1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
Bradley Smith ef187efe53 [TargetLowering][AArch64][SVE] Take into account accessed type when clamping address
When clamping the index for a memory access to a stacked vector we must
take into account the entire type being accessed, not just assume that
we are accessing only a single element.

Differential Revision: https://reviews.llvm.org/D105016
2021-06-30 13:30:18 +01:00

4994 lines
192 KiB
C++

//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "legalizedag"
namespace {
/// Keeps track of state when getting the sign of a floating-point value as an
/// integer.
struct FloatSignAsInt {
EVT FloatVT;
SDValue Chain;
SDValue FloatPtr;
SDValue IntPtr;
MachinePointerInfo IntPointerInfo;
MachinePointerInfo FloatPointerInfo;
SDValue IntValue;
APInt SignMask;
uint8_t SignBit;
};
//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
class SelectionDAGLegalize {
const TargetMachine &TM;
const TargetLowering &TLI;
SelectionDAG &DAG;
/// The set of nodes which have already been legalized. We hold a
/// reference to it in order to update as necessary on node deletion.
SmallPtrSetImpl<SDNode *> &LegalizedNodes;
/// A set of all the nodes updated during legalization.
SmallSetVector<SDNode *, 16> *UpdatedNodes;
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
// Libcall insertion helpers.
public:
SelectionDAGLegalize(SelectionDAG &DAG,
SmallPtrSetImpl<SDNode *> &LegalizedNodes,
SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
: TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
/// Legalizes the given operation.
void LegalizeOp(SDNode *Node);
private:
SDValue OptimizeFloatStore(StoreSDNode *ST);
void LegalizeLoadOps(SDNode *Node);
void LegalizeStoreOps(SDNode *Node);
/// Some targets cannot handle a variable
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
const SDLoc &dl);
SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
const SDLoc &dl);
/// Return a vector shuffle operation which
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
SDValue N1, SDValue N2,
ArrayRef<int> Mask) const;
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC,
SmallVectorImpl<SDValue> &Results);
void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128,
SmallVectorImpl<SDValue> &Results);
SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
RTLIB::Libcall Call_I8,
RTLIB::Libcall Call_I16,
RTLIB::Libcall Call_I32,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128);
void ExpandArgFPLibCall(SDNode *Node,
RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128,
SmallVectorImpl<SDValue> &Results);
void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
const SDLoc &dl);
SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
const SDLoc &dl, SDValue ChainIn);
SDValue ExpandBUILD_VECTOR(SDNode *Node);
SDValue ExpandSPLAT_VECTOR(SDNode *Node);
SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
SmallVectorImpl<SDValue> &Results);
void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
SDValue Value) const;
SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
SDValue NewIntValue) const;
SDValue ExpandFCOPYSIGN(SDNode *Node) const;
SDValue ExpandFABS(SDNode *Node) const;
SDValue ExpandFNEG(SDNode *Node) const;
SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
SmallVectorImpl<SDValue> &Results);
void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
SmallVectorImpl<SDValue> &Results);
SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl);
SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);
SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
SDValue ExpandInsertToVectorThroughStack(SDValue Op);
SDValue ExpandVectorBuildThroughStack(SDNode* Node);
SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
SDValue ExpandConstant(ConstantSDNode *CP);
// if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
bool ExpandNode(SDNode *Node);
void ConvertNodeToLibcall(SDNode *Node);
void PromoteNode(SDNode *Node);
public:
// Node replacement helpers
void ReplacedNode(SDNode *N) {
LegalizedNodes.erase(N);
if (UpdatedNodes)
UpdatedNodes->insert(N);
}
void ReplaceNode(SDNode *Old, SDNode *New) {
LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
dbgs() << " with: "; New->dump(&DAG));
assert(Old->getNumValues() == New->getNumValues() &&
"Replacing one node with another that produces a different number "
"of values!");
DAG.ReplaceAllUsesWith(Old, New);
if (UpdatedNodes)
UpdatedNodes->insert(New);
ReplacedNode(Old);
}
void ReplaceNode(SDValue Old, SDValue New) {
LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
dbgs() << " with: "; New->dump(&DAG));
DAG.ReplaceAllUsesWith(Old, New);
if (UpdatedNodes)
UpdatedNodes->insert(New.getNode());
ReplacedNode(Old.getNode());
}
void ReplaceNode(SDNode *Old, const SDValue *New) {
LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
DAG.ReplaceAllUsesWith(Old, New);
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
New[i]->dump(&DAG));
if (UpdatedNodes)
UpdatedNodes->insert(New[i].getNode());
}
ReplacedNode(Old);
}
void ReplaceNodeWithValue(SDValue Old, SDValue New) {
LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
dbgs() << " with: "; New->dump(&DAG));
DAG.ReplaceAllUsesOfValueWith(Old, New);
if (UpdatedNodes)
UpdatedNodes->insert(New.getNode());
ReplacedNode(Old.getNode());
}
};
} // end anonymous namespace
/// Return a vector shuffle operation which
/// performs the same shuffle in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
ArrayRef<int> Mask) const {
unsigned NumMaskElts = VT.getVectorNumElements();
unsigned NumDestElts = NVT.getVectorNumElements();
unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
if (NumEltsGrowth == 1)
return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumMaskElts; ++i) {
int Idx = Mask[i];
for (unsigned j = 0; j != NumEltsGrowth; ++j) {
if (Idx < 0)
NewMask.push_back(-1);
else
NewMask.push_back(Idx * NumEltsGrowth + j);
}
}
assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
}
/// Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
SDValue
SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
bool Extend = false;
SDLoc dl(CFP);
// If a FP immediate is precise when represented as a float and if the
// target can do an extending load from float to double, we put it into
// the constant pool as a float, even if it's is statically typed as a
// double. This shrinks FP constants and canonicalizes them for targets where
// an FP extending load is the same cost as a normal load (such as on the x87
// fp stack or PPC FP unit).
EVT VT = CFP->getValueType(0);
ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
if (!UseCP) {
assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
}
APFloat APF = CFP->getValueAPF();
EVT OrigVT = VT;
EVT SVT = VT;
// We don't want to shrink SNaNs. Converting the SNaN back to its real type
// can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
if (!APF.isSignaling()) {
while (SVT != MVT::f32 && SVT != MVT::f16) {
SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
// Only do this if the target has a native EXTLOAD instruction from
// smaller type.
TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
TLI.ShouldShrinkFPConstant(OrigVT)) {
Type *SType = SVT.getTypeForEVT(*DAG.getContext());
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
VT = SVT;
Extend = true;
}
}
}
SDValue CPIdx =
DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
if (Extend) {
SDValue Result = DAG.getExtLoad(
ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
Alignment);
return Result;
}
SDValue Result = DAG.getLoad(
OrigVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
return Result;
}
/// Expands the Constant node to a load from the constant pool.
SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
SDLoc dl(CP);
EVT VT = CP->getValueType(0);
SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
TLI.getPointerTy(DAG.getDataLayout()));
Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
SDValue Result = DAG.getLoad(
VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
return Result;
}
/// Some target cannot handle a variable insertion index for the
/// INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
SDValue Val,
SDValue Idx,
const SDLoc &dl) {
SDValue Tmp1 = Vec;
SDValue Tmp2 = Val;
SDValue Tmp3 = Idx;
// If the target doesn't support this, we have to spill the input vector
// to a temporary stack slot, update the element, then reload it. This is
// badness. We could also load the value into a vector register (either
// with a "move to register" or "extload into register" instruction, then
// permute it into place, if the idx is a constant and if the idx is
// supported by the target.
