mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
a1da49a55c
llvm-svn: 10131
1049 lines
36 KiB
C++
1049 lines
36 KiB
C++
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Constant* classes...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/ConstantHandling.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Module.h"
|
|
#include "Support/StringExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
ConstantBool *ConstantBool::True = new ConstantBool(true);
|
|
ConstantBool *ConstantBool::False = new ConstantBool(false);
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Specialize setName to take care of symbol table majik
|
|
void Constant::setName(const std::string &Name, SymbolTable *ST) {
|
|
assert(ST && "Type::setName - Must provide symbol table argument!");
|
|
|
|
if (Name.size()) ST->insert(Name, this);
|
|
}
|
|
|
|
void Constant::destroyConstantImpl() {
|
|
// When a Constant is destroyed, there may be lingering
|
|
// references to the constant by other constants in the constant pool. These
|
|
// constants are implicitly dependent on the module that is being deleted,
|
|
// but they don't know that. Because we only find out when the CPV is
|
|
// deleted, we must now notify all of our users (that should only be
|
|
// Constants) that they are, in fact, invalid now and should be deleted.
|
|
//
|
|
while (!use_empty()) {
|
|
Value *V = use_back();
|
|
#ifndef NDEBUG // Only in -g mode...
|
|
if (!isa<Constant>(V))
|
|
std::cerr << "While deleting: " << *this
|
|
<< "\n\nUse still stuck around after Def is destroyed: "
|
|
<< *V << "\n\n";
|
|
#endif
|
|
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
|
|
Constant *CPV = cast<Constant>(V);
|
|
CPV->destroyConstant();
|
|
|
|
// The constant should remove itself from our use list...
|
|
assert((use_empty() || use_back() != V) && "Constant not removed!");
|
|
}
|
|
|
|
// Value has no outstanding references it is safe to delete it now...
|
|
delete this;
|
|
}
|
|
|
|
// Static constructor to create a '0' constant of arbitrary type...
|
|
Constant *Constant::getNullValue(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID: {
|
|
static Constant *NullBool = ConstantBool::get(false);
|
|
return NullBool;
|
|
}
|
|
case Type::SByteTyID: {
|
|
static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
|
|
return NullSByte;
|
|
}
|
|
case Type::UByteTyID: {
|
|
static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
|
|
return NullUByte;
|
|
}
|
|
case Type::ShortTyID: {
|
|
static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
|
|
return NullShort;
|
|
}
|
|
case Type::UShortTyID: {
|
|
static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
|
|
return NullUShort;
|
|
}
|
|
case Type::IntTyID: {
|
|
static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
|
|
return NullInt;
|
|
}
|
|
case Type::UIntTyID: {
|
|
static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
|
|
return NullUInt;
|
|
}
|
|
case Type::LongTyID: {
|
|
static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
|
|
return NullLong;
|
|
}
|
|
case Type::ULongTyID: {
|
|
static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
|
|
return NullULong;
|
|
}
|
|
|
|
case Type::FloatTyID: {
|
|
static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
|
|
return NullFloat;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
|
|
return NullDouble;
|
|
}
|
|
|
|
case Type::PointerTyID:
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
case Type::StructTyID: {
|
|
const StructType *ST = cast<StructType>(Ty);
|
|
const StructType::ElementTypes &ETs = ST->getElementTypes();
|
|
std::vector<Constant*> Elements;
|
|
Elements.resize(ETs.size());
|
|
for (unsigned i = 0, e = ETs.size(); i != e; ++i)
|
|
Elements[i] = Constant::getNullValue(ETs[i]);
|
|
return ConstantStruct::get(ST, Elements);
|
|
}
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *AT = cast<ArrayType>(Ty);
|
|
Constant *El = Constant::getNullValue(AT->getElementType());
|
|
unsigned NumElements = AT->getNumElements();
|
|
return ConstantArray::get(AT, std::vector<Constant*>(NumElements, El));
|
|
}
|
|
default:
|
|
// Function, Type, Label, or Opaque type?
|
|
assert(0 && "Cannot create a null constant of that type!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Static constructor to create the maximum constant of an integral type...
