
Alignment = M->getDataLayout().getABITypeAlign(Ty);
Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseStore
/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val, *Ptr; LocTy Loc, PtrLoc;
MaybeAlign Alignment;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
SyncScope::ID SSID = SyncScope::System;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
if (parseTypeAndValue(Val, Loc, PFS) ||
parseToken(lltok::comma, "expected ',' after store operand") ||
parseTypeAndValue(Ptr, PtrLoc, PFS) ||
parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
parseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Ptr->getType()->isPointerTy())
return error(PtrLoc, "store operand must be a pointer");
if (!Val->getType()->isFirstClassType())
return error(Loc, "store operand must be a first class value");
if (!cast<PointerType>(Ptr->getType())
->isOpaqueOrPointeeTypeMatches(Val->getType()))
return error(Loc, "stored value and pointer type do not match");
if (isAtomic && !Alignment)
return error(Loc, "atomic store must have explicit non-zero alignment");
if (Ordering == AtomicOrdering::Acquire ||
Ordering == AtomicOrdering::AcquireRelease)
return error(Loc, "atomic store cannot use Acquire ordering");
SmallPtrSet<Type *, 4> Visited;
if (!Alignment && !Val->getType()->isSized(&Visited))
return error(Loc, "storing unsized types is not allowed");
if (!Alignment)
Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseCmpXchg
/// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
/// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
/// 'Align'?
int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
bool AteExtraComma = false;
AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
SyncScope::ID SSID = SyncScope::System;
bool isVolatile = false;
bool isWeak = false;
MaybeAlign Alignment;
if (EatIfPresent(lltok::kw_weak))
isWeak = true;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
parseTypeAndValue(Cmp, CmpLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
parseTypeAndValue(New, NewLoc, PFS) ||
parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
parseOrdering(FailureOrdering) ||
parseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
return tokError("invalid cmpxchg success ordering");
if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
return tokError("invalid cmpxchg failure ordering");
if (!Ptr->getType()->isPointerTy())
return error(PtrLoc, "cmpxchg operand must be a pointer");
if (!cast<PointerType>(Ptr->getType())
->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
return error(CmpLoc, "compare value and pointer type do not match");
if (!cast<PointerType>(Ptr->getType())
->isOpaqueOrPointeeTypeMatches(New->getType()))
return error(NewLoc, "new value and pointer type do not match");
if (Cmp->getType() != New->getType())
return error(NewLoc, "compare value and new value type do not match");
if (!New->getType()->isFirstClassType())
return error(NewLoc, "cmpxchg operand must be a first class value");
const Align DefaultAlignment(
PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
Cmp->getType()));
AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
FailureOrdering, SSID);
CXI->setVolatile(isVolatile);
CXI->setWeak(isWeak);
Inst = CXI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseAtomicRMW
/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering
int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
bool AteExtraComma = false;
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
SyncScope::ID SSID = SyncScope::System;
bool isVolatile = false;
bool IsFP = false;
AtomicRMWInst::BinOp Operation;
MaybeAlign Alignment;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
switch (Lex.getKind()) {
default:
return tokError("expected binary operation in atomicrmw");
case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
case lltok::kw_and: Operation = AtomicRMWInst::And; break;
case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
case lltok::kw_fadd:
Operation = AtomicRMWInst::FAdd;
IsFP = true;
break;
case lltok::kw_fsub:
Operation = AtomicRMWInst::FSub;
IsFP = true;
break;
}
Lex.Lex(); // Eat the operation.
if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
parseTypeAndValue(Val, ValLoc, PFS) ||
parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
parseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (Ordering == AtomicOrdering::Unordered)
return tokError("atomicrmw cannot be unordered");
if (!Ptr->getType()->isPointerTy())
return error(PtrLoc, "atomicrmw operand must be a pointer");
if (!cast<PointerType>(Ptr->getType())
->isOpaqueOrPointeeTypeMatches(Val->getType()))
return error(ValLoc, "atomicrmw value and pointer type do not match");
if (Operation == AtomicRMWInst::Xchg) {
if (!Val->getType()->isIntegerTy() &&
!Val->getType()->isFloatingPointTy()) {
return error(ValLoc,
"atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
" operand must be an integer or floating point type");
}
} else if (IsFP) {
if (!Val->getType()->isFloatingPointTy()) {
return error(ValLoc, "atomicrmw " +
AtomicRMWInst::getOperationName(Operation) +
" operand must be a floating point type");
}
} else {
if (!Val->getType()->isIntegerTy()) {
return error(ValLoc, "atomicrmw " +
AtomicRMWInst::getOperationName(Operation) +
" operand must be an integer");
}
}
unsigned Size = Val->getType()->getPrimitiveSizeInBits();
if (Size < 8 || (Size & (Size - 1)))
return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
" integer");
const Align DefaultAlignment(
PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
Val->getType()));
AtomicRMWInst *RMWI =
new AtomicRMWInst(Operation, Ptr, Val,
Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
RMWI->setVolatile(isVolatile);
Inst = RMWI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseFence
/// ::= 'fence' 'singlethread'? AtomicOrdering
int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
SyncScope::ID SSID = SyncScope::System;
if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
return true;
if (Ordering == AtomicOrdering::Unordered)
return tokError("fence cannot be unordered");
if (Ordering == AtomicOrdering::Monotonic)
return tokError("fence cannot be monotonic");
Inst = new FenceInst(Context, Ordering, SSID);
return InstNormal;
}
/// parseGetElementPtr
/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr = nullptr;
Value *Val = nullptr;
LocTy Loc, EltLoc;
bool InBounds = EatIfPresent(lltok::kw_inbounds);
Type *Ty = nullptr;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (parseType(Ty) ||
parseToken(lltok::comma, "expected comma after getelementptr's type") ||
parseTypeAndValue(Ptr, Loc, PFS))
return true;
Type *BaseType = Ptr->getType();
PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
if (!BasePointerType)
return error(Loc, "base of getelementptr must be a pointer");
if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
return error(
ExplicitTypeLoc,
typeComparisonErrorMessage(
"explicit pointee type doesn't match operand's pointee type", Ty,
BasePointerType->getElementType()));
}
SmallVector<Value*, 16> Indices;
bool AteExtraComma = false;
// GEP returns a vector of pointers if at least one of parameters is a vector.
