mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
64c82de81a
llvm-svn: 330503
1679 lines
45 KiB
TableGen
1679 lines
45 KiB
TableGen
//=- X86ScheduleZnver1.td - X86 Znver1 Scheduling -------------*- tablegen -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the machine model for Znver1 to support instruction
|
|
// scheduling and other instruction cost heuristics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def Znver1Model : SchedMachineModel {
|
|
// Zen can decode 4 instructions per cycle.
|
|
let IssueWidth = 4;
|
|
// Based on the reorder buffer we define MicroOpBufferSize
|
|
let MicroOpBufferSize = 192;
|
|
let LoadLatency = 4;
|
|
let MispredictPenalty = 17;
|
|
let HighLatency = 25;
|
|
let PostRAScheduler = 1;
|
|
|
|
// FIXME: This variable is required for incomplete model.
|
|
// We haven't catered all instructions.
|
|
// So, we reset the value of this variable so as to
|
|
// say that the model is incomplete.
|
|
let CompleteModel = 0;
|
|
}
|
|
|
|
let SchedModel = Znver1Model in {
|
|
|
|
// Zen can issue micro-ops to 10 different units in one cycle.
|
|
// These are
|
|
// * Four integer ALU units (ZALU0, ZALU1, ZALU2, ZALU3)
|
|
// * Two AGU units (ZAGU0, ZAGU1)
|
|
// * Four FPU units (ZFPU0, ZFPU1, ZFPU2, ZFPU3)
|
|
// AGUs feed load store queues @two loads and 1 store per cycle.
|
|
|
|
// Four ALU units are defined below
|
|
def ZnALU0 : ProcResource<1>;
|
|
def ZnALU1 : ProcResource<1>;
|
|
def ZnALU2 : ProcResource<1>;
|
|
def ZnALU3 : ProcResource<1>;
|
|
|
|
// Two AGU units are defined below
|
|
def ZnAGU0 : ProcResource<1>;
|
|
def ZnAGU1 : ProcResource<1>;
|
|
|
|
// Four FPU units are defined below
|
|
def ZnFPU0 : ProcResource<1>;
|
|
def ZnFPU1 : ProcResource<1>;
|
|
def ZnFPU2 : ProcResource<1>;
|
|
def ZnFPU3 : ProcResource<1>;
|
|
|
|
// FPU grouping
|
|
def ZnFPU : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU2, ZnFPU3]>;
|
|
def ZnFPU013 : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU3]>;
|
|
def ZnFPU01 : ProcResGroup<[ZnFPU0, ZnFPU1]>;
|
|
def ZnFPU12 : ProcResGroup<[ZnFPU1, ZnFPU2]>;
|
|
def ZnFPU13 : ProcResGroup<[ZnFPU1, ZnFPU3]>;
|
|
def ZnFPU23 : ProcResGroup<[ZnFPU2, ZnFPU3]>;
|
|
def ZnFPU02 : ProcResGroup<[ZnFPU0, ZnFPU2]>;
|
|
def ZnFPU03 : ProcResGroup<[ZnFPU0, ZnFPU3]>;
|
|
|
|
// Below are the grouping of the units.
|
|
// Micro-ops to be issued to multiple units are tackled this way.
|
|
|
|
// ALU grouping
|
|
// ZnALU03 - 0,3 grouping
|
|
def ZnALU03: ProcResGroup<[ZnALU0, ZnALU3]>;
|
|
|
|
// 56 Entry (14x4 entries) Int Scheduler
|
|
def ZnALU : ProcResGroup<[ZnALU0, ZnALU1, ZnALU2, ZnALU3]> {
|
|
let BufferSize=56;
|
|
}
|
|
|
|
// 28 Entry (14x2) AGU group. AGUs can't be used for all ALU operations
|
|
// but are relevant for some instructions
|
|
def ZnAGU : ProcResGroup<[ZnAGU0, ZnAGU1]> {
|
|
let BufferSize=28;
|
|
}
|
|
|
|
// Integer Multiplication issued on ALU1.
|
|
def ZnMultiplier : ProcResource<1>;
|
|
|
|
// Integer division issued on ALU2.
|
|
def ZnDivider : ProcResource<1>;
|
|
|
|
// 4 Cycles load-to use Latency is captured
|
|
def : ReadAdvance<ReadAfterLd, 4>;
|
|
|
|
// (a folded load is an instruction that loads and does some operation)
|
|
// Ex: ADDPD xmm,[mem]-> This instruction has two micro-ops
|
|
// Instructions with folded loads are usually micro-fused, so they only appear
|
|
// as two micro-ops.
|
|
// a. load and
|
|
// b. addpd
|
|
// This multiclass is for folded loads for integer units.
|
|
multiclass ZnWriteResPair<X86FoldableSchedWrite SchedRW,
|
|
list<ProcResourceKind> ExePorts,
|
|
int Lat, list<int> Res = [1], int UOps = 1> {
|
|
// Register variant takes 1-cycle on Execution Port.
|
|
def : WriteRes<SchedRW, ExePorts> {
|
|
let Latency = Lat;
|
|
let ResourceCycles = Res;
|
|
let NumMicroOps = UOps;
|
|
}
|
|
|
|
// Memory variant also uses a cycle on ZnAGU
|
|
// adds 4 cycles to the latency.
|
|
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
|
|
let Latency = !add(Lat, 4);
|
|
let ResourceCycles = !listconcat([1], Res);
|
|
let NumMicroOps = !add(UOps, 1);
|
|
}
|
|
}
|
|
|
|
// This multiclass is for folded loads for floating point units.
|
|
multiclass ZnWriteResFpuPair<X86FoldableSchedWrite SchedRW,
|
|
list<ProcResourceKind> ExePorts,
|
|
int Lat, list<int> Res = [1], int UOps = 1> {
|
|
// Register variant takes 1-cycle on Execution Port.
|
|
def : WriteRes<SchedRW, ExePorts> {
|
|
let Latency = Lat;
|
|
let ResourceCycles = Res;
|
|
let NumMicroOps = UOps;
|
|
}
|
|
|
|
// Memory variant also uses a cycle on ZnAGU
|
|
// adds 7 cycles to the latency.
|
|
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
|
|
let Latency = !add(Lat, 7);
|
|
let ResourceCycles = !listconcat([1], Res);
|
|
let NumMicroOps = UOps;
|
|
}
|
|
}
|
|
|
|
// WriteRMW is set for instructions with Memory write
|
|
// operation in codegen
|
|
def : WriteRes<WriteRMW, [ZnAGU]>;
|
|
|
|
def : WriteRes<WriteStore, [ZnAGU]>;
|
|
def : WriteRes<WriteMove, [ZnALU]>;
|
|
def : WriteRes<WriteLoad, [ZnAGU]> { let Latency = 8; }
|
|
|
|
def : WriteRes<WriteZero, []>;
|
|
def : WriteRes<WriteLEA, [ZnALU]>;
|
|
defm : ZnWriteResPair<WriteALU, [ZnALU], 1>;
|
|
defm : ZnWriteResPair<WriteIMul, [ZnALU1, ZnMultiplier], 4>;
|
|
defm : ZnWriteResPair<WriteShift, [ZnALU], 1>;
|
|
defm : ZnWriteResPair<WriteJump, [ZnALU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteCRC32, [ZnFPU0], 3>;
|
|
|
|
defm : ZnWriteResPair<WriteCMOV, [ZnALU], 1>;
|
|
def : WriteRes<WriteSETCC, [ZnALU]>;
|
|
def : WriteRes<WriteSETCCStore, [ZnALU, ZnAGU]>;
|
|
|
|
// Bit counts.
|
|
defm : ZnWriteResPair<WriteBitScan, [ZnALU], 3>;
|
|
defm : ZnWriteResPair<WriteLZCNT, [ZnALU], 2>;
|
|
defm : ZnWriteResPair<WriteTZCNT, [ZnALU], 2>;
|
|
defm : ZnWriteResPair<WritePOPCNT, [ZnALU], 1>;
|
|
|
|
// Treat misc copies as a move.