|
|
ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID: return ConstantBool::True;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
case Type::IntTyID:
|
|
case Type::LongTyID: {
|
|
// Calculate 011111111111111...
|
|
unsigned TypeBits = Ty->getPrimitiveSize()*8;
|
|
int64_t Val = INT64_MAX; // All ones
|
|
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
|
|
return ConstantSInt::get(Ty, Val);
|
|
}
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
case Type::UIntTyID:
|
|
case Type::ULongTyID: return getAllOnesValue(Ty);
|
|
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
// Static constructor to create the minimum constant for an integral type...
|
|
ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID: return ConstantBool::False;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
case Type::IntTyID:
|
|
case Type::LongTyID: {
|
|
// Calculate 1111111111000000000000
|
|
unsigned TypeBits = Ty->getPrimitiveSize()*8;
|
|
int64_t Val = -1; // All ones
|
|
Val <<= TypeBits-1; // Shift over to the right spot
|
|
return ConstantSInt::get(Ty, Val);
|
|
}
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
case Type::UIntTyID:
|
|
case Type::ULongTyID: return ConstantUInt::get(Ty, 0);
|
|
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
// Static constructor to create an integral constant with all bits set
|
|
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID: return ConstantBool::True;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
case Type::IntTyID:
|
|
case Type::LongTyID: return ConstantSInt::get(Ty, -1);
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
case Type::UIntTyID:
|
|
case Type::ULongTyID: {
|
|
// Calculate ~0 of the right type...
|
|
unsigned TypeBits = Ty->getPrimitiveSize()*8;
|
|
uint64_t Val = ~0ULL; // All ones
|
|
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
|
|
return ConstantUInt::get(Ty, Val);
|
|
}
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
bool ConstantUInt::isAllOnesValue() const {
|
|
unsigned TypeBits = getType()->getPrimitiveSize()*8;
|
|
uint64_t Val = ~0ULL; // All ones
|
|
Val >>= 64-TypeBits; // Shift out inappropriate bits
|
|
return getValue() == Val;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantXXX Classes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Normal Constructors
|
|
|
|
ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy) {
|
|
Val = V;
|
|
}
|
|
|
|
ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty) {
|
|
Val.Unsigned = V;
|
|
}
|
|
|
|
ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) {
|
|
assert(Ty->isInteger() && Ty->isSigned() &&
|
|
"Illegal type for unsigned integer constant!");
|
|
assert(isValueValidForType(Ty, V) && "Value too large for type!");
|
|
}
|
|
|
|
ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) {
|
|
assert(Ty->isInteger() && Ty->isUnsigned() &&
|
|
"Illegal type for unsigned integer constant!");
|
|
assert(isValueValidForType(Ty, V) && "Value too large for type!");
|
|
}
|
|
|
|
ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) {
|
|
assert(isValueValidForType(Ty, V) && "Value too large for type!");
|
|
Val = V;
|
|
}
|
|
|
|
ConstantArray::ConstantArray(const ArrayType *T,
|
|
const std::vector<Constant*> &V) : Constant(T) {
|
|
Operands.reserve(V.size());
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i) {
|
|
assert(V[i]->getType() == T->getElementType() ||
|
|
(T->isAbstract() &&
|
|
V[i]->getType()->getPrimitiveID() ==
|
|
T->getElementType()->getPrimitiveID()));
|
|
Operands.push_back(Use(V[i], this));
|
|
}
|
|
}
|
|
|
|
ConstantStruct::ConstantStruct(const StructType *T,
|
|
const std::vector<Constant*> &V) : Constant(T) {
|
|
const StructType::ElementTypes &ETypes = T->getElementTypes();
|
|
assert(V.size() == ETypes.size() &&
|
|
"Invalid initializer vector for constant structure");
|
|
Operands.reserve(V.size());
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i) {
|
|
assert((V[i]->getType() == ETypes[i] ||
|
|