EVT VT = Tmp1.getValueType();
EVT EltVT = VT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
// Store the vector.
SDValue Ch = DAG.getStore(
DAG.getEntryNode(), dl, Tmp1, StackPtr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
// Store the scalar value.
Ch = DAG.getTruncStore(
Ch, dl, Tmp2, StackPtr2,
MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
// Load the updated vector.
return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), SPFI));
}
SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
SDValue Idx,
const SDLoc &dl) {
if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
// SCALAR_TO_VECTOR requires that the type of the value being inserted
// match the element type of the vector being created, except for
// integers in which case the inserted value can be over width.
EVT EltVT = Vec.getValueType().getVectorElementType();
if (Val.getValueType() == EltVT ||
(EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Vec.getValueType(), Val);
unsigned NumElts = Vec.getValueType().getVectorNumElements();
// We generate a shuffle of InVec and ScVec, so the shuffle mask
// should be 0,1,2,3,4,5... with the appropriate element replaced with
// elt 0 of the RHS.
SmallVector<int, 8> ShufOps;
for (unsigned i = 0; i != NumElts; ++i)
ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
}
}
return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
}
SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
if (!ISD::isNormalStore(ST))
return SDValue();
LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
// FIXME: move this to the DAG Combiner! Note that we can't regress due
// to phase ordering between legalized code and the dag combiner. This
// probably means that we need to integrate dag combiner and legalizer
// together.
// We generally can't do this one for long doubles.
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDValue Value = ST->getValue();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
SDLoc dl(ST);
// Don't optimise TargetConstantFP
if (Value.getOpcode() == ISD::TargetConstantFP)
return SDValue();
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
if (CFP->getValueType(0) == MVT::f32 &&
TLI.isTypeLegal(MVT::i32)) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().
bitcastToAPInt().zextOrTrunc(32),
SDLoc(CFP), MVT::i32);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
ST->getOriginalAlign(), MMOFlags, AAInfo);
}
if (CFP->getValueType(0) == MVT::f64) {
// If this target supports 64-bit registers, do a single 64-bit store.
if (TLI.isTypeLegal(MVT::i64)) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
zextOrTrunc(64), SDLoc(CFP), MVT::i64);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
ST->getOriginalAlign(), MMOFlags, AAInfo);
}
if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
// Otherwise, if the target supports 32-bit registers, use 2 32-bit
// stores. If the target supports neither 32- nor 64-bits, this
// xform is certainly not worth it.
const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
ST->getOriginalAlign(), MMOFlags, AAInfo);
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
ST->getOriginalAlign(), MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
}
}
return SDValue();
}
void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDLoc dl(Node);
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
if (!ST->isTruncatingStore()) {
LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
ReplaceNode(ST, OptStore);
return;
}
SDValue Value = ST->getValue();
MVT VT = Value.getSimpleValueType();
switch (TLI.getOperationAction(ISD::STORE, VT)) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
// If this is an unaligned store and the target doesn't support it,
// expand it.
EVT MemVT = ST->getMemoryVT();
const DataLayout &DL = DAG.getDataLayout();
if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
*ST->getMemOperand())) {
LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
SDValue Result = TLI.expandUnalignedStore(ST, DAG);
ReplaceNode(SDValue(ST, 0), Result);
} else
LLVM_DEBUG(dbgs() << "Legal store\n");
break;
}
case TargetLowering::Custom: {
LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res && Res != SDValue(Node, 0))
ReplaceNode(SDValue(Node, 0), Res);
return;
}
case TargetLowering::Promote: {
MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
"Can only promote stores to same size type");
Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
ST->getOriginalAlign(), MMOFlags, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
}
return;
}
LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
SDValue Value = ST->getValue();
EVT StVT = ST->getMemoryVT();
TypeSize StWidth = StVT.getSizeInBits();
TypeSize StSize = StVT.getStoreSizeInBits();
auto &DL = DAG.getDataLayout();
if (StWidth != StSize) {
// Promote to a byte-sized store with upper bits zero if not
// storing an integral number of bytes. For example, promote
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize());
Value = DAG.getZeroExtendInReg(Value, dl, StVT);
SDValue Result =
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
ST->getOriginalAlign(), MMOFlags, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
} else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) {
// If not storing a power-of-2 number of bits, expand as two stores.
assert(!StVT.isVector() && "Unsupported truncstore!");
unsigned StWidthBits = StWidth.getFixedSize();
unsigned LogStWidth = Log2_32(StWidthBits);
assert(LogStWidth < 32);
unsigned RoundWidth = 1 << LogStWidth;
assert(RoundWidth < StWidthBits);
unsigned ExtraWidth = StWidthBits - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Store size not an integral number of bytes!");
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi;
unsigned IncrementSize;
if (DL.isLittleEndian()) {
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
// Store the bottom RoundWidth bits.
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
Hi = DAG.getNode(
ISD::SRL, dl, Value.getValueType(), Value,
DAG.getConstant(RoundWidth, dl,
TLI.getShiftAmountTy(Value.getValueType(), DL)));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
} else {
// Big endian - avoid unaligned stores.
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
// Store the top RoundWidth bits.
Hi = DAG.getNode(
ISD::SRL, dl, Value.getValueType(), Value,
DAG.getConstant(ExtraWidth, dl,
TLI.getShiftAmountTy(Value.getValueType(), DL)));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
ST->getOriginalAlign(), MMOFlags, AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl,
Ptr.getValueType()));
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
}
// The order of the stores doesn't matter.
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
ReplaceNode(SDValue(Node, 0), Result);
} else {
switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
EVT MemVT = ST->getMemoryVT();
// If this is an unaligned store and the target doesn't support it,
// expand it.
if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
*ST->getMemOperand())) {
SDValue Result = TLI.expandUnalignedStore(ST, DAG);
ReplaceNode(SDValue(ST, 0), Result);
}
break;
}
case TargetLowering::Custom: {
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res && Res != SDValue(Node, 0))
ReplaceNode(SDValue(Node, 0), Res);
return;
}
case TargetLowering::Expand:
assert(!StVT.isVector() &&
"Vector Stores are handled in LegalizeVectorOps");
SDValue Result;
// TRUNCSTORE:i16 i32 -> STORE i16
if (TLI.isTypeLegal(StVT)) {
Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
ST->getOriginalAlign(), MMOFlags, AAInfo);
} else {
// The in-memory type isn't legal. Truncate to the type it would promote
// to, and then do a truncstore.
Value = DAG.getNode(ISD::TRUNCATE, dl,
TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
Value);
Result =
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
ST->getOriginalAlign(), MMOFlags, AAInfo);
}
ReplaceNode(SDValue(Node, 0), Result);
break;
}
}
}
void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDValue Chain = LD->getChain(); // The chain.
SDValue Ptr = LD->getBasePtr(); // The base pointer.
SDValue Value; // The value returned by the load op.
