1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 11:33:24 +02:00
llvm-mirror/unittests/ADT/StringMapTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

535 lines
15 KiB
C++

//===- llvm/unittest/ADT/StringMapMap.cpp - StringMap unit tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"
#include <limits>
#include <tuple>
using namespace llvm;
namespace {
// Test fixture
class StringMapTest : public testing::Test {
protected:
StringMap<uint32_t> testMap;
static const char testKey[];
static const uint32_t testValue;
static const char* testKeyFirst;
static size_t testKeyLength;
static const std::string testKeyStr;
void assertEmptyMap() {
// Size tests
EXPECT_EQ(0u, testMap.size());
EXPECT_TRUE(testMap.empty());
// Iterator tests
EXPECT_TRUE(testMap.begin() == testMap.end());
// Lookup tests
EXPECT_EQ(0u, testMap.count(testKey));
EXPECT_EQ(0u, testMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(0u, testMap.count(testKeyStr));
EXPECT_TRUE(testMap.find(testKey) == testMap.end());
EXPECT_TRUE(testMap.find(StringRef(testKeyFirst, testKeyLength)) ==
testMap.end());
EXPECT_TRUE(testMap.find(testKeyStr) == testMap.end());
}
void assertSingleItemMap() {
// Size tests
EXPECT_EQ(1u, testMap.size());
EXPECT_FALSE(testMap.begin() == testMap.end());
EXPECT_FALSE(testMap.empty());
// Iterator tests
StringMap<uint32_t>::iterator it = testMap.begin();
EXPECT_STREQ(testKey, it->first().data());
EXPECT_EQ(testValue, it->second);
++it;
EXPECT_TRUE(it == testMap.end());
// Lookup tests
EXPECT_EQ(1u, testMap.count(testKey));
EXPECT_EQ(1u, testMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(1u, testMap.count(testKeyStr));
EXPECT_TRUE(testMap.find(testKey) == testMap.begin());
EXPECT_TRUE(testMap.find(StringRef(testKeyFirst, testKeyLength)) ==
testMap.begin());
EXPECT_TRUE(testMap.find(testKeyStr) == testMap.begin());
}
};
const char StringMapTest::testKey[] = "key";
const uint32_t StringMapTest::testValue = 1u;
const char* StringMapTest::testKeyFirst = testKey;
size_t StringMapTest::testKeyLength = sizeof(testKey) - 1;
const std::string StringMapTest::testKeyStr(testKey);
// Empty map tests.
TEST_F(StringMapTest, EmptyMapTest) {
assertEmptyMap();
}
// Constant map tests.
TEST_F(StringMapTest, ConstEmptyMapTest) {
const StringMap<uint32_t>& constTestMap = testMap;
// Size tests
EXPECT_EQ(0u, constTestMap.size());
EXPECT_TRUE(constTestMap.empty());
// Iterator tests
EXPECT_TRUE(constTestMap.begin() == constTestMap.end());
// Lookup tests
EXPECT_EQ(0u, constTestMap.count(testKey));
EXPECT_EQ(0u, constTestMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(0u, constTestMap.count(testKeyStr));
EXPECT_TRUE(constTestMap.find(testKey) == constTestMap.end());
EXPECT_TRUE(constTestMap.find(StringRef(testKeyFirst, testKeyLength)) ==
constTestMap.end());
EXPECT_TRUE(constTestMap.find(testKeyStr) == constTestMap.end());
}
// A map with a single entry.
TEST_F(StringMapTest, SingleEntryMapTest) {
testMap[testKey] = testValue;
assertSingleItemMap();
}
// Test clear() method.
TEST_F(StringMapTest, ClearTest) {
testMap[testKey] = testValue;
testMap.clear();
assertEmptyMap();
}
// Test erase(iterator) method.
TEST_F(StringMapTest, EraseIteratorTest) {
testMap[testKey] = testValue;
testMap.erase(testMap.begin());
assertEmptyMap();
}
// Test erase(value) method.
TEST_F(StringMapTest, EraseValueTest) {
testMap[testKey] = testValue;
testMap.erase(testKey);
assertEmptyMap();
}
// Test inserting two values and erasing one.