((ETypes[i]->isAbstract() || V[i]->getType()->isAbstract()) &&
|
|
ETypes[i]->getPrimitiveID()==V[i]->getType()->getPrimitiveID())) &&
|
|
"Initializer for struct element doesn't match struct element type!");
|
|
Operands.push_back(Use(V[i], this));
|
|
}
|
|
}
|
|
|
|
ConstantPointerRef::ConstantPointerRef(GlobalValue *GV)
|
|
: Constant(GV->getType()) {
|
|
Operands.push_back(Use(GV, this));
|
|
}
|
|
|
|
ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
|
|
: Constant(Ty), iType(Opcode) {
|
|
Operands.push_back(Use(C, this));
|
|
}
|
|
|
|
static bool isSetCC(unsigned Opcode) {
|
|
return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
|
|
Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
|
|
Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
|
|
}
|
|
|
|
ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
|
|
: Constant(isSetCC(Opcode) ? Type::BoolTy : C1->getType()), iType(Opcode) {
|
|
Operands.push_back(Use(C1, this));
|
|
Operands.push_back(Use(C2, this));
|
|
}
|
|
|
|
ConstantExpr::ConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
|
|
const Type *DestTy)
|
|
: Constant(DestTy), iType(Instruction::GetElementPtr) {
|
|
Operands.reserve(1+IdxList.size());
|
|
Operands.push_back(Use(C, this));
|
|
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
|
|
Operands.push_back(Use(IdxList[i], this));
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// classof implementations
|
|
|
|
bool ConstantIntegral::classof(const Constant *CPV) {
|
|
return CPV->getType()->isIntegral() && !isa<ConstantExpr>(CPV);
|
|
}
|
|
|
|
bool ConstantInt::classof(const Constant *CPV) {
|
|
return CPV->getType()->isInteger() && !isa<ConstantExpr>(CPV);
|
|
}
|
|
bool ConstantSInt::classof(const Constant *CPV) {
|
|
return CPV->getType()->isSigned() && !isa<ConstantExpr>(CPV);
|
|
}
|
|
bool ConstantUInt::classof(const Constant *CPV) {
|
|
return CPV->getType()->isUnsigned() && !isa<ConstantExpr>(CPV);
|
|
}
|
|
bool ConstantFP::classof(const Constant *CPV) {
|
|
const Type *Ty = CPV->getType();
|
|
return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) &&
|
|
!isa<ConstantExpr>(CPV));
|
|
}
|
|
bool ConstantArray::classof(const Constant *CPV) {
|
|
return isa<ArrayType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
|
|
}
|
|
bool ConstantStruct::classof(const Constant *CPV) {
|
|
return isa<StructType>(CPV->getType()) && !isa<ConstantExpr>(CPV);
|
|
}
|
|
|
|
bool ConstantPointerNull::classof(const Constant *CPV) {
|
|
return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
|
|
CPV->getNumOperands() == 0;
|
|
}
|
|
|
|
bool ConstantPointerRef::classof(const Constant *CPV) {
|
|
return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
|
|
CPV->getNumOperands() == 1;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// isValueValidForType implementations
|
|
|
|
bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
default:
|
|
return false; // These can't be represented as integers!!!
|
|
|
|
// Signed types...
|
|
case Type::SByteTyID:
|
|
return (Val <= INT8_MAX && Val >= INT8_MIN);
|
|
case Type::ShortTyID:
|
|
return (Val <= INT16_MAX && Val >= INT16_MIN);
|
|
case Type::IntTyID:
|
|
return (Val <= INT32_MAX && Val >= INT32_MIN);
|
|
case Type::LongTyID:
|
|
return true; // This is the largest type...
|
|
}
|
|
assert(0 && "WTF?");
|
|
return false;
|
|
}
|
|
|
|
bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
default:
|
|
return false; // These can't be represented as integers!!!
|
|
|
|
// Unsigned types...
|
|
case Type::UByteTyID:
|
|
return (Val <= UINT8_MAX);
|
|
case Type::UShortTyID:
|
|
return (Val <= UINT16_MAX);
|
|
case Type::UIntTyID:
|
|
return (Val <= UINT32_MAX);
|
|
case Type::ULongTyID:
|
|
return true; // This is the largest type...
|
|
}
|
|
assert(0 && "WTF?");
|
|
return false;
|
|
}
|
|
|
|
bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
default:
|
|
return false; // These can't be represented as floating point!
|
|
|
|
// TODO: Figure out how to test if a double can be cast to a float!