SDLoc dl(Node);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
MVT VT = Node->getSimpleValueType(0);
SDValue RVal = SDValue(Node, 0);
SDValue RChain = SDValue(Node, 1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
EVT MemVT = LD->getMemoryVT();
const DataLayout &DL = DAG.getDataLayout();
// If this is an unaligned load and the target doesn't support it,
// expand it.
if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
*LD->getMemOperand())) {
std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
}
break;
}
case TargetLowering::Custom:
if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
RVal = Res;
RChain = Res.getValue(1);
}
break;
case TargetLowering::Promote: {
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
"Can only promote loads to same size type");
SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
RChain = Res.getValue(1);
break;
}
}
if (RChain.getNode() != Node) {
assert(RVal.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
if (UpdatedNodes) {
UpdatedNodes->insert(RVal.getNode());
UpdatedNodes->insert(RChain.getNode());
}
ReplacedNode(Node);
}
return;
}
LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
EVT SrcVT = LD->getMemoryVT();
TypeSize SrcWidth = SrcVT.getSizeInBits();
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
AAMDNodes AAInfo = LD->getAAInfo();
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
// Some targets pretend to have an i1 loading operation, and actually
// load an i8. This trick is correct for ZEXTLOAD because the top 7
// bits are guaranteed to be zero; it helps the optimizers understand
// that these bits are zero. It is also useful for EXTLOAD, since it
// tells the optimizers that those bits are undefined. It would be
// nice to have an effective generic way of getting these benefits...
// Until such a way is found, don't insist on promoting i1 here.
(SrcVT != MVT::i1 ||
TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
TargetLowering::Promote)) {
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
unsigned NewWidth = SrcVT.getStoreSizeInBits();
EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
SDValue Ch;
// The extra bits are guaranteed to be zero, since we stored them that
// way. A zext load from NVT thus automatically gives zext from SrcVT.
ISD::LoadExtType NewExtType =
ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
Chain, Ptr, LD->getPointerInfo(), NVT,
LD->getOriginalAlign(), MMOFlags, AAInfo);
Ch = Result.getValue(1); // The chain.
if (ExtType == ISD::SEXTLOAD)
// Having the top bits zero doesn't help when sign extending.
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
// All the top bits are guaranteed to be zero - inform the optimizers.
Result = DAG.getNode(ISD::AssertZext, dl,
Result.getValueType(), Result,
DAG.getValueType(SrcVT));
Value = Result;
Chain = Ch;
} else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
// If not loading a power-of-2 number of bits, expand as two loads.
assert(!SrcVT.isVector() && "Unsupported extload!");
unsigned SrcWidthBits = SrcWidth.getFixedSize();
unsigned LogSrcWidth = Log2_32(SrcWidthBits);
assert(LogSrcWidth < 32);
unsigned RoundWidth = 1 << LogSrcWidth;
assert(RoundWidth < SrcWidthBits);
unsigned ExtraWidth = SrcWidthBits - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Load size not an integral number of bytes!");
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi, Ch;
unsigned IncrementSize;
auto &DL = DAG.getDataLayout();
if (DL.isLittleEndian()) {
// EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
// Load the bottom RoundWidth bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
MMOFlags, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(
ISD::SHL, dl, Hi.getValueType(), Hi,
DAG.getConstant(RoundWidth, dl,
TLI.getShiftAmountTy(Hi.getValueType(), DL)));
// Join the hi and lo parts.
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
} else {
// Big endian - avoid unaligned loads.
// EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
// Load the top RoundWidth bits.
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
MMOFlags, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(
ISD::SHL, dl, Hi.getValueType(), Hi,
DAG.getConstant(ExtraWidth, dl,
TLI.getShiftAmountTy(Hi.getValueType(), DL)));
// Join the hi and lo parts.
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
}
Chain = Ch;
} else {
bool isCustom = false;
switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
SrcVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
LLVM_FALLTHROUGH;
case TargetLowering::Legal:
Value = SDValue(Node, 0);
Chain = SDValue(Node, 1);
if (isCustom) {
if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
Value = Res;
Chain = Res.getValue(1);
}
} else {
// If this is an unaligned load and the target doesn't support it,
// expand it.
EVT MemVT = LD->getMemoryVT();
const DataLayout &DL = DAG.getDataLayout();
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
*LD->getMemOperand())) {
std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
}
}
break;
case TargetLowering::Expand: {
EVT DestVT = Node->getValueType(0);
if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
// If the source type is not legal, see if there is a legal extload to
// an intermediate type that we can then extend further.
EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
// If we are loading a legal type, this is a non-extload followed by a
// full extend.
ISD::LoadExtType MidExtType =
(LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
SrcVT, LD->getMemOperand());
unsigned ExtendOp =
ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
Chain = Load.getValue(1);
break;
}
// Handle the special case of fp16 extloads. EXTLOAD doesn't have the
// normal undefined upper bits behavior to allow using an in-reg extend
// with the illegal FP type, so load as an integer and do the
// from-integer conversion.
if (SrcVT.getScalarType() == MVT::f16) {
EVT ISrcVT = SrcVT.changeTypeToInteger();
EVT IDestVT = DestVT.changeTypeToInteger();
EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
Ptr, ISrcVT, LD->getMemOperand());
Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
Chain = Result.getValue(1);
break;
}
}
assert(!SrcVT.isVector() &&
"Vector Loads are handled in LegalizeVectorOps");
// FIXME: This does not work for vectors on most targets. Sign-
// and zero-extend operations are currently folded into extending
// loads, whether they are legal or not, and then we end up here
// without any support for legalizing them.
assert(ExtType != ISD::EXTLOAD &&
"EXTLOAD should always be supported!");
// Turn the unsupported load into an EXTLOAD followed by an
// explicit zero/sign extend inreg.
SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
Node->getValueType(0),
Chain, Ptr, SrcVT,
LD->getMemOperand());
SDValue ValRes;
if (ExtType == ISD::SEXTLOAD)
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else
ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
Value = ValRes;
Chain = Result.getValue(1);
break;
}
}
}
// Since loads produce two values, make sure to remember that we legalized
// both of them.
if (Chain.getNode() != Node) {
assert(Value.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
if (UpdatedNodes) {
UpdatedNodes->insert(Value.getNode());
UpdatedNodes->insert(Chain.getNode());
}
ReplacedNode(Node);
}
}
/// Return a legal replacement for the given operation, with all legal operands.
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
// Allow illegal target nodes and illegal registers.
if (Node->getOpcode() == ISD::TargetConstant ||
Node->getOpcode() == ISD::Register)
return;
#ifndef NDEBUG
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
TargetLowering::TypeLegal &&
"Unexpected illegal type!");
for (const SDValue &Op : Node->op_values())
assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
TargetLowering::TypeLegal ||
Op.getOpcode() == ISD::TargetConstant ||
Op.getOpcode() == ISD::Register) &&
"Unexpected illegal type!");
#endif
// Figure out the correct action; the way to query this varies by opcode
TargetLowering::LegalizeAction Action = TargetLowering::Legal;
bool SimpleFinishLegalizing = true;
switch (Node->getOpcode()) {
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID:
case ISD::STACKSAVE:
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
break;
case ISD::GET_DYNAMIC_AREA_OFFSET:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0));
break;
case ISD::VAARG:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0));
if (Action != TargetLowering::Promote)
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
break;
case ISD::FP_TO_FP16:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::LROUND:
case ISD::LLROUND:
case ISD::LRINT:
case ISD::LLRINT:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(0).getValueType());
break;
case ISD::STRICT_FP_TO_FP16:
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::STRICT_LRINT:
case ISD::STRICT_LLRINT:
case ISD::STRICT_LROUND:
case ISD::STRICT_LLROUND:
// These pseudo-ops are the same as the other STRICT_ ops except
// they are registered with setOperationAction() using the input type
// instead of the output type.
