1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/CodeGen/StackProtector.cpp
Etienne Bergeron 3b57eca787 [stack-protection] Add support for MSVC buffer security check
Summary:
This patch is adding support for the MSVC buffer security check implementation

The buffer security check is turned on with the '/GS' compiler switch.
  * https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
  * To be added to clang here: http://reviews.llvm.org/D20347

Some overview of buffer security check feature and implementation:
  * https://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
  * http://www.ksyash.com/2011/01/buffer-overflow-protection-3/
  * http://blog.osom.info/2012/02/understanding-vs-c-compilers-buffer.html


For the following example:
```
int example(int offset, int index) {
  char buffer[10];
  memset(buffer, 0xCC, index);
  return buffer[index];
}
```

The MSVC compiler is adding these instructions to perform stack integrity check:
```
        push        ebp  
        mov         ebp,esp  
        sub         esp,50h  
  [1]   mov         eax,dword ptr [__security_cookie (01068024h)]  
  [2]   xor         eax,ebp  
  [3]   mov         dword ptr [ebp-4],eax  
        push        ebx  
        push        esi  
        push        edi  
        mov         eax,dword ptr [index]  
        push        eax  
        push        0CCh  
        lea         ecx,[buffer]  
        push        ecx  
        call        _memset (010610B9h)  
        add         esp,0Ch  
        mov         eax,dword ptr [index]  
        movsx       eax,byte ptr buffer[eax]  
        pop         edi  
        pop         esi  
        pop         ebx  
  [4]   mov         ecx,dword ptr [ebp-4]  
  [5]   xor         ecx,ebp  
  [6]   call        @__security_check_cookie@4 (01061276h)  
        mov         esp,ebp  
        pop         ebp  
        ret  
```

The instrumentation above is:
  * [1] is loading the global security canary,
  * [3] is storing the local computed ([2]) canary to the guard slot,
  * [4] is loading the guard slot and ([5]) re-compute the global canary,
  * [6] is validating the resulting canary with the '__security_check_cookie' and performs error handling.

Overview of the current stack-protection implementation:
  * lib/CodeGen/StackProtector.cpp
    * There is a default stack-protection implementation applied on intermediate representation.
    * The target can overload 'getIRStackGuard' method if it has a standard location for the stack protector cookie.
    * An intrinsic 'Intrinsic::stackprotector' is added to the prologue. It will be expanded by the instruction selection pass (DAG or Fast).
    * Basic Blocks are added to every instrumented function to receive the code for handling stack guard validation and errors handling.
    * Guard manipulation and comparison are added directly to the intermediate representation.

  * lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
  * lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
    * There is an implementation that adds instrumentation during instruction selection (for better handling of sibbling calls).
      * see long comment above 'class StackProtectorDescriptor' declaration.
    * The target needs to override 'getSDagStackGuard' to activate SDAG stack protection generation. (note: getIRStackGuard MUST be nullptr).
      * 'getSDagStackGuard' returns the appropriate stack guard (security cookie)
    * The code is generated by 'SelectionDAGBuilder.cpp' and 'SelectionDAGISel.cpp'.

  * include/llvm/Target/TargetLowering.h
    * Contains function to retrieve the default Guard 'Value'; should be overriden by each target to select which implementation is used and provide Guard 'Value'.

  * lib/Target/X86/X86ISelLowering.cpp
    * Contains the x86 specialisation; Guard 'Value' used by the SelectionDAG algorithm.

Function-based Instrumentation:
  * The MSVC doesn't inline the stack guard comparison in every function. Instead, a call to '__security_check_cookie' is added to the epilogue before every return instructions.
  * To support function-based instrumentation, this patch is
    * adding a function to get the function-based check (llvm 'Value', see include/llvm/Target/TargetLowering.h),
      * If provided, the stack protection instrumentation won't be inlined and a call to that function will be added to the prologue.
    * modifying (SelectionDAGISel.cpp) do avoid producing basic blocks used for inline instrumentation,
    * generating the function-based instrumentation during the ISEL pass (SelectionDAGBuilder.cpp),
    * if FastISEL (not SelectionDAG), using the fallback which rely on the same function-based implemented over intermediate representation (StackProtector.cpp).