// All vector parameters should have the same vector width.
ElementCount GEPWidth = BaseType->isVectorTy()
? cast<VectorType>(BaseType)->getElementCount()
: ElementCount::getFixed(0);
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (parseTypeAndValue(Val, EltLoc, PFS))
return true;
if (!Val->getType()->isIntOrIntVectorTy())
return error(EltLoc, "getelementptr index must be an integer");
if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
ElementCount ValNumEl = ValVTy->getElementCount();
if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
return error(
EltLoc,
"getelementptr vector index has a wrong number of elements");
GEPWidth = ValNumEl;
}
Indices.push_back(Val);
}
SmallPtrSet<Type*, 4> Visited;
if (!Indices.empty() && !Ty->isSized(&Visited))
return error(Loc, "base element of getelementptr must be sized");
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
return error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
if (InBounds)
cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseExtractValue
/// ::= 'extractvalue' TypeAndValue (',' uint32)+
int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (parseTypeAndValue(Val, Loc, PFS) ||
parseIndexList(Indices, AteExtraComma))
return true;
if (!Val->getType()->isAggregateType())
return error(Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return error(Loc, "invalid indices for extractvalue");
Inst = ExtractValueInst::Create(Val, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// parseInsertValue
/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val0, *Val1; LocTy Loc0, Loc1;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (parseTypeAndValue(Val0, Loc0, PFS) ||
parseToken(lltok::comma, "expected comma after insertvalue operand") ||
parseTypeAndValue(Val1, Loc1, PFS) ||
parseIndexList(Indices, AteExtraComma))
return true;
if (!Val0->getType()->isAggregateType())
return error(Loc0, "insertvalue operand must be aggregate type");
Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
if (!IndexedType)
return error(Loc0, "invalid indices for insertvalue");
if (IndexedType != Val1->getType())
return error(Loc1, "insertvalue operand and field disagree in type: '" +
getTypeString(Val1->getType()) + "' instead of '" +
getTypeString(IndexedType) + "'");
Inst = InsertValueInst::Create(Val0, Val1, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
//===----------------------------------------------------------------------===//
// Embedded metadata.
//===----------------------------------------------------------------------===//
/// parseMDNodeVector
/// ::= { Element (',' Element)* }
/// Element
/// ::= 'null' | TypeAndValue
bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
if (parseToken(lltok::lbrace, "expected '{' here"))
return true;
// Check for an empty list.
if (EatIfPresent(lltok::rbrace))
return false;
do {
// Null is a special case since it is typeless.
if (EatIfPresent(lltok::kw_null)) {
Elts.push_back(nullptr);
continue;
}
Metadata *MD;
if (parseMetadata(MD, nullptr))
return true;
Elts.push_back(MD);
} while (EatIfPresent(lltok::comma));
return parseToken(lltok::rbrace, "expected end of metadata node");
}
//===----------------------------------------------------------------------===//
// Use-list order directives.
//===----------------------------------------------------------------------===//
bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
SMLoc Loc) {
if (V->use_empty())
return error(Loc, "value has no uses");
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->uses()) {
if (++NumUses > Indexes.size())
break;
Order[&U] = Indexes[NumUses - 1];
}
if (NumUses < 2)
return error(Loc, "value only has one use");
if (Order.size() != Indexes.size() || NumUses > Indexes.size())
return error(Loc,
"wrong number of indexes, expected " + Twine(V->getNumUses()));
V->sortUseList([&](const Use &L, const Use &R) {
return Order.lookup(&L) < Order.lookup(&R);
});
return false;
}
/// parseUseListOrderIndexes
/// ::= '{' uint32 (',' uint32)+ '}'
bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
SMLoc Loc = Lex.getLoc();
if (parseToken(lltok::lbrace, "expected '{' here"))
return true;
if (Lex.getKind() == lltok::rbrace)
return Lex.Error("expected non-empty list of uselistorder indexes");
// Use Offset, Max, and IsOrdered to check consistency of indexes. The
// indexes should be distinct numbers in the range [0, size-1], and should
// not be in order.
unsigned Offset = 0;
unsigned Max = 0;
bool IsOrdered = true;
assert(Indexes.empty() && "Expected empty order vector");
do {
unsigned Index;
if (parseUInt32(Index))
return true;
// Update consistency checks.
Offset += Index - Indexes.size();
Max = std::max(Max, Index);
IsOrdered &= Index == Indexes.size();
Indexes.push_back(Index);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rbrace, "expected '}' here"))
return true;
if (Indexes.size() < 2)
return error(Loc, "expected >= 2 uselistorder indexes");
if (Offset != 0 || Max >= Indexes.size())
return error(Loc,
"expected distinct uselistorder indexes in range [0, size)");
if (IsOrdered)
return error(Loc, "expected uselistorder indexes to change the order");
return false;
}
/// parseUseListOrder
/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
SMLoc Loc = Lex.getLoc();
if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
return true;
Value *V;
SmallVector<unsigned, 16> Indexes;
if (parseTypeAndValue(V, PFS) ||
parseToken(lltok::comma, "expected comma in uselistorder directive") ||
parseUseListOrderIndexes(Indexes))
return true;
return sortUseListOrder(V, Indexes, Loc);
}
/// parseUseListOrderBB
/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
bool LLParser::parseUseListOrderBB() {
assert(Lex.getKind() == lltok::kw_uselistorder_bb);
SMLoc Loc = Lex.getLoc();
Lex.Lex();
ValID Fn, Label;
SmallVector<unsigned, 16> Indexes;
if (parseValID(Fn, /*PFS=*/nullptr) ||
parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
parseValID(Label, /*PFS=*/nullptr) ||
parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
parseUseListOrderIndexes(Indexes))
return true;
// Check the function.