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
return true; // This is the largest type...
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// replaceUsesOfWithOnConstant implementations
|
|
|
|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
bool DisableChecking) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
|
|
std::vector<Constant*> Values;
|
|
Values.reserve(getValues().size()); // Build replacement array...
|
|
for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
|
|
Constant *Val = cast<Constant>(getValues()[i]);
|
|
if (Val == From) Val = cast<Constant>(To);
|
|
Values.push_back(Val);
|
|
}
|
|
|
|
ConstantArray *Replacement = ConstantArray::get(getType(), Values);
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement...
|
|
if (DisableChecking)
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
else
|
|
replaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
bool DisableChecking) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
|
|
std::vector<Constant*> Values;
|
|
Values.reserve(getValues().size());
|
|
for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
|
|
Constant *Val = cast<Constant>(getValues()[i]);
|
|
if (Val == From) Val = cast<Constant>(To);
|
|
Values.push_back(Val);
|
|
}
|
|
|
|
ConstantStruct *Replacement = ConstantStruct::get(getType(), Values);
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement...
|
|
if (DisableChecking)
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
else
|
|
replaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantPointerRef::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
bool DisableChecking) {
|
|
if (isa<GlobalValue>(To)) {
|
|
assert(From == getOperand(0) && "Doesn't contain from!");
|
|
ConstantPointerRef *Replacement =
|
|
ConstantPointerRef::get(cast<GlobalValue>(To));
|
|
|
|
// Everyone using this now uses the replacement...
|
|
if (DisableChecking)
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
else
|
|
replaceAllUsesWith(Replacement);
|
|
|
|
} else {
|
|
// Just replace ourselves with the To value specified.
|
|
if (DisableChecking)
|
|
uncheckedReplaceAllUsesWith(To);
|
|
else
|
|
replaceAllUsesWith(To);
|
|
}
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
|
bool DisableChecking) {
|
|
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
|
|
Constant *To = cast<Constant>(ToV);
|
|
|
|
Constant *Replacement = 0;
|
|
if (getOpcode() == Instruction::GetElementPtr) {
|
|
std::vector<Constant*> Indices;
|
|
Constant *Pointer = getOperand(0);
|
|
Indices.reserve(getNumOperands()-1);
|
|
if (Pointer == From) Pointer = To;
|
|
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
Constant *Val = getOperand(i);
|
|
if (Val == From) Val = To;
|
|
Indices.push_back(Val);
|
|
}
|
|
Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
|
|
} else if (getOpcode() == Instruction::Cast) {
|
|
assert(getOperand(0) == From && "Cast only has one use!");
|
|
Replacement = ConstantExpr::getCast(To, getType());
|
|
} else if (getOpcode() == Instruction::Shl ||
|
|
getOpcode() == Instruction::Shr) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::getShift(getOpcode(), C1, C2);
|
|
} else if (getNumOperands() == 2) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::get(getOpcode(), C1, C2);
|
|
} else {
|
|
assert(0 && "Unknown ConstantExpr type!");
|
|
return;
|
|
}
|
|
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement...
|
|
if (DisableChecking)
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
else
|
|
replaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Factory Function Implementation
|
|
|
|
// ConstantCreator - A class that is used to create constants by
|
|
// ValueMap*. This class should be partially specialized if there is
|
|
// something strange that needs to be done to interface to the ctor for the
|
|
// constant.
|
|
//
|
|
namespace llvm {
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
struct ConstantCreator {
|
|
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
|
|
return new ConstantClass(Ty, V);
|
|
}
|
|
};
|
|
|
|
template<class ConstantClass, class TypeClass>
|
|
struct ConvertConstantType {
|
|
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
|
|
assert(0 && "This type cannot be converted!\n");
|
|
abort();
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
template<class ValType, class TypeClass, class ConstantClass>
|
|
class ValueMap : public AbstractTypeUser {
|
|
typedef std::pair<const TypeClass*, ValType> MapKey;
|
|
typedef std::map<MapKey, ConstantClass *> MapTy;
|
|
typedef typename MapTy::iterator MapIterator;
|
|
MapTy Map;
|
|
|
|
typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
|
|
AbstractTypeMapTy AbstractTypeMap;
|
|
public:
|
|
// getOrCreate - Return the specified constant from the map, creating it if
|
|
// necessary.