Modifications
  * adding support for MSVC (lib/Target/X86/X86ISelLowering.cpp)
  * adding support function-based instrumentation (lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp, .h)

Results

  * IR generated instrumentation:
```
clang-cl /GS test.cc /Od /c -mllvm -print-isel-input
```

```
*** Final LLVM Code input to ISel ***

; Function Attrs: nounwind sspstrong
define i32 @"\01?example@@YAHHH@Z"(i32 %offset, i32 %index) #0 {
entry:
  %StackGuardSlot = alloca i8*                                                  <<<-- Allocated guard slot
  %0 = call i8* @llvm.stackguard()                                              <<<-- Loading Stack Guard value
  call void @llvm.stackprotector(i8* %0, i8** %StackGuardSlot)                  <<<-- Prologue intrinsic call (store to Guard slot)
  %index.addr = alloca i32, align 4
  %offset.addr = alloca i32, align 4
  %buffer = alloca [10 x i8], align 1
  store i32 %index, i32* %index.addr, align 4
  store i32 %offset, i32* %offset.addr, align 4
  %arraydecay = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 0
  %1 = load i32, i32* %index.addr, align 4
  call void @llvm.memset.p0i8.i32(i8* %arraydecay, i8 -52, i32 %1, i32 1, i1 false)
  %2 = load i32, i32* %index.addr, align 4
  %arrayidx = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 %2
  %3 = load i8, i8* %arrayidx, align 1
  %conv = sext i8 %3 to i32
  %4 = load volatile i8*, i8** %StackGuardSlot                                  <<<-- Loading Guard slot
  call void @__security_check_cookie(i8* %4)                                    <<<-- Epilogue function-based check
  ret i32 %conv
}
```

  * SelectionDAG generated instrumentation:

```
clang-cl /GS test.cc /O1 /c /FA
```

```
"?example@@YAHHH@Z":                    # @"\01?example@@YAHHH@Z"
# BB#0:                                 # %entry
        pushl   %esi
        subl    $16, %esp
        movl    ___security_cookie, %eax                                        <<<-- Loading Stack Guard value
        movl    28(%esp), %esi
        movl    %eax, 12(%esp)                                                  <<<-- Store to Guard slot
        leal    2(%esp), %eax
        pushl   %esi
        pushl   $204
        pushl   %eax
        calll   _memset
        addl    $12, %esp
        movsbl  2(%esp,%esi), %esi
        movl    12(%esp), %ecx                                                  <<<-- Loading Guard slot
        calll   @__security_check_cookie@4                                      <<<-- Epilogue function-based check
        movl    %esi, %eax
        addl    $16, %esp
        popl    %esi
        retl
```