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(1).getValueType());
break;
case ISD::SIGN_EXTEND_INREG: {
EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
break;
}
case ISD::ATOMIC_STORE:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(2).getValueType());
break;
case ISD::SELECT_CC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
case ISD::SETCC:
case ISD::BR_CC: {
unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
Node->getOpcode() == ISD::SETCC ? 2 : 1;
unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
Action = TLI.getCondCodeAction(CCCode, OpVT);
if (Action == TargetLowering::Legal) {
if (Node->getOpcode() == ISD::SELECT_CC)
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0));
else
Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
}
break;
}
case ISD::LOAD:
case ISD::STORE:
// FIXME: Model these properly. LOAD and STORE are complicated, and
// STORE expects the unlegalized operand in some cases.
SimpleFinishLegalizing = false;
break;
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
// FIXME: This shouldn't be necessary. These nodes have special properties
// dealing with the recursive nature of legalization. Removing this
// special case should be done as part of making LegalizeDAG non-recursive.
SimpleFinishLegalizing = false;
break;
case ISD::EXTRACT_ELEMENT:
case ISD::FLT_ROUNDS_:
case ISD::MERGE_VALUES:
case ISD::EH_RETURN:
case ISD::FRAME_TO_ARGS_OFFSET:
case ISD::EH_DWARF_CFA:
case ISD::EH_SJLJ_SETJMP:
case ISD::EH_SJLJ_LONGJMP:
case ISD::EH_SJLJ_SETUP_DISPATCH:
// These operations lie about being legal: when they claim to be legal,
// they should actually be expanded.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Legal)
Action = TargetLowering::Expand;
break;
case ISD::INIT_TRAMPOLINE:
case ISD::ADJUST_TRAMPOLINE:
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
case ISD::ADDROFRETURNADDR:
case ISD::SPONENTRY:
// These operations lie about being legal: when they claim to be legal,
// they should actually be custom-lowered.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Legal)
Action = TargetLowering::Custom;
break;
case ISD::READCYCLECOUNTER:
// READCYCLECOUNTER returns an i64, even if type legalization might have
// expanded that to several smaller types.
Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
break;
case ISD::READ_REGISTER:
case ISD::WRITE_REGISTER:
// Named register is legal in the DAG, but blocked by register name
// selection if not implemented by target (to chose the correct register)
// They'll be converted to Copy(To/From)Reg.
Action = TargetLowering::Legal;
break;
case ISD::UBSANTRAP:
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Expand) {
// replace ISD::UBSANTRAP with ISD::TRAP
SDValue NewVal;
NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
Node->getOperand(0));
ReplaceNode(Node, NewVal.getNode());
LegalizeOp(NewVal.getNode());
return;
}
break;
case ISD::DEBUGTRAP:
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Expand) {
// replace ISD::DEBUGTRAP with ISD::TRAP
SDValue NewVal;
NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
Node->getOperand(0));
ReplaceNode(Node, NewVal.getNode());
LegalizeOp(NewVal.getNode());
return;
}
break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT:
case ISD::SSHLSAT:
case ISD::USHLSAT:
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
case ISD::SDIVFIX:
case ISD::SDIVFIXSAT:
case ISD::UDIVFIX:
case ISD::UDIVFIXSAT: {
unsigned Scale = Node->getConstantOperandVal(2);
Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
Node->getValueType(0), Scale);
break;
}
case ISD::MSCATTER:
Action = TLI.getOperationAction(Node->getOpcode(),
cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
break;
case ISD::MSTORE:
Action = TLI.getOperationAction(Node->getOpcode(),
cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
Action = TLI.getOperationAction(
Node->getOpcode(), Node->getOperand(0).getValueType());
break;
case ISD::VECREDUCE_SEQ_FADD:
Action = TLI.getOperationAction(
Node->getOpcode(), Node->getOperand(1).getValueType());
break;
default:
if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
Action = TargetLowering::Legal;
} else {
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
}
break;
}
if (SimpleFinishLegalizing) {
SDNode *NewNode = Node;
switch (Node->getOpcode()) {
default: break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::ROTL:
case ISD::ROTR: {
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
if (!Op1.getValueType().isVector()) {
SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
// The getShiftAmountOperand() may create a new operand node or
// return the existing one. If new operand is created we need
// to update the parent node.
// Do not try to legalize SAO here! It will be automatically legalized
// in the next round.
if (SAO != Op1)
NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
}
}
break;
case ISD::FSHL:
case ISD::FSHR:
case ISD::SRL_PARTS:
case ISD::SRA_PARTS:
case ISD::SHL_PARTS: {
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDValue Op2 = Node->getOperand(2);
if (!Op2.getValueType().isVector()) {
SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
// The getShiftAmountOperand() may create a new operand node or
// return the existing one. If new operand is created we need
// to update the parent node.
if (SAO != Op2)
NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
}
break;
}
}
if (NewNode != Node) {
ReplaceNode(Node, NewNode);
Node = NewNode;
}
switch (Action) {
case TargetLowering::Legal:
LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
return;
case TargetLowering::Custom:
LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
// FIXME: The handling for custom lowering with multiple results is
// a complete mess.
if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
if (!(Res.getNode() != Node || Res.getResNo() != 0))
return;
if (Node->getNumValues() == 1) {
// Verify the new types match the original. Glue is waived because
// ISD::ADDC can be legalized by replacing Glue with an integer type.
assert((Res.getValueType() == Node->getValueType(0) ||
Node->getValueType(0) == MVT::Glue) &&
"Type mismatch for custom legalized operation");
LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
// We can just directly replace this node with the lowered value.
ReplaceNode(SDValue(Node, 0), Res);
return;
}
SmallVector<SDValue, 8> ResultVals;
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
// Verify the new types match the original. Glue is waived because
// ISD::ADDC can be legalized by replacing Glue with an integer type.
assert((Res->getValueType(i) == Node->getValueType(i) ||
Node->getValueType(i) == MVT::Glue) &&
"Type mismatch for custom legalized operation");
ResultVals.push_back(Res.getValue(i));
}
LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
ReplaceNode(Node, ResultVals.data());
return;
}
LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
LLVM_FALLTHROUGH;
case TargetLowering::Expand:
if (ExpandNode(Node))
return;
LLVM_FALLTHROUGH;
case TargetLowering::LibCall:
ConvertNodeToLibcall(Node);
return;
case TargetLowering::Promote:
PromoteNode(Node);
return;
}
}
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "NODE: ";
Node->dump( &DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to legalize this operator!");
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
break;
case ISD::LOAD:
return LegalizeLoadOps(Node);
case ISD::STORE:
return LegalizeStoreOps(Node);
}
}
SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
SDLoc dl(Op);
// Before we generate a new store to a temporary stack slot, see if there is
// already one that we can use. There often is because when we scalarize
// vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
// series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
// the vector. If all are expanded here, we don't want one store per vector
// element.
// Caches for hasPredecessorHelper
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Op.getNode());
Worklist.push_back(Idx.getNode());
SDValue StackPtr, Ch;
for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
if (ST->isIndexed() || ST->isTruncatingStore() ||
ST->getValue() != Vec)
continue;
// Make sure that nothing else could have stored into the destination of
// this store.
if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
continue;
// If the index is dependent on the store we will introduce a cycle when
// creating the load (the load uses the index, and by replacing the chain
// we will make the index dependent on the load). Also, the store might be
// dependent on the extractelement and introduce a cycle when creating
// the load.
if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
ST->hasPredecessor(Op.getNode()))
continue;
StackPtr = ST->getBasePtr();
Ch = SDValue(ST, 0);
break;
}
}
EVT VecVT = Vec.getValueType();
if (!Ch.getNode()) {
// Store the value to a temporary stack slot, then LOAD the returned part.