|
|
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
|
|
MapKey Lookup(Ty, V);
|
|
MapIterator I = Map.lower_bound(Lookup);
|
|
if (I != Map.end() && I->first == Lookup)
|
|
return I->second; // Is it in the map?
|
|
|
|
// If no preexisting value, create one now...
|
|
ConstantClass *Result =
|
|
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
|
|
|
|
|
/// FIXME: why does this assert fail when loading 176.gcc?
|
|
//assert(Result->getType() == Ty && "Type specified is not correct!");
|
|
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
|
|
|
// If the type of the constant is abstract, make sure that an entry exists
|
|
// for it in the AbstractTypeMap.
|
|
if (Ty->isAbstract()) {
|
|
typename AbstractTypeMapTy::iterator TI =
|
|
AbstractTypeMap.lower_bound(Ty);
|
|
|
|
if (TI == AbstractTypeMap.end() || TI->first != Ty) {
|
|
// Add ourselves to the ATU list of the type.
|
|
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
|
|
|
|
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void remove(ConstantClass *CP) {
|
|
// FIXME: This should not use a linear scan. If this gets to be a
|
|
// performance problem, someone should look at this.
|
|
MapIterator I = Map.begin();
|
|
for (MapIterator E = Map.end(); I != E && I->second != CP; ++I)
|
|
/* empty */;
|
|
|
|
assert(I != Map.end() && "Constant not found in constant table!");
|
|
|
|
// Now that we found the entry, make sure this isn't the entry that
|
|
// the AbstractTypeMap points to.
|
|
const TypeClass *Ty = I->first.first;
|
|
if (Ty->isAbstract()) {
|
|
assert(AbstractTypeMap.count(Ty) &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
|
|
if (ATMEntryIt == I) {
|
|
// Yes, we are removing the representative entry for this type.
|
|
// See if there are any other entries of the same type.
|
|
MapIterator TmpIt = ATMEntryIt;
|
|
|
|
// First check the entry before this one...
|
|
if (TmpIt != Map.begin()) {
|
|
--TmpIt;
|
|
if (TmpIt->first.first != Ty) // Not the same type, move back...
|
|
++TmpIt;
|
|
}
|
|
|
|
// If we didn't find the same type, try to move forward...
|
|
if (TmpIt == ATMEntryIt) {
|
|
++TmpIt;
|
|
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
|
|
--TmpIt; // No entry afterwards with the same type
|
|
}
|
|
|
|
// If there is another entry in the map of the same abstract type,
|
|
// update the AbstractTypeMap entry now.
|
|
if (TmpIt != ATMEntryIt) {
|
|
ATMEntryIt = TmpIt;
|
|
} else {
|
|
// Otherwise, we are removing the last instance of this type
|
|
// from the table. Remove from the ATM, and from user list.
|
|
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
|
|
AbstractTypeMap.erase(Ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
Map.erase(I);
|
|
}
|
|
|
|
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
|
typename AbstractTypeMapTy::iterator I =
|
|
AbstractTypeMap.find(cast<TypeClass>(OldTy));
|
|
|
|
assert(I != AbstractTypeMap.end() &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
// Convert a constant at a time until the last one is gone. The last one
|
|
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
|
|
// eliminated eventually.
|
|
do {
|
|
ConvertConstantType<ConstantClass,
|
|
TypeClass>::convert(I->second->second,
|
|
cast<TypeClass>(NewTy));
|
|
|
|
I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
|
|
} while (I != AbstractTypeMap.end());
|
|
}
|
|
|
|
// If the type became concrete without being refined to any other existing
|
|
// type, we just remove ourselves from the ATU list.
|
|
void typeBecameConcrete(const DerivedType *AbsTy) {
|
|
AbsTy->removeAbstractTypeUser(this);
|
|
}
|
|
|
|
void dump() const {
|
|
std::cerr << "Constant.cpp: ValueMap\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
|
|
//---- ConstantUInt::get() and ConstantSInt::get() implementations...