Reviewers: kcc, pcc, eugenis, rnk

Subscribers: majnemer, llvm-commits, hans, thakis, rnk

Differential Revision: http://reviews.llvm.org/D20346

llvm-svn: 272053
2016-06-07 20:15:35 +00:00

471 lines
18 KiB
C++

//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass inserts stack protectors into functions which need them. A variable
// with a random value in it is stored onto the stack before the local variables
// are allocated. Upon exiting the block, the stored value is checked. If it's
// changed, then there was some sort of violation and the program aborts.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "stack-protector"
STATISTIC(NumFunProtected, "Number of functions protected");
STATISTIC(NumAddrTaken, "Number of local variables that have their address"
" taken.");
static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
cl::init(true), cl::Hidden);
char StackProtector::ID = 0;
INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
false, true)
FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
return new StackProtector(TM);
}
StackProtector::SSPLayoutKind
StackProtector::getSSPLayout(const AllocaInst *AI) const {
return AI ? Layout.lookup(AI) : SSPLK_None;
}
void StackProtector::adjustForColoring(const AllocaInst *From,
const AllocaInst *To) {
// When coloring replaces one alloca with another, transfer the SSPLayoutKind
// tag from the remapped to the target alloca. The remapped alloca should
// have a size smaller than or equal to the replacement alloca.
SSPLayoutMap::iterator I = Layout.find(From);
if (I != Layout.end()) {
SSPLayoutKind Kind = I->second;
Layout.erase(I);
// Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
// SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
// SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
I = Layout.find(To);
if (I == Layout.end())
Layout.insert(std::make_pair(To, Kind));
else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
I->second = Kind;
}
}
bool StackProtector::runOnFunction(Function &Fn) {
F = &Fn;
M = F->getParent();
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
HasPrologue = false;
HasIRCheck = false;
Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
if (Attr.isStringAttribute() &&
Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
return false; // Invalid integer string
if (!RequiresStackProtector())
return false;
// TODO(etienneb): Functions with funclets are not correctly supported now.
// Do nothing if this is funclet-based personality.
if (Fn.hasPersonalityFn()) {
EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
if (isFuncletEHPersonality(Personality))
return false;
}
++NumFunProtected;
return InsertStackProtectors();
}
/// \param [out] IsLarge is set to true if a protectable array is found and
/// it is "large" ( >= ssp-buffer-size). In the case of a structure with
/// multiple arrays, this gets set if any of them is large.
bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
bool Strong,
bool InStruct) const {
if (!Ty)
return false;
if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
if (!AT->getElementType()->isIntegerTy(8)) {
// If we're on a non-Darwin platform or we're inside of a structure, don't
// add stack protectors unless the array is a character array.
// However, in strong mode any array, regardless of type and size,
// triggers a protector.
if (!Strong && (InStruct || !Trip.isOSDarwin()))
return false;
}
// If an array has more than SSPBufferSize bytes of allocated space, then we
// emit stack protectors.
if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
IsLarge = true;
return true;
}
if (Strong)
// Require a protector for all arrays in strong mode
return true;
}
const StructType *ST = dyn_cast<StructType>(Ty);
if (!ST)
return false;
bool NeedsProtector = false;
for (StructType::element_iterator I = ST->element_begin(),
E = ST->element_end();
I != E; ++I)
if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
// If the element is a protectable array and is large (>= SSPBufferSize)
// then we are done. If the protectable array is not large, then
// keep looking in case a subsequent element is a large array.
if (IsLarge)
return true;
NeedsProtector = true;
}
return NeedsProtector;
}
bool StackProtector::HasAddressTaken(const Instruction *AI) {
for (const User *U : AI->users()) {
if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (AI == SI->getValueOperand())
return true;
} else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
if (AI == SI->getOperand(0))
return true;
} else if (isa<CallInst>(U)) {
return true;
} else if (isa<InvokeInst>(U)) {
return true;
} else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
if (HasAddressTaken(SI))
return true;
} else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
// Keep track of what PHI nodes we have already visited to ensure
// they are only visited once.
if (VisitedPHIs.insert(PN).second)
if (HasAddressTaken(PN))
return true;
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
if (HasAddressTaken(GEP))
return true;
} else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
if (HasAddressTaken(BI))
return true;
}
}
return false;
}
/// \brief Check whether or not this function needs a stack protector based
/// upon the stack protector level.
///
/// We use two heuristics: a standard (ssp) and strong (sspstrong).
/// The standard heuristic which will add a guard variable to functions that
/// call alloca with a either a variable size or a size >= SSPBufferSize,
/// functions with character buffers larger than SSPBufferSize, and functions
/// with aggregates containing character buffers larger than SSPBufferSize. The
/// strong heuristic will add a guard variables to functions that call alloca
/// regardless of size, functions with any buffer regardless of type and size,
/// functions with aggregates that contain any buffer regardless of type and
/// size, and functions that contain stack-based variables that have had their
/// address taken.
bool StackProtector::RequiresStackProtector() {
bool Strong = false;
bool NeedsProtector = false;
for (const BasicBlock &BB : *F)
for (const Instruction &I : BB)
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (CI->getCalledFunction() ==
Intrinsic::getDeclaration(F->getParent(),
Intrinsic::stackprotector))
HasPrologue = true;
if (F->hasFnAttribute(Attribute::SafeStack))
return false;
if (F->hasFnAttribute(Attribute::StackProtectReq)) {
NeedsProtector = true;
Strong = true; // Use the same heuristic as strong to determine SSPLayout
} else if (F->hasFnAttribute(Attribute::StackProtectStrong))
Strong = true;
else if (HasPrologue)
NeedsProtector = true;
else if (!F->hasFnAttribute(Attribute::StackProtect))
return false;
for (const BasicBlock &BB : *F) {
for (const Instruction &I : BB) {
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (AI->isArrayAllocation()) {
// SSP-Strong: Enable protectors for any call to alloca, regardless
// of size.
if (Strong)