|
|
def : InstRW<[WriteMove], (instrs COPY)>;
|
|
|
|
// BMI1 BEXTR, BMI2 BZHI
|
|
defm : ZnWriteResPair<WriteBEXTR, [ZnALU], 1>;
|
|
defm : ZnWriteResPair<WriteBZHI, [ZnALU], 1>;
|
|
|
|
// IDIV
|
|
def : WriteRes<WriteIDiv, [ZnALU2, ZnDivider]> {
|
|
let Latency = 41;
|
|
let ResourceCycles = [1, 41];
|
|
}
|
|
|
|
def : WriteRes<WriteIDivLd, [ZnALU2, ZnAGU, ZnDivider]> {
|
|
let Latency = 45;
|
|
let ResourceCycles = [1, 4, 41];
|
|
}
|
|
|
|
// IMULH
|
|
def : WriteRes<WriteIMulH, [ZnALU1, ZnMultiplier]>{
|
|
let Latency = 4;
|
|
}
|
|
|
|
// Floating point operations
|
|
def : WriteRes<WriteFStore, [ZnAGU]>;
|
|
def : WriteRes<WriteFMove, [ZnFPU]>;
|
|
def : WriteRes<WriteFLoad, [ZnAGU]> { let Latency = 8; }
|
|
|
|
defm : ZnWriteResFpuPair<WriteFHAdd, [ZnFPU0], 3>;
|
|
defm : ZnWriteResFpuPair<WriteFAdd, [ZnFPU0], 3>;
|
|
defm : ZnWriteResFpuPair<WriteFCmp, [ZnFPU0], 3>;
|
|
defm : ZnWriteResFpuPair<WriteFCom, [ZnFPU0], 3>;
|
|
defm : ZnWriteResFpuPair<WriteFBlend, [ZnFPU01], 1>;
|
|
defm : ZnWriteResFpuPair<WriteFVarBlend, [ZnFPU01], 1>;
|
|
defm : ZnWriteResFpuPair<WriteVarBlend, [ZnFPU0], 1>;
|
|
defm : ZnWriteResFpuPair<WriteCvtI2F, [ZnFPU3], 5>;
|
|
defm : ZnWriteResFpuPair<WriteCvtF2F, [ZnFPU3], 5>;
|
|
defm : ZnWriteResFpuPair<WriteCvtF2I, [ZnFPU3], 5>;
|
|
defm : ZnWriteResFpuPair<WriteFDiv, [ZnFPU3], 15>;
|
|
defm : ZnWriteResFpuPair<WriteFSign, [ZnFPU3], 2>;
|
|
defm : ZnWriteResFpuPair<WriteFLogic, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteFShuffle, [ZnFPU12], 1>;
|
|
defm : ZnWriteResFpuPair<WriteFVarShuffle, [ZnFPU12], 1>;
|
|
defm : ZnWriteResFpuPair<WriteFMul, [ZnFPU0], 5>;
|
|
defm : ZnWriteResFpuPair<WriteFMA, [ZnFPU03], 5>;
|
|
defm : ZnWriteResFpuPair<WriteFRcp, [ZnFPU01], 5>;
|
|
defm : ZnWriteResFpuPair<WriteFRsqrt, [ZnFPU01], 5>;
|
|
defm : ZnWriteResFpuPair<WriteFSqrt, [ZnFPU3], 20>;
|
|
|
|
// Vector integer operations which uses FPU units
|
|
def : WriteRes<WriteVecStore, [ZnAGU]>;
|
|
def : WriteRes<WriteVecMove, [ZnFPU]>;
|
|
def : WriteRes<WriteVecLoad, [ZnAGU]> { let Latency = 8; }
|
|
|
|
defm : ZnWriteResFpuPair<WriteVecShift, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteVecLogic, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WritePHAdd, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteVecALU, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteVecIMul, [ZnFPU0], 4>;
|
|
defm : ZnWriteResFpuPair<WritePMULLD, [ZnFPU0], 4>; // FIXME
|
|
defm : ZnWriteResFpuPair<WriteShuffle, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteVarShuffle, [ZnFPU], 1>;
|
|
defm : ZnWriteResFpuPair<WriteBlend, [ZnFPU01], 1>;
|
|
defm : ZnWriteResFpuPair<WriteShuffle256, [ZnFPU], 2>;
|
|
defm : ZnWriteResFpuPair<WriteVarShuffle256, [ZnFPU], 2>;
|
|
defm : ZnWriteResFpuPair<WritePSADBW, [ZnFPU0], 3>;
|
|
|
|
// Vector Shift Operations
|
|
defm : ZnWriteResFpuPair<WriteVarVecShift, [ZnFPU12], 1>;
|
|
|
|
// MOVMSK Instructions.
|
|
def : WriteRes<WriteFMOVMSK, [ZnFPU2]>;
|
|
def : WriteRes<WriteVecMOVMSK, [ZnFPU2]>;
|
|
def : WriteRes<WriteMMXMOVMSK, [ZnFPU2]>;
|
|
|
|
// AES Instructions.
|
|
defm : ZnWriteResFpuPair<WriteAESDecEnc, [ZnFPU01], 4>;
|
|
defm : ZnWriteResFpuPair<WriteAESIMC, [ZnFPU01], 4>;
|
|
defm : ZnWriteResFpuPair<WriteAESKeyGen, [ZnFPU01], 4>;
|
|
|
|
def : WriteRes<WriteFence, [ZnAGU]>;
|
|
def : WriteRes<WriteNop, []>;
|
|
|
|
// Following instructions with latency=100 are microcoded.
|
|
// We set long latency so as to block the entire pipeline.
|
|
defm : ZnWriteResFpuPair<WriteFShuffle256, [ZnFPU], 100>;
|
|
defm : ZnWriteResFpuPair<WriteFVarShuffle256, [ZnFPU], 100>;
|
|
|
|
// Microcoded Instructions
|
|
let Latency = 100 in {
|
|
def : WriteRes<WriteMicrocoded, []>;
|
|
def : WriteRes<WriteSystem, []>;
|
|
def : WriteRes<WriteMPSAD, []>;
|
|
def : WriteRes<WriteMPSADLd, []>;
|
|
def : WriteRes<WriteCLMul, []>;
|
|
def : WriteRes<WriteCLMulLd, []>;
|
|
def : WriteRes<WritePCmpIStrM, []>;
|
|
def : WriteRes<WritePCmpIStrMLd, []>;
|
|
def : WriteRes<WritePCmpEStrI, []>;
|
|
def : WriteRes<WritePCmpEStrILd, []>;
|
|
def : WriteRes<WritePCmpEStrM, []>;
|
|
def : WriteRes<WritePCmpEStrMLd, []>;
|
|
def : WriteRes<WritePCmpIStrI, []>;
|
|
def : WriteRes<WritePCmpIStrILd, []>;
|
|
}
|
|
|
|
//=== Regex based InstRW ===//
|
|
// Notation:
|
|
// - r: register.
|
|
// - m = memory.
|
|
// - i = immediate
|
|
// - mm: 64 bit mmx register.
|
|
// - x = 128 bit xmm register.
|
|
// - (x)mm = mmx or xmm register.
|
|
// - y = 256 bit ymm register.
|
|
// - v = any vector register.
|
|
|
|
//=== Integer Instructions ===//
|
|
//-- Move instructions --//
|
|
// MOV.
|
|
// r16,m.
|
|
def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>;
|
|
|
|
// MOVSX, MOVZX.
|
|
// r,m.
|
|
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
|
|
|
|
// XCHG.
|
|
// r,r.
|
|
def ZnWriteXCHG : SchedWriteRes<[ZnALU]> {
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
|
|
def : InstRW<[ZnWriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>;
|
|
|
|
// r,m.
|
|
def ZnWriteXCHGrm : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteXCHGrm, ReadAfterLd], (instregex "XCHG(8|16|32|64)rm")>;
|
|
|
|
def : InstRW<[WriteMicrocoded], (instregex "XLAT")>;
|
|
|
|
// POP16.
|
|
// r.
|
|
def ZnWritePop16r : SchedWriteRes<[ZnAGU]>{
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWritePop16r], (instregex "POP16rmm")>;
|
|
def : InstRW<[WriteMicrocoded], (instregex "POPF(16|32)")>;
|
|
def : InstRW<[WriteMicrocoded], (instregex "POPA(16|32)")>;
|
|
|
|
|
|
// PUSH.
|
|
// r. Has default values.
|
|
// m.
|
|
def ZnWritePUSH : SchedWriteRes<[ZnAGU]>{
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWritePUSH], (instregex "PUSH(16|32)rmm")>;
|
|
|
|
//PUSHF
|
|
def : InstRW<[WriteMicrocoded], (instregex "PUSHF(16|32)")>;
|
|
|
|
// PUSHA.
|
|
def ZnWritePushA : SchedWriteRes<[ZnAGU]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWritePushA], (instregex "PUSHA(16|32)")>;
|
|
|
|
//LAHF
|
|
def : InstRW<[WriteMicrocoded], (instregex "LAHF")>;
|
|
|
|
// SAHF.