TEST_F(StringMapTest, InsertAndEraseTest) {
testMap[testKey] = testValue;
testMap["otherKey"] = 2;
testMap.erase("otherKey");
assertSingleItemMap();
}
TEST_F(StringMapTest, SmallFullMapTest) {
// StringMap has a tricky corner case when the map is small (<8 buckets) and
// it fills up through a balanced pattern of inserts and erases. This can
// lead to inf-loops in some cases (PR13148) so we test it explicitly here.
llvm::StringMap<int> Map(2);
Map["eins"] = 1;
Map["zwei"] = 2;
Map["drei"] = 3;
Map.erase("drei");
Map.erase("eins");
Map["veir"] = 4;
Map["funf"] = 5;
EXPECT_EQ(3u, Map.size());
EXPECT_EQ(0, Map.lookup("eins"));
EXPECT_EQ(2, Map.lookup("zwei"));
EXPECT_EQ(0, Map.lookup("drei"));
EXPECT_EQ(4, Map.lookup("veir"));
EXPECT_EQ(5, Map.lookup("funf"));
}
TEST_F(StringMapTest, CopyCtorTest) {
llvm::StringMap<int> Map;
Map["eins"] = 1;
Map["zwei"] = 2;
Map["drei"] = 3;
Map.erase("drei");
Map.erase("eins");
Map["veir"] = 4;
Map["funf"] = 5;
EXPECT_EQ(3u, Map.size());
EXPECT_EQ(0, Map.lookup("eins"));
EXPECT_EQ(2, Map.lookup("zwei"));
EXPECT_EQ(0, Map.lookup("drei"));
EXPECT_EQ(4, Map.lookup("veir"));
EXPECT_EQ(5, Map.lookup("funf"));
llvm::StringMap<int> Map2(Map);
EXPECT_EQ(3u, Map2.size());
EXPECT_EQ(0, Map2.lookup("eins"));
EXPECT_EQ(2, Map2.lookup("zwei"));
EXPECT_EQ(0, Map2.lookup("drei"));
EXPECT_EQ(4, Map2.lookup("veir"));
EXPECT_EQ(5, Map2.lookup("funf"));
}
// A more complex iteration test.
TEST_F(StringMapTest, IterationTest) {
bool visited[100];
// Insert 100 numbers into the map
for (int i = 0; i < 100; ++i) {
std::stringstream ss;
ss << "key_" << i;
testMap[ss.str()] = i;
visited[i] = false;
}
// Iterate over all numbers and mark each one found.
for (StringMap<uint32_t>::iterator it = testMap.begin();
it != testMap.end(); ++it) {
std::stringstream ss;
ss << "key_" << it->second;
ASSERT_STREQ(ss.str().c_str(), it->first().data());
visited[it->second] = true;
}
// Ensure every number was visited.
for (int i = 0; i < 100; ++i) {
ASSERT_TRUE(visited[i]) << "Entry #" << i << " was never visited";
}
}
// Test StringMapEntry::Create() method.
TEST_F(StringMapTest, StringMapEntryTest) {
StringMap<uint32_t>::value_type* entry =
StringMap<uint32_t>::value_type::Create(
StringRef(testKeyFirst, testKeyLength), 1u);
EXPECT_STREQ(testKey, entry->first().data());
EXPECT_EQ(1u, entry->second);
free(entry);
}
// Test insert() method.
TEST_F(StringMapTest, InsertTest) {
SCOPED_TRACE("InsertTest");
testMap.insert(
StringMap<uint32_t>::value_type::Create(
StringRef(testKeyFirst, testKeyLength),
testMap.getAllocator(), 1u));
assertSingleItemMap();
}
// Test insert(pair<K, V>) method
TEST_F(StringMapTest, InsertPairTest) {
bool Inserted;
StringMap<uint32_t>::iterator NewIt;
std::tie(NewIt, Inserted) =
testMap.insert(std::make_pair(testKeyFirst, testValue));
EXPECT_EQ(1u, testMap.size());
EXPECT_EQ(testValue, testMap[testKeyFirst]);
EXPECT_EQ(testKeyFirst, NewIt->first());
EXPECT_EQ(testValue, NewIt->second);
EXPECT_TRUE(Inserted);
StringMap<uint32_t>::iterator ExistingIt;
std::tie(ExistingIt, Inserted) =
testMap.insert(std::make_pair(testKeyFirst, testValue + 1));
EXPECT_EQ(1u, testMap.size());
EXPECT_EQ(testValue, testMap[testKeyFirst]);
EXPECT_FALSE(Inserted);
EXPECT_EQ(NewIt, ExistingIt);
}
// Test insert(pair<K, V>) method when rehashing occurs
TEST_F(StringMapTest, InsertRehashingPairTest) {
// Check that the correct iterator is returned when the inserted element is
// moved to a different bucket during internal rehashing. This depends on
// the particular key, and the implementation of StringMap and HashString.
// Changes to those might result in this test not actually checking that.
