1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/IR/Constant.h
Rafael Espindola 47008fdea7 Drop prelink support.
The way prelink used to work was

* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.

There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
  implementation is pretty broken. It talks about relocations that are
  "resolved by the static linker". If they are resolved, there are none
  left for the prelinker. What one needs to track is if an expression
  will require only dynamic relocations that point to the same DSO.

At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)

This patch removes support for it. That is, it stops printing the
".local" sections.

llvm-svn: 253280
2015-11-17 00:51:23 +00:00

167 lines
6.6 KiB
C++

//===-- llvm/Constant.h - Constant class definition -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Constant class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANT_H
#define LLVM_IR_CONSTANT_H
#include "llvm/IR/User.h"
namespace llvm {
class APInt;
template<typename T> class SmallVectorImpl;
/// This is an important base class in LLVM. It provides the common facilities
/// of all constant values in an LLVM program. A constant is a value that is
/// immutable at runtime. Functions are constants because their address is
/// immutable. Same with global variables.
///
/// All constants share the capabilities provided in this class. All constants
/// can have a null value. They can have an operand list. Constants can be
/// simple (integer and floating point values), complex (arrays and structures),
/// or expression based (computations yielding a constant value composed of
/// only certain operators and other constant values).
///
/// Note that Constants are immutable (once created they never change)
/// and are fully shared by structural equivalence. This means that two
/// structurally equivalent constants will always have the same address.
/// Constants are created on demand as needed and never deleted: thus clients
/// don't have to worry about the lifetime of the objects.
/// @brief LLVM Constant Representation
class Constant : public User {
void operator=(const Constant &) = delete;
Constant(const Constant &) = delete;
void anchor() override;
protected:
Constant(Type *ty, ValueTy vty, Use *Ops, unsigned NumOps)
: User(ty, vty, Ops, NumOps) {}
public:
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
bool isNullValue() const;
/// \brief Returns true if the value is one.
bool isOneValue() const;
/// isAllOnesValue - Return true if this is the value that would be returned by
/// getAllOnesValue.
bool isAllOnesValue() const;
/// isNegativeZeroValue - Return true if the value is what would be returned
/// by getZeroValueForNegation.
bool isNegativeZeroValue() const;
/// Return true if the value is negative zero or null value.
bool isZeroValue() const;
/// \brief Return true if the value is not the smallest signed value.
bool isNotMinSignedValue() const;
/// \brief Return true if the value is the smallest signed value.
bool isMinSignedValue() const;
/// canTrap - Return true if evaluation of this constant could trap. This is
/// true for things like constant expressions that could divide by zero.
bool canTrap() const;
/// isThreadDependent - Return true if the value can vary between threads.
bool isThreadDependent() const;
/// Return true if the value is dependent on a dllimport variable.
bool isDLLImportDependent() const;
/// isConstantUsed - Return true if the constant has users other than constant
/// exprs and other dangling things.
bool isConstantUsed() const;
/// This method classifies the entry according to whether or not it may
/// generate a relocation entry. This must be conservative, so if it might
/// codegen to a relocatable entry, it should say so.
///
/// FIXME: This really should not be in IR.
bool needsRelocation() const;
/// getAggregateElement - For aggregates (struct/array/vector) return the
/// constant that corresponds to the specified element if possible, or null if
/// not. This can return null if the element index is a ConstantExpr, or if
/// 'this' is a constant expr.
Constant *getAggregateElement(unsigned Elt) const;
Constant *getAggregateElement(Constant *Elt) const;
/// getSplatValue - If this is a splat vector constant, meaning that all of
/// the elements have the same value, return that value. Otherwise return 0.
Constant *getSplatValue() const;
/// If C is a constant integer then return its value, otherwise C must be a
/// vector of constant integers, all equal, and the common value is returned.
const APInt &getUniqueInteger() const;
/// Called if some element of this constant is no longer valid.
/// At this point only other constants may be on the use_list for this
/// constant. Any constants on our Use list must also be destroy'd. The
/// implementation must be sure to remove the constant from the list of
/// available cached constants. Implementations should implement
/// destroyConstantImpl to remove constants from any pools/maps they are
/// contained it.
void destroyConstant();
//// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *V) {
return V->getValueID() >= ConstantFirstVal &&
V->getValueID() <= ConstantLastVal;
}
/// This method is a special form of User::replaceUsesOfWith
/// (which does not work on constants) that does work
/// on constants. Basically this method goes through the trouble of building
/// a new constant that is equivalent to the current one, with all uses of
/// From replaced with uses of To. After this construction is completed, all
/// of the users of 'this' are replaced to use the new constant, and then
/// 'this' is deleted. In general, you should not call this method, instead,
/// use Value::replaceAllUsesWith, which automatically dispatches to this
/// method as needed.
///
void handleOperandChange(Value *, Value *, Use *);
static Constant *getNullValue(Type* Ty);
/// @returns the value for an integer or vector of integer constant of the
/// given type that has all its bits set to true.
/// @brief Get the all ones value
static Constant *getAllOnesValue(Type* Ty);
/// getIntegerValue - Return the value for an integer or pointer constant,
/// or a vector thereof, with the given scalar value.
static Constant *getIntegerValue(Type *Ty, const APInt &V);
/// removeDeadConstantUsers - If there are any dead constant users dangling
/// off of this constant, remove them. This method is useful for clients
/// that want to check to see if a global is unused, but don't want to deal
/// with potentially dead constants hanging off of the globals.
void removeDeadConstantUsers() const;
Constant *stripPointerCasts() {
return cast<Constant>(Value::stripPointerCasts());
}
const Constant *stripPointerCasts() const {
return const_cast<Constant*>(this)->stripPointerCasts();
}
};
} // End llvm namespace
#endif