return true;
if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
// A call to alloca with size >= SSPBufferSize requires
// stack protectors.
Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
NeedsProtector = true;
} else if (Strong) {
// Require protectors for all alloca calls in strong mode.
Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
NeedsProtector = true;
}
} else {
// A call to alloca with a variable size requires protectors.
Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
NeedsProtector = true;
}
continue;
}
bool IsLarge = false;
if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
: SSPLK_SmallArray));
NeedsProtector = true;
continue;
}
if (Strong && HasAddressTaken(AI)) {
++NumAddrTaken;
Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
NeedsProtector = true;
}
}
}
}
return NeedsProtector;
}
/// Create a stack guard loading and populate whether SelectionDAG SSP is
/// supported.
static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
IRBuilder<> &B,
bool *SupportsSelectionDAGSP = nullptr) {
if (Value *Guard = TLI->getIRStackGuard(B))
return B.CreateLoad(Guard, true, "StackGuard");
// Use SelectionDAG SSP handling, since there isn't an IR guard.
//
// This is more or less weird, since we optionally output whether we
// should perform a SelectionDAG SP here. The reason is that it's strictly
// defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
// mutating. There is no way to get this bit without mutating the IR, so
// getting this bit has to happen in this right time.
//
// We could have define a new function TLI::supportsSelectionDAGSP(), but that
// will put more burden on the backends' overriding work, especially when it
// actually conveys the same information getIRStackGuard() already gives.
if (SupportsSelectionDAGSP)
*SupportsSelectionDAGSP = true;
TLI->insertSSPDeclarations(*M);
return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
}
/// Insert code into the entry block that stores the stack guard
/// variable onto the stack:
///
/// entry:
/// StackGuardSlot = alloca i8*
/// StackGuard = <stack guard>
/// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
///
/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
/// node.
static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
const TargetLoweringBase *TLI, AllocaInst *&AI) {
bool SupportsSelectionDAGSP = false;
IRBuilder<> B(&F->getEntryBlock().front());
PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
{GuardSlot, AI});
return SupportsSelectionDAGSP;
}
/// InsertStackProtectors - Insert code into the prologue and epilogue of the
/// function.
///
/// - The prologue code loads and stores the stack guard onto the stack.
/// - The epilogue checks the value stored in the prologue against the original
/// value. It calls __stack_chk_fail if they differ.
bool StackProtector::InsertStackProtectors() {
bool SupportsSelectionDAGSP =
EnableSelectionDAGSP && !TM->Options.EnableFastISel;
AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
BasicBlock *BB = &*I++;
ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
if (!RI)
continue;
// Generate prologue instrumentation if not already generated.
if (!HasPrologue) {
HasPrologue = true;
SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
}
// SelectionDAG based code generation. Nothing else needs to be done here.
// The epilogue instrumentation is postponed to SelectionDAG.
if (SupportsSelectionDAGSP)
break;
// Set HasIRCheck to true, so that SelectionDAG will not generate its own
// version. SelectionDAG called 'shouldEmitSDCheck' to check whether
// instrumentation has already been generated.
HasIRCheck = true;
// Generate epilogue instrumentation. The epilogue intrumentation can be
// function-based or inlined depending on which mechanism the target is
// providing.
if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
// Generate the function-based epilogue instrumentation.
// The target provides a guard check function, generate a call to it.
IRBuilder<> B(RI);
LoadInst *Guard = B.CreateLoad(AI, true, "Guard");
CallInst *Call = B.CreateCall(GuardCheck, {Guard});
llvm::Function *Function = cast<llvm::Function>(GuardCheck);
Call->setAttributes(Function->getAttributes());
Call->setCallingConv(Function->getCallingConv());
} else {
// Generate the epilogue with inline instrumentation.
// If we do not support SelectionDAG based tail calls, generate IR level
// tail calls.
//
// For each block with a return instruction, convert this:
//
// return:
// ...
// ret ...
//
// into this:
//
// return:
// ...
// %1 = <stack guard>
// %2 = load StackGuardSlot
// %3 = cmp i1 %1, %2
// br i1 %3, label %SP_return, label %CallStackCheckFailBlk
//
// SP_return:
// ret ...
//
// CallStackCheckFailBlk:
// call void @__stack_chk_fail()
// unreachable
// Create the FailBB. We duplicate the BB every time since the MI tail
// merge pass will merge together all of the various BB into one including
// fail BB generated by the stack protector pseudo instruction.
BasicBlock *FailBB = CreateFailBB();
// Split the basic block before the return instruction.
BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
// Update the dominator tree if we need to.
if (DT && DT->isReachableFromEntry(BB)) {
DT->addNewBlock(NewBB, BB);
DT->addNewBlock(FailBB, BB);
}
// Remove default branch instruction to the new BB.
BB->getTerminator()->eraseFromParent();
// Move the newly created basic block to the point right after the old
// basic block so that it's in the "fall through" position.
NewBB->moveAfter(BB);
// Generate the stack protector instructions in the old basic block.
IRBuilder<> B(BB);
Value *Guard = getStackGuard(TLI, M, B);
LoadInst *LI2 = B.CreateLoad(AI, true);
Value *Cmp = B.CreateICmpEQ(Guard, LI2);
auto SuccessProb =
BranchProbabilityInfo::getBranchProbStackProtector(true);
auto FailureProb =
BranchProbabilityInfo::getBranchProbStackProtector(false);
MDNode *Weights = MDBuilder(F->getContext())
.createBranchWeights(SuccessProb.getNumerator(),
FailureProb.getNumerator());
B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
}
}
// Return if we didn't modify any basic blocks. i.e., there are no return
// statements in the function.
return HasPrologue;
}
/// CreateFailBB - Create a basic block to jump to when the stack protector
/// check fails.
BasicBlock *StackProtector::CreateFailBB() {
LLVMContext &Context = F->getContext();
BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
IRBuilder<> B(FailBB);
if (Trip.isOSOpenBSD()) {
Constant *StackChkFail =
M->getOrInsertFunction("__stack_smash_handler",
Type::getVoidTy(Context),
Type::getInt8PtrTy(Context), nullptr);
B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
} else {
Constant *StackChkFail =
M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
nullptr);
B.CreateCall(StackChkFail, {});
}
B.CreateUnreachable();
return FailBB;
}
bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator());
}