StringMap<uint32_t> t(0);
EXPECT_EQ(0u, t.getNumBuckets());
StringMap<uint32_t>::iterator It =
t.insert(std::make_pair("abcdef", 42)).first;
EXPECT_EQ(16u, t.getNumBuckets());
EXPECT_EQ("abcdef", It->first());
EXPECT_EQ(42u, It->second);
}
TEST_F(StringMapTest, IterMapKeys) {
StringMap<int> Map;
Map["A"] = 1;
Map["B"] = 2;
Map["C"] = 3;
Map["D"] = 3;
auto Keys = to_vector<4>(Map.keys());
llvm::sort(Keys);
SmallVector<StringRef, 4> Expected = {"A", "B", "C", "D"};
EXPECT_EQ(Expected, Keys);
}
TEST_F(StringMapTest, IterSetKeys) {
StringSet<> Set;
Set.insert("A");
Set.insert("B");
Set.insert("C");
Set.insert("D");
auto Keys = to_vector<4>(Set.keys());
llvm::sort(Keys);
SmallVector<StringRef, 4> Expected = {"A", "B", "C", "D"};
EXPECT_EQ(Expected, Keys);
}
// Create a non-default constructable value
struct StringMapTestStruct {
StringMapTestStruct(int i) : i(i) {}
StringMapTestStruct() = delete;
int i;
};
TEST_F(StringMapTest, NonDefaultConstructable) {
StringMap<StringMapTestStruct> t;
t.insert(std::make_pair("Test", StringMapTestStruct(123)));
StringMap<StringMapTestStruct>::iterator iter = t.find("Test");
ASSERT_NE(iter, t.end());
ASSERT_EQ(iter->second.i, 123);
}
struct Immovable {
Immovable() {}
Immovable(Immovable&&) = delete; // will disable the other special members
};
struct MoveOnly {
int i;
MoveOnly(int i) : i(i) {}
MoveOnly(const Immovable&) : i(0) {}
MoveOnly(MoveOnly &&RHS) : i(RHS.i) {}
MoveOnly &operator=(MoveOnly &&RHS) {
i = RHS.i;
return *this;
}
private:
MoveOnly(const MoveOnly &) = delete;
MoveOnly &operator=(const MoveOnly &) = delete;
};
TEST_F(StringMapTest, MoveOnly) {
StringMap<MoveOnly> t;
t.insert(std::make_pair("Test", MoveOnly(42)));
StringRef Key = "Test";
StringMapEntry<MoveOnly>::Create(Key, MoveOnly(42))
->Destroy();
}
TEST_F(StringMapTest, CtorArg) {
StringRef Key = "Test";
StringMapEntry<MoveOnly>::Create(Key, Immovable())
->Destroy();
}
TEST_F(StringMapTest, MoveConstruct) {
StringMap<int> A;
A["x"] = 42;
StringMap<int> B = std::move(A);
ASSERT_EQ(A.size(), 0u);
ASSERT_EQ(B.size(), 1u);
ASSERT_EQ(B["x"], 42);
ASSERT_EQ(B.count("y"), 0u);
}
TEST_F(StringMapTest, MoveAssignment) {
StringMap<int> A;
A["x"] = 42;
StringMap<int> B;
B["y"] = 117;
A = std::move(B);
ASSERT_EQ(A.size(), 1u);
ASSERT_EQ(B.size(), 0u);
ASSERT_EQ(A["y"], 117);
ASSERT_EQ(B.count("x"), 0u);
}
struct Countable {
int &InstanceCount;
int Number;
Countable(int Number, int &InstanceCount)
: InstanceCount(InstanceCount), Number(Number) {
++InstanceCount;
}
Countable(Countable &&C) : InstanceCount(C.InstanceCount), Number(C.Number) {
++InstanceCount;
C.Number = -1;
}
Countable(const Countable &C)
: InstanceCount(C.InstanceCount), Number(C.Number) {
++InstanceCount;
}
Countable &operator=(Countable C) {
Number = C.Number;
return *this;
}
~Countable() { --InstanceCount; }
};
TEST_F(StringMapTest, MoveDtor) {
int InstanceCount = 0;
StringMap<Countable> A;
A.insert(std::make_pair("x", Countable(42, InstanceCount)));
ASSERT_EQ(InstanceCount, 1);
auto I = A.find("x");
ASSERT_NE(I, A.end());
ASSERT_EQ(I->second.Number, 42);
StringMap<Countable> B;
B = std::move(A);
ASSERT_EQ(InstanceCount, 1);
ASSERT_TRUE(A.empty());
I = B.find("x");
ASSERT_NE(I, B.end());
ASSERT_EQ(I->second.Number, 42);
B = StringMap<Countable>();
ASSERT_EQ(InstanceCount, 0);
ASSERT_TRUE(B.empty());
}
namespace {
// Simple class that counts how many moves and copy happens when growing a map
struct CountCtorCopyAndMove {
static unsigned Ctor;
static unsigned Move;
static unsigned Copy;
int Data = 0;
CountCtorCopyAndMove(int Data) : Data(Data) { Ctor++; }
CountCtorCopyAndMove() { Ctor++; }
CountCtorCopyAndMove(const CountCtorCopyAndMove &) { Copy++; }
CountCtorCopyAndMove &operator=(const CountCtorCopyAndMove &) {
Copy++;
return *this;
}
CountCtorCopyAndMove(CountCtorCopyAndMove &&) { Move++; }
CountCtorCopyAndMove &operator=(const CountCtorCopyAndMove &&) {
Move++;
return *this;
}
};
unsigned CountCtorCopyAndMove::Copy = 0;
unsigned CountCtorCopyAndMove::Move = 0;
unsigned CountCtorCopyAndMove::Ctor = 0;
} // anonymous namespace
// Make sure creating the map with an initial size of N actually gives us enough
// buckets to insert N items without increasing allocation size.