StackPtr = DAG.CreateStackTemporary(VecVT);
Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo());
}
SDValue NewLoad;
if (Op.getValueType().isVector()) {
StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT,
Op.getValueType(), Idx);
NewLoad =
DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
} else {
StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
MachinePointerInfo(),
VecVT.getVectorElementType());
}
// Replace the chain going out of the store, by the one out of the load.
DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
// We introduced a cycle though, so update the loads operands, making sure
// to use the original store's chain as an incoming chain.
SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
NewLoad->op_end());
NewLoadOperands[0] = Ch;
NewLoad =
SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
return NewLoad;
}
SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
SDValue Vec = Op.getOperand(0);
SDValue Part = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
SDLoc dl(Op);
// Store the value to a temporary stack slot, then LOAD the returned part.
EVT VecVT = Vec.getValueType();
EVT SubVecVT = Part.getValueType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
// First store the whole vector.
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
// Then store the inserted part.
SDValue SubStackPtr =
TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx);
// Store the subvector.
Ch = DAG.getStore(
Ch, dl, Part, SubStackPtr,
MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
// Finally, load the updated vector.
return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
}
SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
Node->getOpcode() == ISD::CONCAT_VECTORS) &&
"Unexpected opcode!");
// We can't handle this case efficiently. Allocate a sufficiently
// aligned object on the stack, store each operand into it, then load
// the result as a vector.
// Create the stack frame object.
EVT VT = Node->getValueType(0);
EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
: Node->getOperand(0).getValueType();
SDLoc dl(Node);
SDValue FIPtr = DAG.CreateStackTemporary(VT);
int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
// Emit a store of each element to the stack slot.
SmallVector<SDValue, 8> Stores;
unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
// If the destination vector element type of a BUILD_VECTOR is narrower than
// the source element type, only store the bits necessary.
bool Truncate = isa<BuildVectorSDNode>(Node) &&
MemVT.bitsLT(Node->getOperand(0).getValueType());
// Store (in the right endianness) the elements to memory.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
// Ignore undef elements.
if (Node->getOperand(i).isUndef()) continue;
unsigned Offset = TypeByteSize*i;
SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);
if (Truncate)
Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
Node->getOperand(i), Idx,
PtrInfo.getWithOffset(Offset), MemVT));
else
Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
Idx, PtrInfo.getWithOffset(Offset)));
}
SDValue StoreChain;
if (!Stores.empty()) // Not all undef elements?
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
else
StoreChain = DAG.getEntryNode();
// Result is a load from the stack slot.
return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
}
/// Bitcast a floating-point value to an integer value. Only bitcast the part
/// containing the sign bit if the target has no integer value capable of
/// holding all bits of the floating-point value.
void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
const SDLoc &DL,
SDValue Value) const {
EVT FloatVT = Value.getValueType();
unsigned NumBits = FloatVT.getScalarSizeInBits();
State.FloatVT = FloatVT;
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
// Convert to an integer of the same size.
if (TLI.isTypeLegal(IVT)) {
State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
State.SignMask = APInt::getSignMask(NumBits);
State.SignBit = NumBits - 1;
return;
}
auto &DataLayout = DAG.getDataLayout();
// Store the float to memory, then load the sign part out as an integer.
MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
// First create a temporary that is aligned for both the load and store.
SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
// Then store the float to it.
State.FloatPtr = StackPtr;
MachineFunction &MF = DAG.getMachineFunction();
State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
State.FloatPointerInfo);
SDValue IntPtr;
if (DataLayout.isBigEndian()) {
assert(FloatVT.isByteSized() && "Unsupported floating point type!");
// Load out a legal integer with the same sign bit as the float.
IntPtr = StackPtr;
State.IntPointerInfo = State.FloatPointerInfo;
} else {
// Advance the pointer so that the loaded byte will contain the sign bit.
unsigned ByteOffset = (NumBits / 8) - 1;
IntPtr =
DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
ByteOffset);
}
State.IntPtr = IntPtr;
State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
State.IntPointerInfo, MVT::i8);
State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7);
State.SignBit = 7;
}
/// Replace the integer value produced by getSignAsIntValue() with a new value
/// and cast the result back to a floating-point type.
SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
const SDLoc &DL,
SDValue NewIntValue) const {
if (!State.Chain)
return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
// Override the part containing the sign bit in the value stored on the stack.
SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
State.IntPointerInfo, MVT::i8);
return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
State.FloatPointerInfo);
}
SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
SDLoc DL(Node);
SDValue Mag = Node->getOperand(0);
SDValue Sign = Node->getOperand(1);
// Get sign bit into an integer value.
FloatSignAsInt SignAsInt;
getSignAsIntValue(SignAsInt, DL, Sign);
EVT IntVT = SignAsInt.IntValue.getValueType();
SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
SignMask);
// If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
EVT FloatVT = Mag.getValueType();
if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
DAG.getConstant(0, DL, IntVT), ISD::SETNE);
return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
}
// Transform Mag value to integer, and clear the sign bit.
FloatSignAsInt MagAsInt;
getSignAsIntValue(MagAsInt, DL, Mag);
EVT MagVT = MagAsInt.IntValue.getValueType();
SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
ClearSignMask);
// Get the signbit at the right position for MagAsInt.
int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
EVT ShiftVT = IntVT;
if (SignBit.getScalarValueSizeInBits() <
ClearedSign.getScalarValueSizeInBits()) {
SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
ShiftVT = MagVT;
}
if (ShiftAmount > 0) {
SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
} else if (ShiftAmount < 0) {
SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
}
if (SignBit.getScalarValueSizeInBits() >
ClearedSign.getScalarValueSizeInBits()) {
SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
}
// Store the part with the modified sign and convert back to float.
SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
return modifySignAsInt(MagAsInt, DL, CopiedSign);
}
SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
// Get the sign bit as an integer.
SDLoc DL(Node);
FloatSignAsInt SignAsInt;
getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
EVT IntVT = SignAsInt.IntValue.getValueType();
// Flip the sign.
SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
SDValue SignFlip =
DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);
// Convert back to float.
return modifySignAsInt(SignAsInt, DL, SignFlip);
}
SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
SDLoc DL(Node);
SDValue Value = Node->getOperand(0);
// Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
EVT FloatVT = Value.getValueType();
if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
}
// Transform value to integer, clear the sign bit and transform back.
FloatSignAsInt ValueAsInt;
getSignAsIntValue(ValueAsInt, DL, Value);
EVT IntVT = ValueAsInt.IntValue.getValueType();
SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
ClearSignMask);
return modifySignAsInt(ValueAsInt, DL, ClearedSign);
}
void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
SmallVectorImpl<SDValue> &Results) {
Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
SDValue Tmp1 = SDValue(Node, 0);
SDValue Tmp2 = SDValue(Node, 1);
SDValue Tmp3 = Node->getOperand(2);
SDValue Chain = Tmp1.getOperand(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
SDValue Size = Tmp2.getOperand(1);
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
unsigned Opc =
TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
ISD::ADD : ISD::SUB;
Align StackAlign = TFL->getStackAlign();
Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value
if (Alignment > StackAlign)
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
DAG.getConstant(-Alignment.value(), dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
Results.push_back(Tmp1);
Results.push_back(Tmp2);
}
/// Emit a store/load combination to the stack. This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
EVT DestVT, const SDLoc &dl) {
return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
}
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
EVT DestVT, const SDLoc &dl,
SDValue Chain) {
unsigned SrcSize = SrcOp.getValueSizeInBits();
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);
// Don't convert with stack if the load/store is expensive.
if ((SrcSize > SlotSize &&
!TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) ||
(SlotSize < DestSize &&
!TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT)))
return SDValue();
// Create the stack frame object.
Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
int SPFI = StackPtrFI->getIndex();
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
// Emit a store to the stack slot. Use a truncstore if the input value is
// later than DestVT.
SDValue Store;
if (SrcSize > SlotSize)
Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
SlotVT, SrcAlign);
else {
assert(SrcSize == SlotSize && "Invalid store");
Store =
DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
}
// Result is a load from the stack slot.
if (SlotSize == DestSize)
return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
assert(SlotSize < DestSize && "Unknown extension!");
return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
DestAlign);
}
SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
SDLoc dl(Node);
// Create a vector sized/aligned stack slot, store the value to element #0,
// then load the whole vector back out.
SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
int SPFI = StackPtrFI->getIndex();
SDValue Ch = DAG.getTruncStore(
DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
Node->getValueType(0).getVectorElementType());
return DAG.getLoad(
Node->getValueType(0), dl, Ch, StackPtr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
}
static bool
ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
const TargetLowering &TLI, SDValue &Res) {
unsigned NumElems = Node->getNumOperands();
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
// Try to group the scalars into pairs, shuffle the pairs together, then
// shuffle the pairs of pairs together, etc. until the vector has
// been built. This will work only if all of the necessary shuffle masks
// are legal.
// We do this in two phases; first to check the legality of the shuffles,
// and next, assuming that all shuffles are legal, to create the new nodes.
for (int Phase = 0; Phase < 2; ++Phase) {
SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
NewIntermedVals;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.isUndef())
continue;
SDValue Vec;
if (Phase)
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
}
while (IntermedVals.size() > 2) {
NewIntermedVals.clear();
for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
// This vector and the next vector are shuffled together (simply to
// append the one to the other).
SmallVector<int, 16> ShuffleVec(NumElems, -1);
SmallVector<int, 16> FinalIndices;
FinalIndices.reserve(IntermedVals[i].second.size() +
IntermedVals[i+1].second.size());
int k = 0;
for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
++j, ++k) {
ShuffleVec[k] = j;
FinalIndices.push_back(IntermedVals[i].second[j]);
}
for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
++j, ++k) {
ShuffleVec[k] = NumElems + j;
FinalIndices.push_back(IntermedVals[i+1].second[j]);
}
SDValue Shuffle;
if (Phase)
Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
IntermedVals[i+1].first,
ShuffleVec);
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
NewIntermedVals.push_back(
std::make_pair(Shuffle, std::move(FinalIndices)));
}
// If we had an odd number of defined values, then append the last
// element to the array of new vectors.
if ((IntermedVals.size() & 1) != 0)
NewIntermedVals.push_back(IntermedVals.back());
IntermedVals.swap(NewIntermedVals);
}
assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
"Invalid number of intermediate vectors");
SDValue Vec1 = IntermedVals[0].first;
SDValue Vec2;
if (IntermedVals.size() > 1)
Vec2 = IntermedVals[1].first;
else if (Phase)
Vec2 = DAG.getUNDEF(VT);
SmallVector<int, 16> ShuffleVec(NumElems, -1);
for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
ShuffleVec[IntermedVals[0].second[i]] = i;
for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
if (Phase)
Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
}
return true;
}
/// Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
unsigned NumElems = Node->getNumOperands();
SDValue Value1, Value2;
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
EVT OpVT = Node->getOperand(0).getValueType();
EVT EltVT = VT.getVectorElementType();
// If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
bool isOnlyLowElement = true;
bool MoreThanTwoValues = false;
bool isConstant = true;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.isUndef())
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
if (!Value1.getNode()) {
Value1 = V;
} else if (!Value2.getNode()) {
if (V != Value1)
Value2 = V;
} else if (V != Value1 && V != Value2) {
MoreThanTwoValues = true;
}
}
if (!Value1.getNode())
return DAG.getUNDEF(VT);
if (isOnlyLowElement)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
// If all elements are constants, create a load from the constant pool.
if (isConstant) {
SmallVector<Constant*, 16> CV;
for (unsigned i = 0, e = NumElems; i != e; ++i) {
if (ConstantFPSDNode *V =
dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
} else if (ConstantSDNode *V =
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
if (OpVT==EltVT)
CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
else {
// If OpVT and EltVT don't match, EltVT is not legal and the
// element values have been promoted/truncated earlier. Undo this;
// we don't want a v16i8 to become a v16i32 for example.
const ConstantInt *CI = V->getConstantIntValue();
CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
CI->getZExtValue()));
}
} else {
assert(Node->getOperand(i).isUndef());
Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
CV.push_back(UndefValue::get(OpNTy));
}
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx =
DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
return DAG.getLoad(
VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
}
SmallSet<SDValue, 16> DefinedValues;
for (unsigned i = 0; i < NumElems; ++i) {
if (Node->getOperand(i).isUndef())
continue;
DefinedValues.insert(Node->getOperand(i));
}
if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
if (!MoreThanTwoValues) {
SmallVector<int, 8> ShuffleVec(NumElems, -1);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.isUndef())
continue;
ShuffleVec[i] = V == Value1 ? 0 : NumElems;
}
if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
// Get the splatted value into the low element of a vector register.
SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
SDValue Vec2;
if (Value2.getNode())
Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
else
Vec2 = DAG.getUNDEF(VT);
// Return shuffle(LowValVec, undef, <0,0,0,0>)
return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
}
} else {
SDValue Res;
if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
return Res;
}
}
// Otherwise, we can't handle this case efficiently.
return ExpandVectorBuildThroughStack(Node);
}
SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
SDLoc DL(Node);
EVT VT = Node->getValueType(0);
SDValue SplatVal = Node->getOperand(0);
return DAG.getSplatBuildVector(VT, DL, SplatVal);
}
// Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
bool isSigned) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (const SDValue &Op : Node->op_values()) {
EVT ArgVT = Op.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op;
Entry.Ty = ArgTy;
Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy(DAG.getDataLayout()));
EVT RetVT = Node->getValueType(0);
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
// By default, the input chain to this libcall is the entry node of the
// function. If the libcall is going to be emitted as a tail call then
// TLI.isUsedByReturnOnly will change it to the right chain if the return
// node which is being folded has a non-entry input chain.
SDValue InChain = DAG.getEntryNode();
// isTailCall may be true since the callee does not reference caller stack
// frame. Check if it's in the right position and that the return types match.
SDValue TCChain = InChain;
const Function &F = DAG.getMachineFunction().getFunction();
bool isTailCall =
TLI.isInTailCallPosition(DAG, Node, TCChain) &&
(RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
if (isTailCall)
InChain = TCChain;
TargetLowering::CallLoweringInfo CLI(DAG);
bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
CLI.setDebugLoc(SDLoc(Node))
.setChain(InChain)
.setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
std::move(Args))
.setTailCall(isTailCall)
.setSExtResult(signExtend)
.setZExtResult(!signExtend)
.setIsPostTypeLegalization(true);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
if (!CallInfo.second.getNode()) {
LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
// It's a tailcall, return the chain (which is the DAG root).
return DAG.getRoot();
}
LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
return CallInfo.first;
}
void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
RTLIB::Libcall LC,
SmallVectorImpl<SDValue> &Results) {
if (LC == RTLIB::UNKNOWN_LIBCALL)
llvm_unreachable("Can't create an unknown libcall!");
if (Node->isStrictFPOpcode()) {
EVT RetVT = Node->getValueType(0);
SmallVector<SDValue, 4> Ops(drop_begin(Node->ops()));
TargetLowering::MakeLibCallOptions CallOptions;
// FIXME: This doesn't support tail calls.