GlobalValue *GV;
if (Fn.Kind == ValID::t_GlobalName)
GV = M->getNamedValue(Fn.StrVal);
else if (Fn.Kind == ValID::t_GlobalID)
GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
else
return error(Fn.Loc, "expected function name in uselistorder_bb");
if (!GV)
return error(Fn.Loc,
"invalid function forward reference in uselistorder_bb");
auto *F = dyn_cast<Function>(GV);
if (!F)
return error(Fn.Loc, "expected function name in uselistorder_bb");
if (F->isDeclaration())
return error(Fn.Loc, "invalid declaration in uselistorder_bb");
// Check the basic block.
if (Label.Kind == ValID::t_LocalID)
return error(Label.Loc, "invalid numeric label in uselistorder_bb");
if (Label.Kind != ValID::t_LocalName)
return error(Label.Loc, "expected basic block name in uselistorder_bb");
Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
if (!V)
return error(Label.Loc, "invalid basic block in uselistorder_bb");
if (!isa<BasicBlock>(V))
return error(Label.Loc, "expected basic block in uselistorder_bb");
return sortUseListOrder(V, Indexes, Loc);
}
/// ModuleEntry
/// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
/// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
bool LLParser::parseModuleEntry(unsigned ID) {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
std::string Path;
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_path, "expected 'path' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseStringConstant(Path) ||
parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_hash, "expected 'hash' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
ModuleHash Hash;
if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
parseUInt32(Hash[4]))
return true;
if (parseToken(lltok::rparen, "expected ')' here") ||
parseToken(lltok::rparen, "expected ')' here"))
return true;
auto ModuleEntry = Index->addModule(Path, ID, Hash);
ModuleIdMap[ID] = ModuleEntry->first();
return false;
}
/// TypeIdEntry
/// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
bool LLParser::parseTypeIdEntry(unsigned ID) {
assert(Lex.getKind() == lltok::kw_typeid);
Lex.Lex();
std::string Name;
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_name, "expected 'name' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseStringConstant(Name))
return true;
TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
if (parseToken(lltok::comma, "expected ',' here") ||
parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
return true;
// Check if this ID was forward referenced, and if so, update the
// corresponding GUIDs.
auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
if (FwdRefTIDs != ForwardRefTypeIds.end()) {
for (auto TIDRef : FwdRefTIDs->second) {
assert(!*TIDRef.first &&
"Forward referenced type id GUID expected to be 0");
*TIDRef.first = GlobalValue::getGUID(Name);
}
ForwardRefTypeIds.erase(FwdRefTIDs);
}
return false;
}
/// TypeIdSummary
/// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseTypeTestResolution(TIS.TTRes))
return true;
if (EatIfPresent(lltok::comma)) {
// Expect optional wpdResolutions field
if (parseOptionalWpdResolutions(TIS.WPDRes))
return true;
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
static ValueInfo EmptyVI =
ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
/// TypeIdCompatibleVtableEntry
/// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
/// TypeIdCompatibleVtableInfo
/// ')'
bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
Lex.Lex();
std::string Name;
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_name, "expected 'name' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseStringConstant(Name))
return true;
TypeIdCompatibleVtableInfo &TI =
Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
if (parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_summary, "expected 'summary' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
IdToIndexMapType IdToIndexMap;
// parse each call edge
do {
uint64_t Offset;
if (parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_offset, "expected 'offset' here") ||
parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
parseToken(lltok::comma, "expected ',' here"))
return true;
LocTy Loc = Lex.getLoc();
unsigned GVId;
ValueInfo VI;
if (parseGVReference(VI, GVId))
return true;
// Keep track of the TypeIdCompatibleVtableInfo array index needing a
// forward reference. We will save the location of the ValueInfo needing an
// update, but can only do so once the std::vector is finalized.
if (VI == EmptyVI)
IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
TI.push_back({Offset, VI});
if (parseToken(lltok::rparen, "expected ')' in call"))
return true;
} while (EatIfPresent(lltok::comma));
// Now that the TI vector is finalized, it is safe to save the locations
// of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Infos = ForwardRefValueInfos[I.first];
for (auto P : I.second) {
assert(TI[P.first].VTableVI == EmptyVI &&
"Forward referenced ValueInfo expected to be empty");
Infos.emplace_back(&TI[P.first].VTableVI, P.second);
}
}
if (parseToken(lltok::rparen, "expected ')' here") ||
parseToken(lltok::rparen, "expected ')' here"))
return true;
// Check if this ID was forward referenced, and if so, update the
// corresponding GUIDs.
auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
if (FwdRefTIDs != ForwardRefTypeIds.end()) {
for (auto TIDRef : FwdRefTIDs->second) {
assert(!*TIDRef.first &&
"Forward referenced type id GUID expected to be 0");
*TIDRef.first = GlobalValue::getGUID(Name);
}
ForwardRefTypeIds.erase(FwdRefTIDs);
}
return false;
}
/// TypeTestResolution
/// ::= 'typeTestRes' ':' '(' 'kind' ':'
/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
/// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
/// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
/// [',' 'inlinesBits' ':' UInt64]? ')'
bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_kind, "expected 'kind' here") ||
parseToken(lltok::colon, "expected ':' here"))
return true;
switch (Lex.getKind()) {
case lltok::kw_unknown:
TTRes.TheKind = TypeTestResolution::Unknown;
break;
case lltok::kw_unsat:
TTRes.TheKind = TypeTestResolution::Unsat;
break;
case lltok::kw_byteArray:
TTRes.TheKind = TypeTestResolution::ByteArray;
break;
case lltok::kw_inline:
TTRes.TheKind = TypeTestResolution::Inline;
break;
case lltok::kw_single:
TTRes.TheKind = TypeTestResolution::Single;
break;
case lltok::kw_allOnes:
TTRes.TheKind = TypeTestResolution::AllOnes;
break;
default:
return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
}
Lex.Lex();
if (parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseUInt32(TTRes.SizeM1BitWidth))
return true;
// parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_alignLog2:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") ||
parseUInt64(TTRes.AlignLog2))
return true;
break;
case lltok::kw_sizeM1:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
return true;
break;
case lltok::kw_bitMask: {
unsigned Val;
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
return true;
assert(Val <= 0xff);
TTRes.BitMask = (uint8_t)Val;
break;
}
case lltok::kw_inlineBits:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") ||
parseUInt64(TTRes.InlineBits))
return true;
break;
default:
return error(Lex.getLoc(), "expected optional TypeTestResolution field");
}
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// OptionalWpdResolutions
/// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
/// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
bool LLParser::parseOptionalWpdResolutions(
std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
uint64_t Offset;
WholeProgramDevirtResolution WPDRes;
if (parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_offset, "expected 'offset' here") ||
parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
parseToken(lltok::rparen, "expected ')' here"))
return true;
WPDResMap[Offset] = WPDRes;
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// WpdRes
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
/// [',' OptionalResByArg]? ')'
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
/// ',' 'singleImplName' ':' STRINGCONSTANT ','
/// [',' OptionalResByArg]? ')'
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
/// [',' OptionalResByArg]? ')'
bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_kind, "expected 'kind' here") ||
parseToken(lltok::colon, "expected ':' here"))
return true;
switch (Lex.getKind()) {
case lltok::kw_indir:
WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
break;
case lltok::kw_singleImpl:
WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
break;
case lltok::kw_branchFunnel:
WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
break;
default:
return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
}
Lex.Lex();
// parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_singleImplName:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseStringConstant(WPDRes.SingleImplName))
return true;
break;
case lltok::kw_resByArg:
if (parseOptionalResByArg(WPDRes.ResByArg))
return true;
break;
default:
return error(Lex.getLoc(),
"expected optional WholeProgramDevirtResolution field");
}
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// OptionalResByArg
/// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
/// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
/// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
/// 'virtualConstProp' )
/// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
/// [',' 'bit' ':' UInt32]? ')'
bool LLParser::parseOptionalResByArg(
std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
&ResByArg) {
if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
std::vector<uint64_t> Args;
if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_byArg, "expected 'byArg here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_kind, "expected 'kind' here") ||
parseToken(lltok::colon, "expected ':' here"))
return true;
WholeProgramDevirtResolution::ByArg ByArg;
switch (Lex.getKind()) {
case lltok::kw_indir:
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
break;
case lltok::kw_uniformRetVal:
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
break;
case lltok::kw_uniqueRetVal:
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
break;
case lltok::kw_virtualConstProp:
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
break;
default:
return error(Lex.getLoc(),
"unexpected WholeProgramDevirtResolution::ByArg kind");
}
Lex.Lex();
// parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_info:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseUInt64(ByArg.Info))
return true;
break;
case lltok::kw_byte:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseUInt32(ByArg.Byte))
return true;
break;
case lltok::kw_bit:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseUInt32(ByArg.Bit))
return true;
break;
default:
return error(Lex.getLoc(),
"expected optional whole program devirt field");
}
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
ResByArg[Args] = ByArg;
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// OptionalResByArg
/// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
if (parseToken(lltok::kw_args, "expected 'args' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
uint64_t Val;
if (parseUInt64(Val))
return true;
Args.push_back(Val);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
bool ReadOnly = Fwd->isReadOnly();
bool WriteOnly = Fwd->isWriteOnly();
assert(!(ReadOnly && WriteOnly));
*Fwd = Resolved;
if (ReadOnly)
Fwd->setReadOnly();
if (WriteOnly)
Fwd->setWriteOnly();
}
/// Stores the given Name/GUID and associated summary into the Index.
/// Also updates any forward references to the associated entry ID.
void LLParser::addGlobalValueToIndex(
std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
// First create the ValueInfo utilizing the Name or GUID.
ValueInfo VI;
if (GUID != 0) {
assert(Name.empty());
VI = Index->getOrInsertValueInfo(GUID);
} else {
assert(!Name.empty());
if (M) {
auto *GV = M->getNamedValue(Name);
assert(GV);
VI = Index->getOrInsertValueInfo(GV);
} else {
assert(
(!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
"Need a source_filename to compute GUID for local");
GUID = GlobalValue::getGUID(
GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
}
}
// Resolve forward references from calls/refs
auto FwdRefVIs = ForwardRefValueInfos.find(ID);
if (FwdRefVIs != ForwardRefValueInfos.end()) {
for (auto VIRef : FwdRefVIs->second) {
assert(VIRef.first->getRef() == FwdVIRef &&
"Forward referenced ValueInfo expected to be empty");
resolveFwdRef(VIRef.first, VI);
}
ForwardRefValueInfos.erase(FwdRefVIs);
}
// Resolve forward references from aliases
auto FwdRefAliasees = ForwardRefAliasees.find(ID);
if (FwdRefAliasees != ForwardRefAliasees.end()) {
for (auto AliaseeRef : FwdRefAliasees->second) {
assert(!AliaseeRef.first->hasAliasee() &&
"Forward referencing alias already has aliasee");
assert(Summary && "Aliasee must be a definition");
AliaseeRef.first->setAliasee(VI, Summary.get());
}
ForwardRefAliasees.erase(FwdRefAliasees);
}
// Add the summary if one was provided.
if (Summary)
Index->addGlobalValueSummary(VI, std::move(Summary));
// Save the associated ValueInfo for use in later references by ID.
if (ID == NumberedValueInfos.size())
NumberedValueInfos.push_back(VI);
else {
// Handle non-continuous numbers (to make test simplification easier).