TEST(StringMapCustomTest, InitialSizeTest) {
// 1 is an "edge value", 32 is an arbitrary power of two, and 67 is an
// arbitrary prime, picked without any good reason.
for (auto Size : {1, 32, 67}) {
StringMap<CountCtorCopyAndMove> Map(Size);
auto NumBuckets = Map.getNumBuckets();
CountCtorCopyAndMove::Move = 0;
CountCtorCopyAndMove::Copy = 0;
for (int i = 0; i < Size; ++i)
Map.insert(std::pair<std::string, CountCtorCopyAndMove>(
std::piecewise_construct, std::forward_as_tuple(Twine(i).str()),
std::forward_as_tuple(i)));
// After the initial move, the map will move the Elts in the Entry.
EXPECT_EQ((unsigned)Size * 2, CountCtorCopyAndMove::Move);
// We copy once the pair from the Elts vector
EXPECT_EQ(0u, CountCtorCopyAndMove::Copy);
// Check that the map didn't grow
EXPECT_EQ(Map.getNumBuckets(), NumBuckets);
}
}
TEST(StringMapCustomTest, BracketOperatorCtor) {
StringMap<CountCtorCopyAndMove> Map;
CountCtorCopyAndMove::Ctor = 0;
Map["abcd"];
EXPECT_EQ(1u, CountCtorCopyAndMove::Ctor);
// Test that operator[] does not create a value when it is already in the map
CountCtorCopyAndMove::Ctor = 0;
Map["abcd"];
EXPECT_EQ(0u, CountCtorCopyAndMove::Ctor);
}
namespace {
struct NonMoveableNonCopyableType {
int Data = 0;
NonMoveableNonCopyableType() = default;
NonMoveableNonCopyableType(int Data) : Data(Data) {}
NonMoveableNonCopyableType(const NonMoveableNonCopyableType &) = delete;
NonMoveableNonCopyableType(NonMoveableNonCopyableType &&) = delete;
};
}
// Test that we can "emplace" an element in the map without involving map/move
TEST(StringMapCustomTest, EmplaceTest) {
StringMap<NonMoveableNonCopyableType> Map;
Map.try_emplace("abcd", 42);
EXPECT_EQ(1u, Map.count("abcd"));
EXPECT_EQ(42, Map["abcd"].Data);
}
// Test that StringMapEntryBase can handle size_t wide sizes.
TEST(StringMapCustomTest, StringMapEntryBaseSize) {
size_t LargeValue;
// Test that the entry can represent max-unsigned.
if (sizeof(size_t) <= sizeof(unsigned))
LargeValue = std::numeric_limits<unsigned>::max();
else
LargeValue = std::numeric_limits<unsigned>::max() + 1ULL;
StringMapEntryBase LargeBase(LargeValue);
EXPECT_EQ(LargeValue, LargeBase.getKeyLength());
// Test that the entry can hold at least max size_t.
LargeValue = std::numeric_limits<size_t>::max();
StringMapEntryBase LargerBase(LargeValue);
LargeValue = std::numeric_limits<size_t>::max();
EXPECT_EQ(LargeValue, LargerBase.getKeyLength());
}
// Test that StringMapEntry can handle size_t wide sizes.
TEST(StringMapCustomTest, StringMapEntrySize) {
size_t LargeValue;
// Test that the entry can represent max-unsigned.
if (sizeof(size_t) <= sizeof(unsigned))
LargeValue = std::numeric_limits<unsigned>::max();
else
LargeValue = std::numeric_limits<unsigned>::max() + 1ULL;
StringMapEntry<int> LargeEntry(LargeValue);
StringRef Key = LargeEntry.getKey();
EXPECT_EQ(LargeValue, Key.size());
// Test that the entry can hold at least max size_t.
LargeValue = std::numeric_limits<size_t>::max();
StringMapEntry<int> LargerEntry(LargeValue);
Key = LargerEntry.getKey();
EXPECT_EQ(LargeValue, Key.size());
}
} // end anonymous namespace