|
|
def ZnWriteSAHF : SchedWriteRes<[ZnALU]> {
|
|
let Latency = 2;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteSAHF], (instregex "SAHF")>;
|
|
|
|
// BSWAP.
|
|
def ZnWriteBSwap : SchedWriteRes<[ZnALU]> {
|
|
let ResourceCycles = [4];
|
|
}
|
|
def : InstRW<[ZnWriteBSwap], (instregex "BSWAP")>;
|
|
|
|
// MOVBE.
|
|
// r,m.
|
|
def ZnWriteMOVBE : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteMOVBE, ReadAfterLd], (instregex "MOVBE(16|32|64)rm")>;
|
|
|
|
// m16,r16.
|
|
def : InstRW<[ZnWriteMOVBE], (instregex "MOVBE(16|32|64)mr")>;
|
|
|
|
//-- Arithmetic instructions --//
|
|
|
|
// ADD SUB.
|
|
// m,r/i.
|
|
def : InstRW<[WriteALULd], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
|
|
"(ADD|SUB)(8|16|32|64)mi8",
|
|
"(ADD|SUB)64mi32")>;
|
|
|
|
// ADC SBB.
|
|
// r,r/i.
|
|
def : InstRW<[WriteALU], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)",
|
|
"(ADC|SBB)(16|32|64)ri8",
|
|
"(ADC|SBB)64ri32")>;
|
|
|
|
// r,m.
|
|
def : InstRW<[WriteALULd, ReadAfterLd],
|
|
(instregex "(ADC|SBB)(8|16|32|64)rm")>;
|
|
|
|
// m,r/i.
|
|
def : InstRW<[WriteALULd],
|
|
(instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
|
|
"(ADC|SBB)(16|32|64)mi8",
|
|
"(ADC|SBB)64mi32")>;
|
|
|
|
// INC DEC NOT NEG.
|
|
// m.
|
|
def : InstRW<[WriteALULd],
|
|
(instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m")>;
|
|
|
|
// MUL IMUL.
|
|
// r16.
|
|
def ZnWriteMul16 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[ZnWriteMul16], (instrs IMUL16r, MUL16r)>;
|
|
def : InstRW<[ZnWriteMul16], (instrs IMUL16rr, IMUL16rri, IMUL16rri8)>; // TODO: is this right?
|
|
def : InstRW<[ZnWriteMul16], (instrs IMUL16rm, IMUL16rmi, IMUL16rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
|
|
|
|
// m16.
|
|
def ZnWriteMul16Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteMul16Ld, ReadAfterLd], (instrs IMUL16m, MUL16m)>;
|
|
|
|
// r32.
|
|
def ZnWriteMul32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[ZnWriteMul32], (instrs IMUL32r, MUL32r)>;
|
|
def : InstRW<[ZnWriteMul32], (instrs IMUL32rr, IMUL32rri, IMUL32rri8)>; // TODO: is this right?
|
|
def : InstRW<[ZnWriteMul32], (instrs IMUL32rm, IMUL32rmi, IMUL32rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
|
|
|
|
// m32.
|
|
def ZnWriteMul32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteMul32Ld, ReadAfterLd], (instrs IMUL32m, MUL32m)>;
|
|
|
|
// r64.
|
|
def ZnWriteMul64 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
|
|
let Latency = 4;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteMul64], (instrs IMUL64r, MUL64r)>;
|
|
def : InstRW<[ZnWriteMul64], (instrs IMUL64rr, IMUL64rri8, IMUL64rri32)>; // TODO: is this right?
|
|
def : InstRW<[ZnWriteMul64], (instrs IMUL64rm, IMUL64rmi32, IMUL64rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
|
|
|
|
// m64.
|
|
def ZnWriteMul64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
|
|
let Latency = 9;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteMul64Ld, ReadAfterLd], (instrs IMUL64m, MUL64m)>;
|
|
|
|
// MULX.
|
|
// r32,r32,r32.
|
|
def ZnWriteMulX32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteMulX32], (instrs MULX32rr)>;
|
|
|
|
// r32,r32,m32.
|
|
def ZnWriteMulX32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [1, 2, 2];
|
|
}
|
|
def : InstRW<[ZnWriteMulX32Ld, ReadAfterLd], (instrs MULX32rm)>;
|
|
|
|
// r64,r64,r64.
|
|
def ZnWriteMulX64 : SchedWriteRes<[ZnALU1]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[ZnWriteMulX64], (instrs MULX64rr)>;
|
|
|
|
// r64,r64,m64.
|
|
def ZnWriteMulX64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteMulX64Ld, ReadAfterLd], (instrs MULX64rm)>;
|
|
|
|
// DIV, IDIV.
|
|
// r8.
|
|
def ZnWriteDiv8 : SchedWriteRes<[ZnALU2, ZnDivider]> {
|
|
let Latency = 15;
|
|
}
|
|
def : InstRW<[ZnWriteDiv8], (instregex "DIV8r", "IDIV8r")>;
|
|
|
|
// r16.
|
|
def ZnWriteDiv16 : SchedWriteRes<[ZnALU2, ZnDivider]> {
|
|
let Latency = 17;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteDiv16], (instregex "DIV16r", "IDIV16r")>;
|
|
|
|
// r32.
|
|
def ZnWriteDiv32 : SchedWriteRes<[ZnALU2, ZnDivider]> {
|
|
let Latency = 25;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteDiv32], (instregex "DIV32r", "IDIV32r")>;
|
|
|
|
// r64.
|
|
def ZnWriteDiv64 : SchedWriteRes<[ZnALU2, ZnDivider]> {
|
|
let Latency = 41;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteDiv64], (instregex "DIV64r", "IDIV64r")>;
|
|
|
|
//-- Control transfer instructions --//
|
|
|
|
// J(E|R)CXZ.
|
|
def ZnWriteJCXZ : SchedWriteRes<[ZnALU03]>;
|
|
def : InstRW<[ZnWriteJCXZ], (instrs JCXZ, JECXZ, JRCXZ)>;
|
|
|
|
// INTO
|
|
def : InstRW<[WriteMicrocoded], (instregex "INTO")>;
|
|
|
|
// LOOP.
|
|
def ZnWriteLOOP : SchedWriteRes<[ZnALU03]>;
|
|
def : InstRW<[ZnWriteLOOP], (instrs LOOP)>;
|
|
|
|
// LOOP(N)E, LOOP(N)Z
|
|
def ZnWriteLOOPE : SchedWriteRes<[ZnALU03]>;
|
|
def : InstRW<[ZnWriteLOOPE], (instrs LOOPE, LOOPNE)>;
|
|
|
|
// CALL.
|
|
// r.
|
|
def ZnWriteCALLr : SchedWriteRes<[ZnAGU, ZnALU03]>;
|
|
def : InstRW<[ZnWriteCALLr], (instregex "CALL(16|32)r")>;
|
|
|
|
def : InstRW<[WriteMicrocoded], (instregex "CALL(16|32)m")>;
|
|
|
|
// RET.
|
|
def ZnWriteRET : SchedWriteRes<[ZnALU03]> {
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)",
|
|
"IRET(16|32|64)")>;
|
|
|
|
//-- Logic instructions --//
|
|
|
|
// AND OR XOR.
|
|
// m,r/i.
|
|
def : InstRW<[WriteALULd],
|
|
(instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
|
|
"(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
|
|
|
|
// ANDN.
|
|
// r,r.
|
|
def : InstRW<[WriteALU], (instregex "ANDN(32|64)rr")>;
|
|
// r,m.
|
|
def : InstRW<[WriteALULd, ReadAfterLd], (instregex "ANDN(32|64)rm")>;
|
|
|
|
// Define ALU latency variants
|
|
def ZnWriteALULat2 : SchedWriteRes<[ZnALU]> {
|
|
let Latency = 2;
|
|
}
|
|
def ZnWriteALULat2Ld : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let Latency = 6;
|
|
}
|
|
|
|
// BT.
|
|
// r,r/i.
|
|
def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>;
|
|
|
|
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mr")>;
|
|
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;
|
|
|
|
// BTR BTS BTC.
|
|
// r,r,i.
|
|
def ZnWriteBTRSC : SchedWriteRes<[ZnALU]> {
|
|
let Latency = 2;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteBTRSC], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;
|
|
|
|
|
|
// m,r,i.
|
|
def ZnWriteBTRSCm : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let Latency = 6;
|
|
let NumMicroOps = 2;
|
|
}
|
|
// m,r,i.
|
|
def : InstRW<[ZnWriteBTRSCm], (instregex "BT(R|S|C)(16|32|64)m(r|i8)")>;
|
|
|
|
// BLSI BLSMSK BLSR.