if (ID > NumberedValueInfos.size())
NumberedValueInfos.resize(ID + 1);
NumberedValueInfos[ID] = VI;
}
}
/// parseSummaryIndexFlags
/// ::= 'flags' ':' UInt64
bool LLParser::parseSummaryIndexFlags() {
assert(Lex.getKind() == lltok::kw_flags);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here"))
return true;
uint64_t Flags;
if (parseUInt64(Flags))
return true;
if (Index)
Index->setFlags(Flags);
return false;
}
/// parseBlockCount
/// ::= 'blockcount' ':' UInt64
bool LLParser::parseBlockCount() {
assert(Lex.getKind() == lltok::kw_blockcount);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here"))
return true;
uint64_t BlockCount;
if (parseUInt64(BlockCount))
return true;
if (Index)
Index->setBlockCount(BlockCount);
return false;
}
/// parseGVEntry
/// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
/// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
/// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
bool LLParser::parseGVEntry(unsigned ID) {
assert(Lex.getKind() == lltok::kw_gv);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
std::string Name;
GlobalValue::GUID GUID = 0;
switch (Lex.getKind()) {
case lltok::kw_name:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseStringConstant(Name))
return true;
// Can't create GUID/ValueInfo until we have the linkage.
break;
case lltok::kw_guid:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
return true;
break;
default:
return error(Lex.getLoc(), "expected name or guid tag");
}
if (!EatIfPresent(lltok::comma)) {
// No summaries. Wrap up.
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
// This was created for a call to an external or indirect target.
// A GUID with no summary came from a VALUE_GUID record, dummy GUID
// created for indirect calls with VP. A Name with no GUID came from
// an external definition. We pass ExternalLinkage since that is only
// used when the GUID must be computed from Name, and in that case
// the symbol must have external linkage.
addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
nullptr);
return false;
}
// Have a list of summaries
if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
switch (Lex.getKind()) {
case lltok::kw_function:
if (parseFunctionSummary(Name, GUID, ID))
return true;
break;
case lltok::kw_variable:
if (parseVariableSummary(Name, GUID, ID))
return true;
break;
case lltok::kw_alias:
if (parseAliasSummary(Name, GUID, ID))
return true;
break;
default:
return error(Lex.getLoc(), "expected summary type");
}
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here") ||
parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// FunctionSummary
/// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
/// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
/// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
/// [',' OptionalRefs]? ')'
bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
unsigned ID) {
assert(Lex.getKind() == lltok::kw_function);
Lex.Lex();
StringRef ModulePath;
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
/*NotEligibleToImport=*/false,
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
unsigned InstCount;
std::vector<FunctionSummary::EdgeTy> Calls;
FunctionSummary::TypeIdInfo TypeIdInfo;
std::vector<FunctionSummary::ParamAccess> ParamAccesses;
std::vector<ValueInfo> Refs;
// Default is all-zeros (conservative values).
FunctionSummary::FFlags FFlags = {};
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseModuleReference(ModulePath) ||
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_insts, "expected 'insts' here") ||
parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
return true;
// parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_funcFlags:
if (parseOptionalFFlags(FFlags))
return true;
break;
case lltok::kw_calls:
if (parseOptionalCalls(Calls))
return true;
break;
case lltok::kw_typeIdInfo:
if (parseOptionalTypeIdInfo(TypeIdInfo))
return true;
break;
case lltok::kw_refs:
if (parseOptionalRefs(Refs))
return true;
break;
case lltok::kw_params:
if (parseOptionalParamAccesses(ParamAccesses))
return true;
break;
default:
return error(Lex.getLoc(), "expected optional function summary field");
}
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
auto FS = std::make_unique<FunctionSummary>(
GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
std::move(Calls), std::move(TypeIdInfo.TypeTests),
std::move(TypeIdInfo.TypeTestAssumeVCalls),
std::move(TypeIdInfo.TypeCheckedLoadVCalls),
std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
std::move(ParamAccesses));
FS->setModulePath(ModulePath);
addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
ID, std::move(FS));
return false;
}
/// VariableSummary
/// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
/// [',' OptionalRefs]? ')'
bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
unsigned ID) {
assert(Lex.getKind() == lltok::kw_variable);
Lex.Lex();
StringRef ModulePath;
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
/*NotEligibleToImport=*/false,
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
/* WriteOnly */ false,
/* Constant */ false,
GlobalObject::VCallVisibilityPublic);
std::vector<ValueInfo> Refs;
VTableFuncList VTableFuncs;
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseModuleReference(ModulePath) ||
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
parseToken(lltok::comma, "expected ',' here") ||
parseGVarFlags(GVarFlags))
return true;
// parse optional fields
while (EatIfPresent(lltok::comma)) {
switch (Lex.getKind()) {
case lltok::kw_vTableFuncs:
if (parseOptionalVTableFuncs(VTableFuncs))
return true;
break;
case lltok::kw_refs:
if (parseOptionalRefs(Refs))
return true;
break;
default:
return error(Lex.getLoc(), "expected optional variable summary field");
}
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
auto GS =
std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
GS->setModulePath(ModulePath);
GS->setVTableFuncs(std::move(VTableFuncs));
addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
ID, std::move(GS));
return false;
}
/// AliasSummary
/// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
/// 'aliasee' ':' GVReference ')'
bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
unsigned ID) {
assert(Lex.getKind() == lltok::kw_alias);
LocTy Loc = Lex.getLoc();
Lex.Lex();
StringRef ModulePath;
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
/*NotEligibleToImport=*/false,
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here") ||
parseModuleReference(ModulePath) ||
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
parseToken(lltok::colon, "expected ':' here"))
return true;
ValueInfo AliaseeVI;
unsigned GVId;
if (parseGVReference(AliaseeVI, GVId))
return true;
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
auto AS = std::make_unique<AliasSummary>(GVFlags);
AS->setModulePath(ModulePath);
// Record forward reference if the aliasee is not parsed yet.