|
|
//
|
|
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
|
|
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
|
|
|
|
ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
|
|
return SIntConstants.getOrCreate(Ty, V);
|
|
}
|
|
|
|
ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
|
|
return UIntConstants.getOrCreate(Ty, V);
|
|
}
|
|
|
|
ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
|
|
assert(V <= 127 && "Can only be used with very small positive constants!");
|
|
if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
|
|
return ConstantUInt::get(Ty, V);
|
|
}
|
|
|
|
//---- ConstantFP::get() implementation...
|
|
//
|
|
static ValueMap<double, Type, ConstantFP> FPConstants;
|
|
|
|
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
|
|
return FPConstants.getOrCreate(Ty, V);
|
|
}
|
|
|
|
//---- ConstantArray::get() implementation...
|
|
//
|
|
namespace llvm {
|
|
template<>
|
|
struct ConvertConstantType<ConstantArray, ArrayType> {
|
|
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
Constant *New = ConstantArray::get(NewTy, C);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ValueMap<std::vector<Constant*>, ArrayType,
|
|
ConstantArray> ArrayConstants;
|
|
|
|
ConstantArray *ConstantArray::get(const ArrayType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
return ArrayConstants.getOrCreate(Ty, V);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantArray::destroyConstant() {
|
|
ArrayConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
// ConstantArray::get(const string&) - Return an array that is initialized to
|
|
// contain the specified string. A null terminator is added to the specified
|
|
// string so that it may be used in a natural way...
|
|
//
|
|
ConstantArray *ConstantArray::get(const std::string &Str) {
|
|
std::vector<Constant*> ElementVals;
|
|
|
|
for (unsigned i = 0; i < Str.length(); ++i)
|
|
ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));
|
|
|
|
// Add a null terminator to the string...
|
|
ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));
|
|
|
|
ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
|
|
return ConstantArray::get(ATy, ElementVals);
|
|
}
|
|
|
|
// getAsString - If the sub-element type of this array is either sbyte or ubyte,
|
|
// then this method converts the array to an std::string and returns it.
|
|
// Otherwise, it asserts out.
|
|
//
|
|
std::string ConstantArray::getAsString() const {
|
|
assert((getType()->getElementType() == Type::UByteTy ||
|
|
getType()->getElementType() == Type::SByteTy) && "Not a string!");
|
|
|
|
std::string Result;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
|
|
return Result;
|
|
}
|
|
|
|
|
|
//---- ConstantStruct::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct ConvertConstantType<ConstantStruct, StructType> {
|
|
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
Constant *New = ConstantStruct::get(NewTy, C);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ValueMap<std::vector<Constant*>, StructType,
|
|
ConstantStruct> StructConstants;
|
|
|
|
ConstantStruct *ConstantStruct::get(const StructType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
return StructConstants.getOrCreate(Ty, V);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantStruct::destroyConstant() {
|
|
StructConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
//---- ConstantPointerNull::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
// ConstantPointerNull does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
|
|
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
|
|
return new ConstantPointerNull(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<ConstantPointerNull, PointerType> {
|
|
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
Constant *New = ConstantPointerNull::get(NewTy);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
|
|
|
|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
|
|
return NullPtrConstants.getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantPointerNull::destroyConstant() {
|
|
NullPtrConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
|
|
//---- ConstantPointerRef::get() implementation...
|
|
//
|
|
ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) {
|
|
assert(GV->getParent() && "Global Value must be attached to a module!");
|
|
|
|
// The Module handles the pointer reference sharing...
|
|
return GV->getParent()->getConstantPointerRef(GV);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantPointerRef::destroyConstant() {
|
|
getValue()->getParent()->destroyConstantPointerRef(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
|
|
//---- ConstantExpr::get() implementations...