|
|
// r,r.
|
|
def : InstRW<[ZnWriteALULat2], (instregex "BLS(I|MSK|R)(32|64)rr")>;
|
|
// r,m.
|
|
def : InstRW<[ZnWriteALULat2Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;
|
|
|
|
// CLD STD.
|
|
def : InstRW<[WriteALU], (instregex "STD", "CLD")>;
|
|
|
|
// PDEP PEXT.
|
|
// r,r,r.
|
|
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
|
|
// r,r,m.
|
|
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;
|
|
|
|
// ROR ROL.
|
|
def : InstRW<[WriteShift], (instregex "RO(R|L)(8|16|32|64)r1")>;
|
|
|
|
// RCR RCL.
|
|
// r,1.
|
|
def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r1")>;
|
|
|
|
// m,1.
|
|
def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m1")>;
|
|
|
|
// i.
|
|
def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>;
|
|
|
|
// m,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>;
|
|
|
|
// SHR SHL SAR.
|
|
// m,i.
|
|
def : InstRW<[WriteShiftLd], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;
|
|
|
|
// SHRD SHLD.
|
|
// r,r
|
|
def : InstRW<[WriteShift], (instregex "SH(R|L)D(16|32|64)rri8")>;
|
|
|
|
// m,r
|
|
def : InstRW<[WriteShiftLd], (instregex "SH(R|L)D(16|32|64)mri8")>;
|
|
|
|
// r,r,cl.
|
|
def : InstRW<[WriteMicrocoded], (instregex "SHLD(16|32|64)rrCL")>;
|
|
|
|
// r,r,cl.
|
|
def : InstRW<[WriteMicrocoded], (instregex "SHRD(16|32|64)rrCL")>;
|
|
|
|
// m,r,cl.
|
|
def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>;
|
|
|
|
//-- Misc instructions --//
|
|
// CMPXCHG.
|
|
def ZnWriteCMPXCHG : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 5;
|
|
}
|
|
def : InstRW<[ZnWriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>;
|
|
|
|
// CMPXCHG8B.
|
|
def ZnWriteCMPXCHG8B : SchedWriteRes<[ZnAGU, ZnALU]> {
|
|
let NumMicroOps = 18;
|
|
}
|
|
def : InstRW<[ZnWriteCMPXCHG8B], (instregex "CMPXCHG8B")>;
|
|
|
|
def : InstRW<[WriteMicrocoded], (instregex "CMPXCHG16B")>;
|
|
|
|
// LEAVE
|
|
def ZnWriteLEAVE : SchedWriteRes<[ZnALU, ZnAGU]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteLEAVE], (instregex "LEAVE")>;
|
|
|
|
// PAUSE.
|
|
def : InstRW<[WriteMicrocoded], (instregex "PAUSE")>;
|
|
|
|
// RDTSC.
|
|
def : InstRW<[WriteMicrocoded], (instregex "RDTSC")>;
|
|
|
|
// RDPMC.
|
|
def : InstRW<[WriteMicrocoded], (instregex "RDPMC")>;
|
|
|
|
// RDRAND.
|
|
def : InstRW<[WriteMicrocoded], (instregex "RDRAND(16|32|64)r")>;
|
|
|
|
// XGETBV.
|
|
def : InstRW<[WriteMicrocoded], (instregex "XGETBV")>;
|
|
|
|
//-- String instructions --//
|
|
// CMPS.
|
|
def : InstRW<[WriteMicrocoded], (instregex "CMPS(B|L|Q|W)")>;
|
|
|
|
// LODSB/W.
|
|
def : InstRW<[WriteMicrocoded], (instregex "LODS(B|W)")>;
|
|
|
|
// LODSD/Q.
|
|
def : InstRW<[WriteMicrocoded], (instregex "LODS(L|Q)")>;
|
|
|
|
// MOVS.
|
|
def : InstRW<[WriteMicrocoded], (instregex "MOVS(B|L|Q|W)")>;
|
|
|
|
// SCAS.
|
|
def : InstRW<[WriteMicrocoded], (instregex "SCAS(B|W|L|Q)")>;
|
|
|
|
// STOS
|
|
def : InstRW<[WriteMicrocoded], (instregex "STOS(B|L|Q|W)")>;
|
|
|
|
// XADD.
|
|
def : InstRW<[WriteMicrocoded], (instregex "XADD(8|16|32|64)rm")>;
|
|
|
|
//=== Floating Point x87 Instructions ===//
|
|
//-- Move instructions --//
|
|
|
|
def ZnWriteFLDr : SchedWriteRes<[ZnFPU13]> ;
|
|
|
|
def ZnWriteSTr: SchedWriteRes<[ZnFPU23]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
}
|
|
|
|
// LD_F.
|
|
// r.
|
|
def : InstRW<[ZnWriteFLDr], (instregex "LD_Frr")>;
|
|
|
|
// m.
|
|
def ZnWriteLD_F80m : SchedWriteRes<[ZnAGU, ZnFPU13]> {
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteLD_F80m], (instregex "LD_F80m")>;
|
|
|
|
// FBLD.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FBLDm")>;
|
|
|
|
// FST(P).
|
|
// r.
|
|
def : InstRW<[ZnWriteSTr], (instregex "ST_(F|FP)rr")>;
|
|
|
|
// m80.
|
|
def ZnWriteST_FP80m : SchedWriteRes<[ZnAGU, ZnFPU23]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteST_FP80m], (instregex "ST_FP80m")>;
|
|
|
|
// FBSTP.
|
|
// m80.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FBSTPm")>;
|
|
|
|
def ZnWriteFXCH : SchedWriteRes<[ZnFPU]>;
|
|
|
|
// FXCHG.
|
|
def : InstRW<[ZnWriteFXCH], (instregex "XCH_F")>;
|
|
|
|
// FILD.
|
|
def ZnWriteFILD : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteFILD], (instregex "ILD_F(16|32|64)m")>;
|
|
|
|
// FIST(P) FISTTP.
|
|
def ZnWriteFIST : SchedWriteRes<[ZnAGU, ZnFPU23]> {
|
|
let Latency = 12;
|
|
}
|
|
def : InstRW<[ZnWriteFIST], (instregex "IS(T|TT)_(F|FP)(16|32|64)m")>;
|
|
|
|
def ZnWriteFPU13 : SchedWriteRes<[ZnAGU, ZnFPU13]> {
|
|
let Latency = 8;
|
|
}
|
|
|
|
def ZnWriteFPU3 : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 11;
|
|
}
|
|
|
|
// FLDZ.
|
|
def : InstRW<[ZnWriteFPU13], (instregex "LD_F0")>;
|
|
|
|
// FLD1.
|
|
def : InstRW<[ZnWriteFPU3], (instregex "LD_F1")>;
|
|
|
|
// FLDPI FLDL2E etc.
|
|
def : InstRW<[ZnWriteFPU3], (instregex "FLDPI", "FLDL2(T|E)", "FLDL(G|N)2")>;
|
|
|
|
def : InstRW<[WriteMicrocoded], (instregex "CMOV(B|BE|E|P|NB|NBE|NE|NP)_F")>;
|
|
|
|
// FNSTSW.
|
|
// AX.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FNSTSW16r")>;
|
|
|
|
// m16.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FNSTSWm")>;
|
|
|
|
// FLDCW.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FLDCW16m")>;
|
|
|
|
// FNSTCW.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FNSTCW16m")>;
|
|
|
|
// FINCSTP FDECSTP.
|
|
def : InstRW<[ZnWriteFPU3], (instregex "FINCSTP", "FDECSTP")>;
|
|
|
|
// FFREE.
|
|
def : InstRW<[ZnWriteFPU3], (instregex "FFREE")>;
|
|
|
|
// FNSAVE.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FSAVEm")>;
|
|
|
|
// FRSTOR.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FRSTORm")>;
|
|
|
|
//-- Arithmetic instructions --//
|
|
|
|
def ZnWriteFPU3Lat1 : SchedWriteRes<[ZnFPU3]> ;
|
|
|
|
def ZnWriteFPU0Lat1 : SchedWriteRes<[ZnFPU0]> ;
|
|
|
|
def ZnWriteFPU0Lat1Ld : SchedWriteRes<[ZnAGU, ZnFPU0]> {
|
|
let Latency = 8;
|
|
}
|
|
|
|
// FCHS.
|
|
def : InstRW<[ZnWriteFPU3Lat1], (instregex "CHS_F")>;
|
|
|
|
// FCOM(P) FUCOM(P).