if (AliaseeVI.getRef() == FwdVIRef) {
ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
} else {
auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
assert(Summary && "Aliasee must be a definition");
AS->setAliasee(AliaseeVI, Summary);
}
addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
ID, std::move(AS));
return false;
}
/// Flag
/// ::= [0|1]
bool LLParser::parseFlag(unsigned &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return tokError("expected integer");
Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
Lex.Lex();
return false;
}
/// OptionalFFlags
/// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
/// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
/// [',' 'returnDoesNotAlias' ':' Flag]? ')'
/// [',' 'noInline' ':' Flag]? ')'
/// [',' 'alwaysInline' ':' Flag]? ')'
bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
assert(Lex.getKind() == lltok::kw_funcFlags);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' in funcFlags") |
parseToken(lltok::lparen, "expected '(' in funcFlags"))
return true;
do {
unsigned Val = 0;
switch (Lex.getKind()) {
case lltok::kw_readNone:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.ReadNone = Val;
break;
case lltok::kw_readOnly:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.ReadOnly = Val;
break;
case lltok::kw_noRecurse:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.NoRecurse = Val;
break;
case lltok::kw_returnDoesNotAlias:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.ReturnDoesNotAlias = Val;
break;
case lltok::kw_noInline:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.NoInline = Val;
break;
case lltok::kw_alwaysInline:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
return true;
FFlags.AlwaysInline = Val;
break;
default:
return error(Lex.getLoc(), "expected function flag type");
}
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
return true;
return false;
}
/// OptionalCalls
/// := 'calls' ':' '(' Call [',' Call]* ')'
/// Call ::= '(' 'callee' ':' GVReference
/// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
assert(Lex.getKind() == lltok::kw_calls);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' in calls") |
parseToken(lltok::lparen, "expected '(' in calls"))
return true;
IdToIndexMapType IdToIndexMap;
// parse each call edge
do {
ValueInfo VI;
if (parseToken(lltok::lparen, "expected '(' in call") ||
parseToken(lltok::kw_callee, "expected 'callee' in call") ||
parseToken(lltok::colon, "expected ':'"))
return true;
LocTy Loc = Lex.getLoc();
unsigned GVId;
if (parseGVReference(VI, GVId))
return true;
CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
unsigned RelBF = 0;
if (EatIfPresent(lltok::comma)) {
// Expect either hotness or relbf
if (EatIfPresent(lltok::kw_hotness)) {
if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
return true;
} else {
if (parseToken(lltok::kw_relbf, "expected relbf") ||
parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
return true;
}
}
// Keep track of the Call array index needing a forward reference.
// We will save the location of the ValueInfo needing an update, but
// can only do so once the std::vector is finalized.
if (VI.getRef() == FwdVIRef)
IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
if (parseToken(lltok::rparen, "expected ')' in call"))
return true;
} while (EatIfPresent(lltok::comma));
// Now that the Calls vector is finalized, it is safe to save the locations
// of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Infos = ForwardRefValueInfos[I.first];
for (auto P : I.second) {
assert(Calls[P.first].first.getRef() == FwdVIRef &&
"Forward referenced ValueInfo expected to be empty");
Infos.emplace_back(&Calls[P.first].first, P.second);
}
}
if (parseToken(lltok::rparen, "expected ')' in calls"))
return true;
return false;
}
/// Hotness
/// := ('unknown'|'cold'|'none'|'hot'|'critical')
bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
switch (Lex.getKind()) {
case lltok::kw_unknown:
Hotness = CalleeInfo::HotnessType::Unknown;
break;
case lltok::kw_cold:
Hotness = CalleeInfo::HotnessType::Cold;
break;
case lltok::kw_none:
Hotness = CalleeInfo::HotnessType::None;
break;
case lltok::kw_hot:
Hotness = CalleeInfo::HotnessType::Hot;
break;
case lltok::kw_critical:
Hotness = CalleeInfo::HotnessType::Critical;
break;
default:
return error(Lex.getLoc(), "invalid call edge hotness");
}
Lex.Lex();
return false;
}
/// OptionalVTableFuncs
/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
assert(Lex.getKind() == lltok::kw_vTableFuncs);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
return true;
IdToIndexMapType IdToIndexMap;
// parse each virtual function pair
do {
ValueInfo VI;
if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
parseToken(lltok::colon, "expected ':'"))
return true;
LocTy Loc = Lex.getLoc();
unsigned GVId;
if (parseGVReference(VI, GVId))
return true;
uint64_t Offset;
if (parseToken(lltok::comma, "expected comma") ||
parseToken(lltok::kw_offset, "expected offset") ||
parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
return true;
// Keep track of the VTableFuncs array index needing a forward reference.
// We will save the location of the ValueInfo needing an update, but
// can only do so once the std::vector is finalized.