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
Ops, CallOptions,
SDLoc(Node),
Node->getOperand(0));
Results.push_back(Tmp.first);
Results.push_back(Tmp.second);
} else {
SDValue Tmp = ExpandLibCall(LC, Node, false);
Results.push_back(Tmp);
}
}
/// Expand the node to a libcall based on the result type.
void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128,
SmallVectorImpl<SDValue> &Results) {
RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0),
Call_F32, Call_F64, Call_F80,
Call_F128, Call_PPCF128);
ExpandFPLibCall(Node, LC, Results);
}
SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
RTLIB::Libcall Call_I8,
RTLIB::Libcall Call_I16,
RTLIB::Libcall Call_I32,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC = Call_I8; break;
case MVT::i16: LC = Call_I16; break;
case MVT::i32: LC = Call_I32; break;
case MVT::i64: LC = Call_I64; break;
case MVT::i128: LC = Call_I128; break;
}
return ExpandLibCall(LC, Node, isSigned);
}
/// Expand the node to a libcall based on first argument type (for instance
/// lround and its variant).
void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128,
SmallVectorImpl<SDValue> &Results) {
EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(),
Call_F32, Call_F64, Call_F80,
Call_F128, Call_PPCF128);
ExpandFPLibCall(Node, LC, Results);
}
/// Issue libcalls to __{u}divmod to compute div / rem pairs.
void
SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
unsigned Opcode = Node->getOpcode();
bool isSigned = Opcode == ISD::SDIVREM;
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDValue InChain = DAG.getEntryNode();
EVT RetVT = Node->getValueType(0);
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (const SDValue &Op : Node->op_values()) {
EVT ArgVT = Op.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op;
Entry.Ty = ArgTy;
Entry.IsSExt = isSigned;
Entry.IsZExt = !isSigned;
Args.push_back(Entry);
}
// Also pass the return address of the remainder.
SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = FIPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.IsSExt = isSigned;
Entry.IsZExt = !isSigned;
Args.push_back(Entry);
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy(DAG.getDataLayout()));
SDLoc dl(Node);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(InChain)
.setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
std::move(Args))
.setSExtResult(isSigned)
.setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
// Remainder is loaded back from the stack frame.
SDValue Rem =
DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
Results.push_back(CallInfo.first);
Results.push_back(Rem);
}
/// Return true if sincos libcall is available.
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Only issue sincos libcall if both sin and cos are needed.
static bool useSinCos(SDNode *Node) {
unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
? ISD::FCOS : ISD::FSIN;
SDValue Op0 = Node->getOperand(0);
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node)
continue;
// The other user might have been turned into sincos already.
if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
return true;
}
return false;
}
/// Issue libcalls to sincos to compute sin / cos pairs.
void
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
}
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDValue InChain = DAG.getEntryNode();
EVT RetVT = Node->getValueType(0);
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
// Pass the argument.
Entry.Node = Node->getOperand(0);
Entry.Ty = RetTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
// Pass the return address of sin.
SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = SinPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
// Also pass the return address of the cos.
SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = CosPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy(DAG.getDataLayout()));
SDLoc dl(Node);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
std::move(Args));
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
Results.push_back(
DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
Results.push_back(
DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
}
/// This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it. At this point, we know that the result and operand types are
/// legal for the target.
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
SDValue &Chain) {
bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
Node->getOpcode() == ISD::SINT_TO_FP);
EVT DestVT = Node->getValueType(0);
SDLoc dl(Node);
unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
SDValue Op0 = Node->getOperand(OpNo);
EVT SrcVT = Op0.getValueType();
// TODO: Should any fast-math-flags be set for the created nodes?
LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) &&
(DestVT.bitsLE(MVT::f64) ||
TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND
: ISD::FP_EXTEND,
DestVT))) {
LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
"expansion\n");
// Get the stack frame index of a 8 byte buffer.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
SDValue Lo = Op0;
// if signed map to unsigned space
if (isSigned) {
// Invert sign bit (signed to unsigned mapping).
Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
DAG.getConstant(0x80000000u, dl, MVT::i32));
}
// Initial hi portion of constructed double.
SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
// If this a big endian target, swap the lo and high data.
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
SDValue MemChain = DAG.getEntryNode();
// Store the lo of the constructed double.
SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
MachinePointerInfo());
// Store the hi of the constructed double.
SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
SDValue Store2 =
DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
// load the constructed double
SDValue Load =
DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
// FP constant to bias correct the final result
SDValue Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL) :
BitsToDouble(0x4330000000000000ULL),
dl, MVT::f64);
// Subtract the bias and get the final result.
SDValue Sub;
SDValue Result;
if (Node->isStrictFPOpcode()) {
Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
{Node->getOperand(0), Load, Bias});
Chain = Sub.getValue(1);
if (DestVT != Sub.getValueType()) {
std::pair<SDValue, SDValue> ResultPair;
ResultPair =
DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
Result = ResultPair.first;
Chain = ResultPair.second;
}
else
Result = Sub;
} else {
Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
}
return Result;
}
if (isSigned)
return SDValue();
// TODO: Generalize this for use with other types.
if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
(SrcVT == MVT::i64 && DestVT == MVT::f64)) {
LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n");
// For unsigned conversions, convert them to signed conversions using the
// algorithm from the x86_64 __floatundisf in compiler_rt. That method
// should be valid for i32->f32 as well.
// More generally this transform should be valid if there are 3 more bits
// in the integer type than the significand. Rounding uses the first bit
// after the width of the significand and the OR of all bits after that. So
// we need to be able to OR the shifted out bit into one of the bits that
// participate in the OR.
// TODO: This really should be implemented using a branch rather than a
// select. We happen to get lucky and machinesink does the right
// thing most of the time. This would be a good candidate for a
// pseudo-op, or, even better, for whole-function isel.
EVT SetCCVT = getSetCCResultType(SrcVT);
SDValue SignBitTest = DAG.getSetCC(
dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
SDValue Slow, Fast;
if (Node->isStrictFPOpcode()) {
// In strict mode, we must avoid spurious exceptions, and therefore
// must make sure to only emit a single STRICT_SINT_TO_FP.
SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
{ Node->getOperand(0), InCvt });
Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
{ Fast.getValue(1), Fast, Fast });
Chain = Slow.getValue(1);
// The STRICT_SINT_TO_FP inherits the exception mode from the
// incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
// never raise any exception.
SDNodeFlags Flags;
Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
Fast->setFlags(Flags);
Flags.setNoFPExcept(true);
Slow->setFlags(Flags);
} else {
SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
}
return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
}
// Don't expand it if there isn't cheap fadd.
if (!TLI.isOperationLegalOrCustom(
Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT))
return SDValue();
// The following optimization is valid only if every value in SrcVT (when
// treated as signed) is representable in DestVT. Check that the mantissa
// size of DestVT is >= than the number of bits in SrcVT -1.
assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
SrcVT.getSizeInBits() - 1 &&
"Cannot perform lossless SINT_TO_FP!");
SDValue Tmp1;
if (Node->isStrictFPOpcode()) {
Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
{ Node->getOperand(0), Op0 });
} else
Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
SDValue Zero = DAG.getIntPtrConstant(0, dl),
Four = DAG.getIntPtrConstant(4, dl);
SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (SrcVT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (DAG.getDataLayout().isLittleEndian())
FF <<= 32;
Constant *FudgeFactor = ConstantInt::get(
Type::getInt64Ty(*DAG.getContext()), FF);
SDValue CPIdx =
DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
Alignment = commonAlignment(Alignment, 4);
SDValue FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(
MVT::f32, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
else {
SDValue Load = DAG.getExtLoad(
ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
Alignment);
HandleSDNode Handle(Load);
LegalizeOp(Load.getNode());
FudgeInReg = Handle.getValue();
}
if (Node->isStrictFPOpcode()) {
SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
{ Tmp1.getValue(1), Tmp1, FudgeInReg });
Chain = Result.getValue(1);
return Result;
}
return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
}
/// This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
bool IsStrict = N->isStrictFPOpcode();
bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::STRICT_SINT_TO_FP;
EVT DestVT = N->getValueType(0);
SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
// First step, figure out the appropriate *INT_TO_FP operation to use.