|
|
// r.
|
|
def : InstRW<[ZnWriteFPU0Lat1], (instregex "COM_FST0r", "COMP_FST0r", "UCOM_Fr",
|
|
"UCOM_FPr")>;
|
|
// m.
|
|
def : InstRW<[ZnWriteFPU0Lat1Ld], (instregex "FCOM(32|64)m", "FCOMP(32|64)m")>;
|
|
|
|
// FCOMPP FUCOMPP.
|
|
// r.
|
|
def : InstRW<[ZnWriteFPU0Lat1], (instregex "FCOMPP", "UCOM_FPPr")>;
|
|
|
|
def ZnWriteFPU02 : SchedWriteRes<[ZnAGU, ZnFPU02]>
|
|
{
|
|
let Latency = 9;
|
|
}
|
|
|
|
// FCOMI(P) FUCOMI(P).
|
|
// m.
|
|
def : InstRW<[ZnWriteFPU02], (instregex "COM_FIr", "COM_FIPr", "UCOM_FIr",
|
|
"UCOM_FIPr")>;
|
|
|
|
def ZnWriteFPU03 : SchedWriteRes<[ZnAGU, ZnFPU03]>
|
|
{
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,3];
|
|
}
|
|
|
|
// FICOM(P).
|
|
def : InstRW<[ZnWriteFPU03], (instregex "FICOM(16|32)m", "FICOMP(16|32)m")>;
|
|
|
|
// FTST.
|
|
def : InstRW<[ZnWriteFPU0Lat1], (instregex "TST_F")>;
|
|
|
|
// FXAM.
|
|
def : InstRW<[ZnWriteFPU3Lat1], (instregex "FXAM")>;
|
|
|
|
// FPREM.
|
|
def : InstRW<[WriteMicrocoded], (instrs FPREM)>;
|
|
|
|
// FPREM1.
|
|
def : InstRW<[WriteMicrocoded], (instrs FPREM1)>;
|
|
|
|
// FRNDINT.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FRNDINT")>;
|
|
|
|
// FSCALE.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FSCALE")>;
|
|
|
|
// FXTRACT.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FXTRACT")>;
|
|
|
|
// FNOP.
|
|
def : InstRW<[ZnWriteFPU0Lat1], (instregex "FNOP")>;
|
|
|
|
// WAIT.
|
|
def : InstRW<[ZnWriteFPU0Lat1], (instregex "WAIT")>;
|
|
|
|
// FNCLEX.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FNCLEX")>;
|
|
|
|
// FNINIT.
|
|
def : InstRW<[WriteMicrocoded], (instregex "FNINIT")>;
|
|
|
|
//=== Integer MMX and XMM Instructions ===//
|
|
//-- Move instructions --//
|
|
|
|
// Moves from GPR to FPR incurs a penalty
|
|
def ZnWriteFPU2 : SchedWriteRes<[ZnFPU2]> {
|
|
let Latency = 3;
|
|
}
|
|
|
|
// Move to ALU doesn't incur penalty
|
|
def ZnWriteToALU2 : SchedWriteRes<[ZnFPU2]> {
|
|
let Latency = 2;
|
|
}
|
|
|
|
def ZnWriteFPU : SchedWriteRes<[ZnFPU]>;
|
|
def ZnWriteFPUY : SchedWriteRes<[ZnFPU]> {
|
|
let NumMicroOps = 2;
|
|
let Latency=2;
|
|
}
|
|
|
|
// MOVD.
|
|
// r32/64 <- (x)mm.
|
|
def : InstRW<[ZnWriteToALU2], (instregex "MMX_MOVD64grr", "MMX_MOVD64from64rr",
|
|
"VMOVPDI2DIrr", "MOVPDI2DIrr")>;
|
|
|
|
// (x)mm <- r32/64.
|
|
def : InstRW<[ZnWriteFPU2], (instregex "MMX_MOVD64rr", "MMX_MOVD64to64rr",
|
|
"VMOVDI2PDIrr", "MOVDI2PDIrr")>;
|
|
|
|
// MOVQ.
|
|
// r64 <- (x)mm.
|
|
def : InstRW<[ZnWriteToALU2], (instregex "VMOVPQIto64rr")>;
|
|
|
|
// (x)mm <- r64.
|
|
def : InstRW<[ZnWriteFPU2], (instregex "VMOV64toPQIrr")>;
|
|
|
|
// (x)mm <- (x)mm.
|
|
def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVQ64rr")>;
|
|
|
|
// (V)MOVDQA/U.
|
|
// x <- x.
|
|
def : InstRW<[ZnWriteFPU], (instregex "MOVDQ(A|U)rr", "VMOVDQ(A|U)rr")>;
|
|
|
|
// y <- y.
|
|
def : InstRW<[ZnWriteFPUY], (instregex "VMOVDQ(A|U)Yrr")>;
|
|
|
|
// PACKSSWB/DW.
|
|
// mm <- mm.
|
|
def ZnWriteFPU12 : SchedWriteRes<[ZnFPU12]> ;
|
|
def ZnWriteFPU12Y : SchedWriteRes<[ZnFPU12]> {
|
|
let NumMicroOps = 2;
|
|
}
|
|
def ZnWriteFPU12m : SchedWriteRes<[ZnAGU, ZnFPU12]> ;
|
|
|
|
def : InstRW<[ZnWriteFPU12], (instregex "MMX_PACKSSDWirr",
|
|
"MMX_PACKSSWBirr", "MMX_PACKUSWBirr")>;
|
|
def : InstRW<[ZnWriteFPU12m], (instregex "MMX_PACKSSDWirm",
|
|
"MMX_PACKSSWBirm", "MMX_PACKUSWBirm")>;
|
|
|
|
// VPMOVSX/ZX BW BD BQ DW DQ.
|
|
// y <- x.
|
|
def : InstRW<[ZnWriteFPU12Y], (instregex "VPMOV(SX|ZX)(BW|BQ|DW|DQ)Yrr")>;
|
|
|
|
def ZnWriteFPU013 : SchedWriteRes<[ZnFPU013]> ;
|
|
def ZnWriteFPU013Y : SchedWriteRes<[ZnFPU013]> {
|
|
let Latency = 2;
|
|
}
|
|
def ZnWriteFPU013m : SchedWriteRes<[ZnAGU, ZnFPU013]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def ZnWriteFPU013Ld : SchedWriteRes<[ZnAGU, ZnFPU013]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def ZnWriteFPU013LdY : SchedWriteRes<[ZnAGU, ZnFPU013]> {
|
|
let Latency = 9;
|
|
let NumMicroOps = 2;
|
|
}
|
|
|
|
// PBLENDW.
|
|
// x,x,i / v,v,v,i
|
|
def : InstRW<[ZnWriteFPU013], (instregex "(V?)PBLENDWrri")>;
|
|
// ymm
|
|
def : InstRW<[ZnWriteFPU013Y], (instregex "(V?)PBLENDWYrri")>;
|
|
|
|
// x,m,i / v,v,m,i
|
|
def : InstRW<[ZnWriteFPU013Ld], (instregex "(V?)PBLENDWrmi")>;
|
|
// y,m,i
|
|
def : InstRW<[ZnWriteFPU013LdY], (instregex "(V?)PBLENDWYrmi")>;
|
|
|
|
def ZnWriteFPU01 : SchedWriteRes<[ZnFPU01]> ;
|
|
def ZnWriteFPU01Y : SchedWriteRes<[ZnFPU01]> {
|
|
let NumMicroOps = 2;
|
|
}
|
|
|
|
// VPBLENDD.
|
|
// v,v,v,i.
|
|
def : InstRW<[ZnWriteFPU01], (instregex "VPBLENDDrri")>;
|
|
// ymm
|
|
def : InstRW<[ZnWriteFPU01Y], (instregex "VPBLENDDYrri")>;
|
|
|
|
// v,v,m,i
|
|
def ZnWriteFPU01Op2 : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let NumMicroOps = 2;
|
|
let Latency = 8;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def ZnWriteFPU01Op2Y : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let NumMicroOps = 2;
|
|
let Latency = 9;
|
|
let ResourceCycles = [1, 3];
|
|
}
|
|
def : InstRW<[ZnWriteFPU01Op2], (instregex "VPBLENDDrmi")>;
|
|
def : InstRW<[ZnWriteFPU01Op2Y], (instregex "VPBLENDDYrmi")>;
|
|
|
|
// MASKMOVQ.
|
|
def : InstRW<[WriteMicrocoded], (instregex "MMX_MASKMOVQ(64)?")>;
|
|
|
|
// MASKMOVDQU.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)MASKMOVDQU(64)?")>;
|
|
|
|
// VPMASKMOVQ.