|
|
//
|
|
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
|
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
|
|
if (V.first == Instruction::Cast)
|
|
return new ConstantExpr(Instruction::Cast, V.second[0], Ty);
|
|
if ((V.first >= Instruction::BinaryOpsBegin &&
|
|
V.first < Instruction::BinaryOpsEnd) ||
|
|
V.first == Instruction::Shl || V.first == Instruction::Shr)
|
|
return new ConstantExpr(V.first, V.second[0], V.second[1]);
|
|
|
|
assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
|
|
|
|
std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
|
|
return new ConstantExpr(V.second[0], IdxList, Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<ConstantExpr, Type> {
|
|
static void convert(ConstantExpr *OldC, const Type *NewTy) {
|
|
Constant *New;
|
|
switch (OldC->getOpcode()) {
|
|
case Instruction::Cast:
|
|
New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
|
|
OldC->getOperand(0), OldC->getOperand(1));
|
|
break;
|
|
default:
|
|
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
|
|
OldC->getOpcode() < Instruction::BinaryOpsEnd);
|
|
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
|
|
OldC->getOperand(1));
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 1, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), C);
|
|
break;
|
|
}
|
|
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
|
|
static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
|
|
|
|
Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
|
|
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
|
|
|
|
if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C);
|
|
ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
|
|
return ExprConstants.getOrCreate(Ty, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
|
|
Constant *C1, Constant *C2) {
|
|
// Check the operands for consistency first
|
|
assert((Opcode >= Instruction::BinaryOpsBegin &&
|
|
Opcode < Instruction::BinaryOpsEnd) &&
|
|
"Invalid opcode in binary constant expression");
|
|
assert(C1->getType() == C2->getType() &&
|
|
"Operand types in binary constant expression should match");
|
|
|
|
if (ReqTy == C1->getType())
|
|
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
|
|
return FC; // Fold a few common cases...
|
|
|
|
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
|
|
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
|
|
return ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
/// getShift - Return a shift left or shift right constant expr
|
|
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
|
|
Constant *C1, Constant *C2) {
|
|
// Check the operands for consistency first
|
|
assert((Opcode == Instruction::Shl ||
|
|
Opcode == Instruction::Shr) &&
|
|
"Invalid opcode in binary constant expression");
|
|
assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
|
|
"Invalid operand types for Shift constant expr!");
|
|
|
|
if (Constant *FC = ConstantFoldShiftInstruction(Opcode, C1, C2))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
|
|
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
|
|
return ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
|
|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
|
|
const std::vector<Constant*> &IdxList) {
|
|
if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
|
|
return FC; // Fold a few common cases...
|
|
assert(isa<PointerType>(C->getType()) &&
|
|
"Non-pointer type for constant GetElementPtr expression");
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C);
|
|
argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
|
|
const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec);
|
|
return ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtr(Constant *C,
|
|
const std::vector<Constant*> &IdxList){
|
|
// Get the result type of the getelementptr!
|
|
std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
|
|
|
|
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
|
|
true);
|
|
assert(Ty && "GEP indices invalid!");
|
|
|
|
if (C->isNullValue()) {
|
|
bool isNull = true;
|
|
for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
|
|
if (!IdxList[i]->isNullValue()) {
|
|
isNull = false;
|
|
break;
|
|
}
|
|
if (isNull) return ConstantPointerNull::get(PointerType::get(Ty));
|
|
}
|
|
|
|
return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
|
|
}
|
|
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantExpr::destroyConstant() {
|
|
ExprConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
const char *ConstantExpr::getOpcodeName() const {
|
|
return Instruction::getOpcodeName(getOpcode());
|
|
}
|
|
|
|
unsigned Constant::mutateReferences(Value *OldV, Value *NewV) {
|
|
// Uses of constant pointer refs are global values, not constants!
|
|
if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
|
|
GlobalValue *NewGV = cast<GlobalValue>(NewV);
|
|
GlobalValue *OldGV = CPR->getValue();
|
|
|
|
assert(OldGV == OldV && "Cannot mutate old value if I'm not using it!");
|
|
Operands[0] = NewGV;
|
|
OldGV->getParent()->mutateConstantPointerRef(OldGV, NewGV);
|
|
return 1;
|
|
} else {
|
|
Constant *NewC = cast<Constant>(NewV);
|
|
unsigned NumReplaced = 0;
|
|
for (unsigned i = 0, N = getNumOperands(); i != N; ++i)
|
|
if (Operands[i] == OldV) {
|
|
++NumReplaced;
|
|
Operands[i] = NewC;
|
|
}
|
|
return NumReplaced;
|
|
}
|
|
}
|
|
|