if (VI == EmptyVI)
IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
VTableFuncs.push_back({VI, Offset});
if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
return true;
} while (EatIfPresent(lltok::comma));
// Now that the VTableFuncs vector is finalized, it is safe to save the
// locations of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Infos = ForwardRefValueInfos[I.first];
for (auto P : I.second) {
assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
"Forward referenced ValueInfo expected to be empty");
Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
}
}
if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
return true;
return false;
}
/// ParamNo := 'param' ':' UInt64
bool LLParser::parseParamNo(uint64_t &ParamNo) {
if (parseToken(lltok::kw_param, "expected 'param' here") ||
parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
return true;
return false;
}
/// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
APSInt Lower;
APSInt Upper;
auto ParseAPSInt = [&](APSInt &Val) {
if (Lex.getKind() != lltok::APSInt)
return tokError("expected integer");
Val = Lex.getAPSIntVal();
Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
Val.setIsSigned(true);
Lex.Lex();
return false;
};
if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
parseToken(lltok::rsquare, "expected ']' here"))
return true;
++Upper;
Range =
(Lower == Upper && !Lower.isMaxValue())
? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
: ConstantRange(Lower, Upper);
return false;
}
/// ParamAccessCall
/// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
IdLocListType &IdLocList) {
if (parseToken(lltok::lparen, "expected '(' here") ||
parseToken(lltok::kw_callee, "expected 'callee' here") ||
parseToken(lltok::colon, "expected ':' here"))
return true;
unsigned GVId;
ValueInfo VI;
LocTy Loc = Lex.getLoc();
if (parseGVReference(VI, GVId))
return true;
Call.Callee = VI;
IdLocList.emplace_back(GVId, Loc);
if (parseToken(lltok::comma, "expected ',' here") ||
parseParamNo(Call.ParamNo) ||
parseToken(lltok::comma, "expected ',' here") ||
parseParamAccessOffset(Call.Offsets))
return true;
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// ParamAccess
/// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
/// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
IdLocListType &IdLocList) {
if (parseToken(lltok::lparen, "expected '(' here") ||
parseParamNo(Param.ParamNo) ||
parseToken(lltok::comma, "expected ',' here") ||
parseParamAccessOffset(Param.Use))
return true;
if (EatIfPresent(lltok::comma)) {
if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
FunctionSummary::ParamAccess::Call Call;
if (parseParamAccessCall(Call, IdLocList))
return true;
Param.Calls.push_back(Call);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
}
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// OptionalParamAccesses
/// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
bool LLParser::parseOptionalParamAccesses(
std::vector<FunctionSummary::ParamAccess> &Params) {
assert(Lex.getKind() == lltok::kw_params);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
IdLocListType VContexts;
size_t CallsNum = 0;
do {
FunctionSummary::ParamAccess ParamAccess;
if (parseParamAccess(ParamAccess, VContexts))
return true;
CallsNum += ParamAccess.Calls.size();
assert(VContexts.size() == CallsNum);
(void)CallsNum;
Params.emplace_back(std::move(ParamAccess));
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
// Now that the Params is finalized, it is safe to save the locations
// of any forward GV references that need updating later.
IdLocListType::const_iterator ItContext = VContexts.begin();
for (auto &PA : Params) {
for (auto &C : PA.Calls) {
if (C.Callee.getRef() == FwdVIRef)
ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
ItContext->second);
++ItContext;
}
}
assert(ItContext == VContexts.end());
return false;
}
/// OptionalRefs
/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
assert(Lex.getKind() == lltok::kw_refs);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' in refs") ||
parseToken(lltok::lparen, "expected '(' in refs"))
return true;
struct ValueContext {
ValueInfo VI;
unsigned GVId;
LocTy Loc;
};
std::vector<ValueContext> VContexts;
// parse each ref edge
do {
ValueContext VC;
VC.Loc = Lex.getLoc();
if (parseGVReference(VC.VI, VC.GVId))
return true;
VContexts.push_back(VC);
} while (EatIfPresent(lltok::comma));
// Sort value contexts so that ones with writeonly
// and readonly ValueInfo are at the end of VContexts vector.
// See FunctionSummary::specialRefCounts()
llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
});
IdToIndexMapType IdToIndexMap;
for (auto &VC : VContexts) {
// Keep track of the Refs array index needing a forward reference.
// We will save the location of the ValueInfo needing an update, but
// can only do so once the std::vector is finalized.
if (VC.VI.getRef() == FwdVIRef)
IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
Refs.push_back(VC.VI);
}
// Now that the Refs vector is finalized, it is safe to save the locations
// of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Infos = ForwardRefValueInfos[I.first];
for (auto P : I.second) {
assert(Refs[P.first].getRef() == FwdVIRef &&
"Forward referenced ValueInfo expected to be empty");
Infos.emplace_back(&Refs[P.first], P.second);
}
}
if (parseToken(lltok::rparen, "expected ')' in refs"))
return true;
return false;
}
/// OptionalTypeIdInfo
/// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
/// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
/// [',' TypeCheckedLoadConstVCalls]? ')'
bool LLParser::parseOptionalTypeIdInfo(
FunctionSummary::TypeIdInfo &TypeIdInfo) {
assert(Lex.getKind() == lltok::kw_typeIdInfo);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
return true;
do {
switch (Lex.getKind()) {
case lltok::kw_typeTests:
if (parseTypeTests(TypeIdInfo.TypeTests))
return true;
break;
case lltok::kw_typeTestAssumeVCalls:
if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
TypeIdInfo.TypeTestAssumeVCalls))
return true;
break;
case lltok::kw_typeCheckedLoadVCalls:
if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
TypeIdInfo.TypeCheckedLoadVCalls))
return true;
break;
case lltok::kw_typeTestAssumeConstVCalls:
if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
TypeIdInfo.TypeTestAssumeConstVCalls))
return true;
break;
case lltok::kw_typeCheckedLoadConstVCalls:
if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
TypeIdInfo.TypeCheckedLoadConstVCalls))
return true;
break;
default:
return error(Lex.getLoc(), "invalid typeIdInfo list type");
}
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
return true;
return false;
}
/// TypeTests
/// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
/// [',' (SummaryID | UInt64)]* ')'
bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
assert(Lex.getKind() == lltok::kw_typeTests);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
return true;
IdToIndexMapType IdToIndexMap;
do {
GlobalValue::GUID GUID = 0;
if (Lex.getKind() == lltok::SummaryID) {
unsigned ID = Lex.getUIntVal();
LocTy Loc = Lex.getLoc();
// Keep track of the TypeTests array index needing a forward reference.
// We will save the location of the GUID needing an update, but
// can only do so once the std::vector is finalized.
IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
Lex.Lex();
} else if (parseUInt64(GUID))
return true;
TypeTests.push_back(GUID);
} while (EatIfPresent(lltok::comma));
// Now that the TypeTests vector is finalized, it is safe to save the
// locations of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Ids = ForwardRefTypeIds[I.first];
for (auto P : I.second) {
assert(TypeTests[P.first] == 0 &&
"Forward referenced type id GUID expected to be 0");
Ids.emplace_back(&TypeTests[P.first], P.second);
}
}
if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
return true;
return false;
}
/// VFuncIdList
/// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
bool LLParser::parseVFuncIdList(
lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
assert(Lex.getKind() == Kind);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
IdToIndexMapType IdToIndexMap;
do {
FunctionSummary::VFuncId VFuncId;
if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
return true;
VFuncIdList.push_back(VFuncId);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
// Now that the VFuncIdList vector is finalized, it is safe to save the
// locations of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Ids = ForwardRefTypeIds[I.first];
for (auto P : I.second) {
assert(VFuncIdList[P.first].GUID == 0 &&
"Forward referenced type id GUID expected to be 0");
Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
}
}
return false;
}
/// ConstVCallList
/// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
bool LLParser::parseConstVCallList(
lltok::Kind Kind,
std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
assert(Lex.getKind() == Kind);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
IdToIndexMapType IdToIndexMap;
do {
FunctionSummary::ConstVCall ConstVCall;
if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
return true;
ConstVCallList.push_back(ConstVCall);
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
// Now that the ConstVCallList vector is finalized, it is safe to save the
// locations of any forward GV references that need updating later.
for (auto I : IdToIndexMap) {
auto &Ids = ForwardRefTypeIds[I.first];
for (auto P : I.second) {
assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
"Forward referenced type id GUID expected to be 0");
Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
}
}
return false;
}
/// ConstVCall
/// ::= '(' VFuncId ',' Args ')'
bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
IdToIndexMapType &IdToIndexMap, unsigned Index) {
if (parseToken(lltok::lparen, "expected '(' here") ||
parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
return true;
if (EatIfPresent(lltok::comma))
if (parseArgs(ConstVCall.Args))
return true;
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// VFuncId
/// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
/// 'offset' ':' UInt64 ')'
bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
IdToIndexMapType &IdToIndexMap, unsigned Index) {
assert(Lex.getKind() == lltok::kw_vFuncId);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
if (Lex.getKind() == lltok::SummaryID) {
VFuncId.GUID = 0;
unsigned ID = Lex.getUIntVal();
LocTy Loc = Lex.getLoc();
// Keep track of the array index needing a forward reference.
// We will save the location of the GUID needing an update, but
// can only do so once the caller's std::vector is finalized.
IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
Lex.Lex();
} else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseUInt64(VFuncId.GUID))
return true;
if (parseToken(lltok::comma, "expected ',' here") ||
parseToken(lltok::kw_offset, "expected 'offset' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseUInt64(VFuncId.Offset) ||
parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// GVFlags
/// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
/// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
/// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
/// 'canAutoHide' ':' Flag ',' ')'
bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
assert(Lex.getKind() == lltok::kw_flags);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
do {
unsigned Flag = 0;
switch (Lex.getKind()) {
case lltok::kw_linkage:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'"))
return true;
bool HasLinkage;
GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
assert(HasLinkage && "Linkage not optional in summary entry");
Lex.Lex();
break;
case lltok::kw_visibility:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'"))
return true;
parseOptionalVisibility(Flag);
GVFlags.Visibility = Flag;
break;
case lltok::kw_notEligibleToImport:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
return true;
GVFlags.NotEligibleToImport = Flag;
break;
case lltok::kw_live:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
return true;
GVFlags.Live = Flag;
break;
case lltok::kw_dsoLocal:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
return true;
GVFlags.DSOLocal = Flag;
break;
case lltok::kw_canAutoHide:
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
return true;
GVFlags.CanAutoHide = Flag;
break;
default:
return error(Lex.getLoc(), "expected gv flag type");
}
} while (EatIfPresent(lltok::comma));
if (parseToken(lltok::rparen, "expected ')' here"))
return true;
return false;
}
/// GVarFlags
/// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
/// ',' 'writeonly' ':' Flag
/// ',' 'constant' ':' Flag ')'
bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
assert(Lex.getKind() == lltok::kw_varFlags);
Lex.Lex();
if (parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::lparen, "expected '(' here"))
return true;
auto ParseRest = [this](unsigned int &Val) {
Lex.Lex();
if (parseToken(lltok::colon, "expected ':'"))
return true;
return parseFlag(Val);
};
do {
unsigned Flag = 0;
switch (Lex.getKind()) {
case lltok::kw_readonly:
if (ParseRest(Flag))
return true;
GVarFlags.MaybeReadOnly = Flag;
break;
case lltok::kw_writeonly:
if (ParseRest(Flag))
return true;
GVarFlags.MaybeWriteOnly = Flag;
break;
case lltok::kw_constant:
if (ParseRest(Flag))
return true;
GVarFlags.Constant = Flag;
break;
case lltok::kw_vcall_visibility:
if (ParseRest(Flag))
return true;
GVarFlags.VCallVisibility = Flag;
break;
default:
return error(Lex.getLoc(), "expected gvar flag type");
}
} while (EatIfPresent(lltok::comma));
return parseToken(lltok::rparen, "expected ')' here");
}
/// ModuleReference
/// ::= 'module' ':' UInt
bool LLParser::parseModuleReference(StringRef &ModulePath) {
// parse module id.
if (parseToken(lltok::kw_module, "expected 'module' here") ||
parseToken(lltok::colon, "expected ':' here") ||
parseToken(lltok::SummaryID, "expected module ID"))
return true;
unsigned ModuleID = Lex.getUIntVal();
auto I = ModuleIdMap.find(ModuleID);
// We should have already parsed all module IDs
assert(I != ModuleIdMap.end());
ModulePath = I->second;
return false;
}
/// GVReference
/// ::= SummaryID
bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
if (!ReadOnly)
WriteOnly = EatIfPresent(lltok::kw_writeonly);
if (parseToken(lltok::SummaryID, "expected GV ID"))
return true;
GVId = Lex.getUIntVal();
// Check if we already have a VI for this GV
if (GVId < NumberedValueInfos.size()) {
assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
VI = NumberedValueInfos[GVId];
} else
// We will create a forward reference to the stored location.
VI = ValueInfo(false, FwdVIRef);
if (ReadOnly)
VI.setReadOnly();
if (WriteOnly)
VI.setWriteOnly();
return false;
}