|
|
// ymm
|
|
def : InstRW<[ZnWriteFPU01Op2],(instregex "VPMASKMOVQrm")>;
|
|
def : InstRW<[ZnWriteFPU01Op2Y],(instregex "VPMASKMOVQYrm")>;
|
|
|
|
def : InstRW<[WriteMicrocoded],
|
|
(instregex "VPMASKMOVD(Y?)rm")>;
|
|
// m, v,v.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOV(D|Q)(Y?)mr")>;
|
|
|
|
// PMOVMSKBY.
|
|
def ZnWritePMOVMSKBY : SchedWriteRes<[ZnFPU2]> {
|
|
let NumMicroOps = 2;
|
|
let Latency = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : InstRW<[ZnWritePMOVMSKBY], (instregex "(V|MMX_)?PMOVMSKBYrr")>;
|
|
|
|
// PEXTR B/W/D/Q.
|
|
// r32,x,i.
|
|
def ZnWritePEXTRr : SchedWriteRes<[ZnFPU12, ZnFPU2]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWritePEXTRr], (instregex "(V?)PEXTR(B|W|D|Q)rr", "MMX_PEXTRWrr")>;
|
|
|
|
def ZnWritePEXTRm : SchedWriteRes<[ZnAGU, ZnFPU12, ZnFPU2]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2, 3];
|
|
}
|
|
// m8,x,i.
|
|
def : InstRW<[ZnWritePEXTRm], (instregex "(V?)PEXTR(B|W|D|Q)mr")>;
|
|
|
|
// VPBROADCAST B/W.
|
|
// x, m8/16.
|
|
def ZnWriteVPBROADCAST128Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteVPBROADCAST128Ld],
|
|
(instregex "VPBROADCAST(B|W)rm")>;
|
|
|
|
// y, m8/16
|
|
def ZnWriteVPBROADCAST256Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteVPBROADCAST256Ld],
|
|
(instregex "VPBROADCAST(B|W)Yrm")>;
|
|
|
|
// VPGATHER.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VPGATHER(Q|D)(Q|D)(Y?)rm")>;
|
|
|
|
//-- Arithmetic instructions --//
|
|
|
|
// HADD, HSUB PS/PD
|
|
// PHADD|PHSUB (S) W/D.
|
|
def : InstRW<[WriteMicrocoded], (instregex "MMX_PHADD(W|D)r(r|m)",
|
|
"MMX_PHADDSWr(r|m)",
|
|
"MMX_PHSUB(W|D)r(r|m)",
|
|
"MMX_PHSUBSWrr",
|
|
"(V?)PH(ADD|SUB)(W|D)(Y?)r(r|m)",
|
|
"(V?)PH(ADD|SUB)SW(Y?)r(r|m)")>;
|
|
|
|
|
|
// PCMPGTQ.
|
|
def ZnWritePCMPGTQr : SchedWriteRes<[ZnFPU03]>;
|
|
def : InstRW<[ZnWritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>;
|
|
|
|
// x <- x,m.
|
|
def ZnWritePCMPGTQm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
|
|
let Latency = 8;
|
|
}
|
|
// ymm.
|
|
def ZnWritePCMPGTQYm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,2];
|
|
}
|
|
def : InstRW<[ZnWritePCMPGTQm], (instregex "(V?)PCMPGTQrm")>;
|
|
def : InstRW<[ZnWritePCMPGTQYm], (instregex "(V?)PCMPGTQYrm")>;
|
|
|
|
// PMULLD.
|
|
// x,x.
|
|
def ZnWritePMULLDr : SchedWriteRes<[ZnFPU0]> {
|
|
let Latency = 4;
|
|
}
|
|
// ymm.
|
|
def ZnWritePMULLDYr : SchedWriteRes<[ZnFPU0]> {
|
|
let Latency = 5;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : InstRW<[ZnWritePMULLDr], (instregex "(V?)PMULLDrr")>;
|
|
def : InstRW<[ZnWritePMULLDYr], (instregex "(V?)PMULLDYrr")>;
|
|
|
|
// x,m.
|
|
def ZnWritePMULLDm : SchedWriteRes<[ZnAGU, ZnFPU0]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
}
|
|
// y,m.
|
|
def ZnWritePMULLDYm : SchedWriteRes<[ZnAGU, ZnFPU0]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWritePMULLDm], (instregex "(V?)PMULLDrm")>;
|
|
def : InstRW<[ZnWritePMULLDYm], (instregex "(V?)PMULLDYrm")>;
|
|
|
|
//-- Logic instructions --//
|
|
|
|
// PTEST.
|
|
// v,v.
|
|
def ZnWritePTESTr : SchedWriteRes<[ZnFPU12]> {
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : InstRW<[ZnWritePTESTr], (instregex "(V?)PTEST(Y?)rr")>;
|
|
|
|
// v,m.
|
|
def ZnWritePTESTm : SchedWriteRes<[ZnAGU, ZnFPU12]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWritePTESTm], (instregex "(V?)PTEST(Y?)rm")>;
|
|
|
|
// PSLL,PSRL,PSRA W/D/Q.
|
|
// x,x / v,v,x.
|
|
def ZnWritePShift : SchedWriteRes<[ZnFPU2]> ;
|
|
def ZnWritePShiftY : SchedWriteRes<[ZnFPU2]> {
|
|
let Latency = 2;
|
|
}
|
|
def ZnWritePShiftLd : SchedWriteRes<[ZnAGU,ZnFPU2]> {
|
|
let Latency = 8;
|
|
}
|
|
def ZnWritePShiftYLd : SchedWriteRes<[ZnAGU, ZnFPU2]> {
|
|
let Latency = 9;
|
|
}
|
|
def : InstRW<[ZnWritePShift], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rr")>;
|
|
def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrr")>;
|
|
|
|
def : InstRW<[ZnWritePShiftLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rm")>;
|
|
def : InstRW<[ZnWritePShiftYLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrm")>;
|
|
|
|
// PSLL,PSRL DQ.
|
|
def : InstRW<[ZnWritePShift], (instregex "(V?)PS(R|L)LDQri")>;
|
|
def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(R|L)LDQYri")>;
|
|
|
|
//=== Floating Point XMM and YMM Instructions ===//
|
|
//-- Move instructions --//
|
|
|
|
// VPERM2F128.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rr")>;
|
|
def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rm")>;
|
|
|
|
def ZnWriteBROADCAST : SchedWriteRes<[ZnAGU, ZnFPU13]> {
|
|
let NumMicroOps = 2;
|
|
let Latency = 8;
|
|
}
|
|
// VBROADCASTF128.
|
|
def : InstRW<[ZnWriteBROADCAST], (instregex "VBROADCASTF128")>;
|
|
|
|
// EXTRACTPS.
|
|
// r32,x,i.
|
|
def ZnWriteEXTRACTPSr : SchedWriteRes<[ZnFPU12, ZnFPU2]> {
|
|
let Latency = 2;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>;
|
|
|
|
def ZnWriteEXTRACTPSm : SchedWriteRes<[ZnAGU,ZnFPU12, ZnFPU2]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [5, 1, 2];
|
|
}
|
|
// m32,x,i.
|
|
def : InstRW<[ZnWriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>;
|
|
|
|
// VEXTRACTF128.
|
|
// x,y,i.
|
|
def : InstRW<[ZnWriteFPU013], (instregex "VEXTRACTF128rr")>;
|
|
|
|
// m128,y,i.
|
|
def : InstRW<[ZnWriteFPU013m], (instregex "VEXTRACTF128mr")>;
|
|
|
|
def ZnWriteVINSERT128r: SchedWriteRes<[ZnFPU013]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def ZnWriteVINSERT128Ld: SchedWriteRes<[ZnAGU,ZnFPU013]> {
|
|
let Latency = 9;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
// VINSERTF128.
|
|
// y,y,x,i.
|
|
def : InstRW<[ZnWriteVINSERT128r], (instregex "VINSERTF128rr")>;
|
|
def : InstRW<[ZnWriteVINSERT128Ld], (instregex "VINSERTF128rm")>;
|
|
|
|
// VMASKMOVP S/D.
|
|
// x,x,m.
|
|
def ZnWriteVMASKMOVPLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 8;
|
|
}
|
|
// y,y,m.
|
|
def ZnWriteVMASKMOVPLdY : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 8;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def ZnWriteVMASKMOVPm : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteVMASKMOVPLd], (instregex "VMASKMOVP(S|D)rm")>;
|
|
def : InstRW<[ZnWriteVMASKMOVPLdY], (instregex "VMASKMOVP(S|D)Yrm")>;
|
|
def : InstRW<[ZnWriteVMASKMOVPm], (instregex "VMASKMOVP(S|D)mr")>;
|
|
|
|
// m256,y,y.
|
|
def ZnWriteVMASKMOVPYmr : SchedWriteRes<[ZnAGU,ZnFPU01]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteVMASKMOVPYmr], (instregex "VMASKMOVP(S|D)Ymr")>;
|
|
|
|
// VGATHERDPS.
|
|
// x.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSrm")>;
|
|
// y.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSYrm")>;
|
|
|
|
// VGATHERQPS.
|
|
// x.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSrm")>;
|
|
|
|
// y.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSYrm")>;
|
|
|
|
// VGATHERDPD.
|
|
// x.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDrm")>;
|
|
|
|
// y.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDYrm")>;
|
|
|
|
// VGATHERQPD.
|
|
// x.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDrm")>;
|
|
|
|
// y.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDYrm")>;
|
|
|
|
//-- Conversion instructions --//
|
|
def ZnWriteCVTPD2PSr: SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 4;
|
|
}
|
|
// CVTPD2PS.
|
|
// x,x.
|
|
def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(V?)CVTPD2PSrr")>;
|
|
|
|
def ZnWriteCVTPD2PSLd: SchedWriteRes<[ZnAGU,ZnFPU03]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,2];
|
|
}
|
|
// x,m128.
|
|
def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(V?)CVTPD2PS(X?)rm")>;
|
|
|
|
// x,y.
|
|
def ZnWriteCVTPD2PSYr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteCVTPD2PSYr], (instregex "(V?)CVTPD2PSYrr")>;
|
|
|
|
// x,m256.
|
|
def ZnWriteCVTPD2PSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 11;
|
|
}
|
|
def : InstRW<[ZnWriteCVTPD2PSYLd], (instregex "(V?)CVTPD2PSYrm")>;
|
|
|
|
// CVTSD2SS.
|
|
// x,x.
|
|
// Same as WriteCVTPD2PSr
|
|
def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(V)?CVTSD2SSrr")>;
|
|
|
|
// x,m64.
|
|
def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(V)?CVTSD2SSrm")>;
|
|
|
|
// CVTPS2PD.
|
|
// x,x.
|
|
def ZnWriteCVTPS2PDr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[ZnWriteCVTPS2PDr], (instregex "(V?)CVTPS2PDrr")>;
|
|
|
|
// x,m64.
|
|
// y,m128.
|
|
def ZnWriteCVTPS2PDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 10;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteCVTPS2PDLd], (instregex "(V?)CVTPS2PD(Y?)rm")>;
|
|
|
|
// y,x.
|
|
def ZnWriteVCVTPS2PDY : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[ZnWriteVCVTPS2PDY], (instregex "VCVTPS2PDYrr")>;
|
|
|
|
// CVTSS2SD.
|
|
// x,x.
|
|
def ZnWriteCVTSS2SDr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteCVTSS2SDr], (instregex "(V?)CVTSS2SDrr")>;
|
|
|
|
// x,m32.
|
|
def ZnWriteCVTSS2SDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[ZnWriteCVTSS2SDLd], (instregex "(V?)CVTSS2SDrm")>;
|
|
|
|
def ZnWriteCVTDQ2PDr: SchedWriteRes<[ZnFPU12,ZnFPU3]> {
|
|
let Latency = 5;
|
|
}
|
|
// CVTDQ2PD.
|
|
// x,x.
|
|
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V)?CVTDQ2PDrr")>;
|
|
|
|
// Same as xmm
|
|
// y,x.
|
|
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "VCVTDQ2PDYrr")>;
|
|
|
|
def ZnWriteCVTPD2DQr: SchedWriteRes<[ZnFPU12, ZnFPU3]> {
|
|
let Latency = 5;
|
|
}
|
|
// CVT(T)PD2DQ.
|
|
// x,x.
|
|
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V?)CVT(T?)PD2DQrr")>;
|
|
|
|
def ZnWriteCVTPD2DQLd: SchedWriteRes<[ZnAGU,ZnFPU12,ZnFPU3]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
}
|
|
// x,m128.
|
|
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)PD2DQrm")>;
|
|
// same as xmm handling
|
|
// x,y.
|
|
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "VCVT(T?)PD2DQYrr")>;
|
|
// x,m256.
|
|
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQYrm")>;
|
|
|
|
def ZnWriteCVTPS2PIr: SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 4;
|
|
}
|
|
// CVT(T)PS2PI.
|
|
// mm,x.
|
|
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PS2PIirr")>;
|
|
|
|
// CVTPI2PD.
|
|
// x,mm.
|
|
def : InstRW<[ZnWriteCVTPS2PDr], (instregex "MMX_CVT(T?)PI2PDirr")>;
|
|
|
|
// CVT(T)PD2PI.
|
|
// mm,x.
|
|
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PD2PIirr")>;
|
|
|
|
def ZnWriteCVSTSI2SSr: SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 5;
|
|
}
|
|
// CVSTSI2SS.
|
|
// x,r32.
|
|
def : InstRW<[ZnWriteCVSTSI2SSr], (instregex "(V?)CVTSI2SS(64)?rr")>;
|
|
|
|
// same as CVTPD2DQr
|
|
// CVT(T)SS2SI.
|
|
// r32,x.
|
|
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "(V?)CVT(T?)SS2SI(64)?rr")>;
|
|
// same as CVTPD2DQm
|
|
// r32,m32.
|
|
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)SS2SI(64)?rm")>;
|
|
|
|
def ZnWriteCVSTSI2SDr: SchedWriteRes<[ZnFPU013, ZnFPU3]> {
|
|
let Latency = 5;
|
|
}
|
|
// CVTSI2SD.
|
|
// x,r32/64.
|
|
def : InstRW<[ZnWriteCVSTSI2SDr], (instregex "(V?)CVTSI2SD(64)?rr")>;
|
|
|
|
|
|
def ZnWriteCVSTSI2SIr: SchedWriteRes<[ZnFPU3, ZnFPU2]> {
|
|
let Latency = 5;
|
|
}
|
|
def ZnWriteCVSTSI2SILd: SchedWriteRes<[ZnAGU, ZnFPU3, ZnFPU2]> {
|
|
let Latency = 12;
|
|
}
|
|
// CVTSD2SI.
|
|
// r32/64
|
|
def : InstRW<[ZnWriteCVSTSI2SIr], (instregex "(V?)CVT(T?)SD2SI(64)?rr")>;
|
|
// r32,m32.
|
|
def : InstRW<[ZnWriteCVSTSI2SILd], (instregex "(V?)CVT(T?)SD2SI(64)?rm")>;
|
|
|
|
|
|
// VCVTPS2PH.
|
|
// x,v,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)rr")>;
|
|
// m,v,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)mr")>;
|
|
|
|
// VCVTPH2PS.
|
|
// v,x.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rr")>;
|
|
// v,m.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rm")>;
|
|
|
|
//-- SSE4A instructions --//
|
|
// EXTRQ
|
|
def ZnWriteEXTRQ: SchedWriteRes<[ZnFPU12, ZnFPU2]> {
|
|
let Latency = 2;
|
|
}
|
|
def : InstRW<[ZnWriteEXTRQ], (instregex "EXTRQ")>;
|
|
|
|
// INSERTQ
|
|
def ZnWriteINSERTQ: SchedWriteRes<[ZnFPU03,ZnFPU1]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteINSERTQ], (instregex "INSERTQ")>;
|
|
|
|
// MOVNTSS/MOVNTSD
|
|
def ZnWriteMOVNT: SchedWriteRes<[ZnAGU,ZnFPU2]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteMOVNT], (instregex "MOVNTS(S|D)")>;
|
|
|
|
//-- SHA instructions --//
|
|
// SHA256MSG2
|
|
def : InstRW<[WriteMicrocoded], (instregex "SHA256MSG2(Y?)r(r|m)")>;
|
|
|
|
// SHA1MSG1, SHA256MSG1
|
|
// x,x.
|
|
def ZnWriteSHA1MSG1r : SchedWriteRes<[ZnFPU12]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : InstRW<[ZnWriteSHA1MSG1r], (instregex "SHA(1|256)MSG1rr")>;
|
|
// x,m.
|
|
def ZnWriteSHA1MSG1Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [1,2];
|
|
}
|
|
def : InstRW<[ZnWriteSHA1MSG1Ld], (instregex "SHA(1|256)MSG1rm")>;
|
|
|
|
// SHA1MSG2
|
|
// x,x.
|
|
def ZnWriteSHA1MSG2r : SchedWriteRes<[ZnFPU12]> ;
|
|
def : InstRW<[ZnWriteSHA1MSG2r], (instregex "SHA1MSG2rr")>;
|
|
// x,m.
|
|
def ZnWriteSHA1MSG2Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteSHA1MSG2Ld], (instregex "SHA1MSG2rm")>;
|
|
|
|
// SHA1NEXTE
|
|
// x,x.
|
|
def ZnWriteSHA1NEXTEr : SchedWriteRes<[ZnFPU1]> ;
|
|
def : InstRW<[ZnWriteSHA1NEXTEr], (instregex "SHA1NEXTErr")>;
|
|
// x,m.
|
|
def ZnWriteSHA1NEXTELd : SchedWriteRes<[ZnAGU, ZnFPU1]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[ZnWriteSHA1NEXTELd], (instregex "SHA1NEXTErm")>;
|
|
|
|
// SHA1RNDS4
|
|
// x,x.
|
|
def ZnWriteSHA1RNDS4r : SchedWriteRes<[ZnFPU1]> {
|
|
let Latency = 6;
|
|
}
|
|
def : InstRW<[ZnWriteSHA1RNDS4r], (instregex "SHA1RNDS4rr")>;
|
|
// x,m.
|
|
def ZnWriteSHA1RNDS4Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
|
|
let Latency = 13;
|
|
}
|
|
def : InstRW<[ZnWriteSHA1RNDS4Ld], (instregex "SHA1RNDS4rm")>;
|
|
|
|
// SHA256RNDS2
|
|
// x,x.
|
|
def ZnWriteSHA256RNDS2r : SchedWriteRes<[ZnFPU1]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteSHA256RNDS2r], (instregex "SHA256RNDS2rr")>;
|
|
// x,m.
|
|
def ZnWriteSHA256RNDS2Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
|
|
let Latency = 11;
|
|
}
|
|
def : InstRW<[ZnWriteSHA256RNDS2Ld], (instregex "SHA256RNDS2rm")>;
|
|
|
|
//-- Arithmetic instructions --//
|
|
|
|
// HADD, HSUB PS/PD
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)H(ADD|SUB)P(S|D)(Y?)r(r|m)")>;
|
|
|
|
// MULL SS/SD PS/PD.
|
|
// x,x / v,v,v.
|
|
def ZnWriteMULr : SchedWriteRes<[ZnFPU01]> {
|
|
let Latency = 3;
|
|
}
|
|
// ymm.
|
|
def ZnWriteMULYr : SchedWriteRes<[ZnFPU01]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteMULr], (instregex "(V?)MUL(P|S)(S|D)rr")>;
|
|
def : InstRW<[ZnWriteMULYr], (instregex "(V?)MUL(P|S)(S|D)Yrr")>;
|
|
|
|
// x,m / v,v,m.
|
|
def ZnWriteMULLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 10;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteMULLd], (instregex "(V?)MUL(P|S)(S|D)rm")>;
|
|
|
|
// ymm
|
|
def ZnWriteMULYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteMULYLd], (instregex "(V?)MUL(P|S)(S|D)Yrm")>;
|
|
|
|
// VDIVPS.
|
|
// y,y,y.
|
|
def ZnWriteVDIVPSYr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 12;
|
|
let ResourceCycles = [12];
|
|
}
|
|
def : InstRW<[ZnWriteVDIVPSYr], (instregex "VDIVPSYrr")>;
|
|
|
|
// y,y,m256.
|
|
def ZnWriteVDIVPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 19;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1, 19];
|
|
}
|
|
def : InstRW<[ZnWriteVDIVPSYLd], (instregex "VDIVPSYrm")>;
|
|
|
|
// VDIVPD.
|
|
// y,y,y.
|
|
def ZnWriteVDIVPDY : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 15;
|
|
let ResourceCycles = [15];
|
|
}
|
|
def : InstRW<[ZnWriteVDIVPDY], (instregex "VDIVPDYrr")>;
|
|
|
|
// y,y,m256.
|
|
def ZnWriteVDIVPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 22;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,22];
|
|
}
|
|
def : InstRW<[ZnWriteVDIVPDYLd], (instregex "VDIVPDYrm")>;
|
|
|
|
// VRCPPS.
|
|
// y,y.
|
|
def ZnWriteVRCPPSr : SchedWriteRes<[ZnFPU01]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteVRCPPSr], (instregex "VRCPPSYr")>;
|
|
|
|
// y,m256.
|
|
def ZnWriteVRCPPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[ZnWriteVRCPPSLd], (instregex "VRCPPSYm")>;
|
|
|
|
// ROUND SS/SD PS/PD.
|
|
// v,v,i.
|
|
def ZnWriteROUNDr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 4;
|
|
}
|
|
def : InstRW<[ZnWriteROUNDr], (instregex "(V?)ROUND(S|P)(S|D)(Y?)r")>;
|
|
|
|
// v,m,i.
|
|
def ZnWriteROUNDm : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 11;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteROUNDm], (instregex "(V?)ROUND(S|P)(S|D)(Y?)m")>;
|
|
|
|
// DPPS.
|
|
// x,x,i / v,v,v,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rri")>;
|
|
|
|
// x,m,i / v,v,m,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rmi")>;
|
|
|
|
// DPPD.
|
|
// x,x,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrri")>;
|
|
|
|
// x,m,i.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrmi")>;
|
|
|
|
// VSQRTPS.
|
|
// y,y.
|
|
def ZnWriteVSQRTPSYr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 28;
|
|
let ResourceCycles = [28];
|
|
}
|
|
def : InstRW<[ZnWriteVSQRTPSYr], (instregex "VSQRTPSYr")>;
|
|
|
|
// y,m256.
|
|
def ZnWriteVSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 35;
|
|
let ResourceCycles = [1,35];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteVSQRTPSYLd], (instregex "VSQRTPSYm")>;
|
|
|
|
// VSQRTPD.
|
|
// y,y.
|
|
def ZnWriteVSQRTPDYr : SchedWriteRes<[ZnFPU3]> {
|
|
let Latency = 40;
|
|
let ResourceCycles = [40];
|
|
}
|
|
def : InstRW<[ZnWriteVSQRTPDYr], (instregex "VSQRTPDYr")>;
|
|
|
|
// y,m256.
|
|
def ZnWriteVSQRTPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
|
|
let Latency = 47;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,47];
|
|
}
|
|
def : InstRW<[ZnWriteVSQRTPDYLd], (instregex "VSQRTPDYm")>;
|
|
|
|
// RSQRTSS
|
|
// x,x.
|
|
def ZnWriteRSQRTSSr : SchedWriteRes<[ZnFPU02]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTSSr], (instregex "(V?)RSQRTSS(Y?)r")>;
|
|
|
|
// RSQRTPS
|
|
// x,x.
|
|
def ZnWriteRSQRTPSr : SchedWriteRes<[ZnFPU01]> {
|
|
let Latency = 5;
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTPSr], (instregex "(V?)RSQRTPSr")>;
|
|
|
|
// RSQRTSSm
|
|
// x,m128.
|
|
def ZnWriteRSQRTSSLd: SchedWriteRes<[ZnAGU, ZnFPU02]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [1,2];
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTSSLd], (instregex "(V?)RSQRTSSm")>;
|
|
|
|
// RSQRTPSm
|
|
def ZnWriteRSQRTPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTPSLd], (instregex "(V?)RSQRTPSm")>;
|
|
|
|
// RSQRTPS 256.
|
|
// y,y.
|
|
def ZnWriteRSQRTPSYr : SchedWriteRes<[ZnFPU01]> {
|
|
let Latency = 5;
|
|
let NumMicroOps = 2;
|
|
let ResourceCycles = [2];
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTPSYr], (instregex "VRSQRTPSYr")>;
|
|
|
|
// y,m256.
|
|
def ZnWriteRSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[ZnWriteRSQRTPSYLd], (instregex "VRSQRTPSYm")>;
|
|
|
|
//-- Other instructions --//
|
|
|
|
// VZEROUPPER.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VZEROUPPER")>;
|
|
|
|
// VZEROALL.
|
|
def : InstRW<[WriteMicrocoded], (instregex "VZEROALL")>;
|
|
|
|
// LDMXCSR.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V)?LDMXCSR")>;
|
|
|
|
// STMXCSR.
|
|
def : InstRW<[WriteMicrocoded], (instregex "(V)?STMXCSR")>;
|
|
|
|
} // SchedModel
|