EVT NewInTy = LegalOp.getValueType();
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (true) {
NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
assert(NewInTy.isInteger() && "Ran out of possibilities!");
// If the target supports SINT_TO_FP of this type, use it.
if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
OpToUse = SIntOp;
break;
}
if (IsSigned)
continue;
// If the target supports UINT_TO_FP of this type, use it.
if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
OpToUse = UIntOp;
break;
}
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use. Zero extend our input to the
// desired type then run the operation on it.
if (IsStrict) {
SDValue Res =
DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
{N->getOperand(0),
DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, NewInTy, LegalOp)});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
return;
}
Results.push_back(
DAG.getNode(OpToUse, dl, DestVT,
DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, NewInTy, LegalOp)));
}
/// This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
SmallVectorImpl<SDValue> &Results) {
bool IsStrict = N->isStrictFPOpcode();
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
EVT DestVT = N->getValueType(0);
SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
// First step, figure out the appropriate FP_TO*INT operation to use.
EVT NewOutTy = DestVT;
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (true) {
NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
// A larger signed type can hold all unsigned values of the requested type,
// so using FP_TO_SINT is valid
OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
break;
// However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
break;
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use.
SDValue Operation;
if (IsStrict) {
SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
} else
Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
// Truncate the result of the extended FP_TO_*INT operation to the desired
// size.
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
Results.push_back(Trunc);
if (IsStrict)
Results.push_back(Operation.getValue(1));
}
/// Promote FP_TO_*INT_SAT operation to a larger result type. At this point
/// the result and operand types are legal and there must be a legal
/// FP_TO_*INT_SAT operation for a larger result type.
SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
const SDLoc &dl) {
unsigned Opcode = Node->getOpcode();
// Scan for the appropriate larger type to use.
EVT NewOutTy = Node->getValueType(0);
while (true) {
NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1);
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy))
break;
}
// Saturation width is determined by second operand, so we don't have to
// perform any fixup and can directly truncate the result.
SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0),
Node->getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
}
/// Open code the operations for PARITY of the specified operation.
SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
EVT VT = Op.getValueType();
EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
unsigned Sz = VT.getScalarSizeInBits();
// If CTPOP is legal, use it. Otherwise use shifts and xor.
SDValue Result;
if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
} else {
Result = Op;
for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
DAG.getConstant(1ULL << (--i), dl, ShVT));
Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
}
}
return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
}
bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
LLVM_DEBUG(dbgs() << "Trying to expand node\n");
SmallVector<SDValue, 8> Results;
SDLoc dl(Node);
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
bool NeedInvert;
switch (Node->getOpcode()) {
case ISD::ABS:
if (TLI.expandABS(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::CTPOP:
if (TLI.expandCTPOP(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
if (TLI.expandCTLZ(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
if (TLI.expandCTTZ(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::BITREVERSE:
if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG)))
Results.push_back(Tmp1);
break;
case ISD::BSWAP:
if ((Tmp1 = TLI.expandBSWAP(Node, DAG)))
Results.push_back(Tmp1);
break;
case ISD::PARITY:
Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
case ISD::FRAME_TO_ARGS_OFFSET:
Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
break;
case ISD::EH_DWARF_CFA: {
SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue Offset = DAG.getNode(ISD::ADD, dl,
CfaArg.getValueType(),
DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
CfaArg.getValueType()),
CfaArg);
SDValue FA = DAG.getNode(
ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
FA, Offset));
break;
}
case ISD::FLT_ROUNDS_:
Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
Results.push_back(Node->getOperand(0));
break;
case ISD::EH_RETURN:
case ISD::EH_LABEL:
case ISD::PREFETCH:
case ISD::VAEND:
case ISD::EH_SJLJ_LONGJMP:
// If the target didn't expand these, there's nothing to do, so just
// preserve the chain and be done.
Results.push_back(Node->getOperand(0));
break;
case ISD::READCYCLECOUNTER:
// If the target didn't expand this, just return 'zero' and preserve the
// chain.
Results.append(Node->getNumValues() - 1,
DAG.getConstant(0, dl, Node->getValueType(0)));
Results.push_back(Node->getOperand(0));
break;
case ISD::EH_SJLJ_SETJMP:
// If the target didn't expand this, just return 'zero' and preserve the
// chain.
Results.push_back(DAG.getConstant(0, dl, MVT::i32));
Results.push_back(Node->getOperand(0));
break;
case ISD::ATOMIC_LOAD: {
// There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
SDValue Swap = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Zero, Zero,
cast<AtomicSDNode>(Node)->getMemOperand());
Results.push_back(Swap.getValue(0));
Results.push_back(Swap.getValue(1));
break;
}
case ISD::ATOMIC_STORE: {
// There is no libcall for atomic store; fake it with ATOMIC_SWAP.
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
cast<AtomicSDNode>(Node)->getMemOperand());
Results.push_back(Swap.getValue(1));
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
// Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
// splits out the success value as a comparison. Expanding the resulting
// ATOMIC_CMP_SWAP will produce a libcall.
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
SDValue ExtRes = Res;
SDValue LHS = Res;
SDValue RHS = Node->getOperand(1);
EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
EVT OuterType = Node->getValueType(0);
switch (TLI.getExtendForAtomicOps()) {
case ISD::SIGN_EXTEND:
LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
DAG.getValueType(AtomicType));
RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
Node->getOperand(2), DAG.getValueType(AtomicType));
ExtRes = LHS;
break;
case ISD::ZERO_EXTEND:
LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
DAG.getValueType(AtomicType));
RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
ExtRes = LHS;
break;
case ISD::ANY_EXTEND:
LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
break;
default:
llvm_unreachable("Invalid atomic op extension");
}
SDValue Success =
DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
Results.push_back(ExtRes.getValue(0));
Results.push_back(Success);
Results.push_back(Res.getValue(1));
break;
}
case ISD::DYNAMIC_STACKALLOC:
ExpandDYNAMIC_STACKALLOC(Node, Results);
break;
case ISD::MERGE_VALUES:
for (unsigned i = 0; i < Node->getNumValues(); i++)
Results.push_back(Node->getOperand(i));
break;
case ISD::UNDEF: {
EVT VT = Node->getValueType(0);
if (VT.isInteger())
Results.push_back(DAG.getConstant(0, dl, VT));
else {
assert(VT.isFloatingPoint() && "Unknown value type!");
Results.push_back(DAG.getConstantFP(0, dl, VT));
}
break;
}
case ISD::STRICT_FP_ROUND:
// When strict mode is enforced we can't do expansion because it
// does not honor the "strict" properties. Only libcall is allowed.
if (TLI.isStrictFPEnabled())
break;
// We might as well mutate to FP_ROUND when FP_ROUND operation is legal
// since this operation is more efficient than stack operation.
if (TLI.getStrictFPOperationAction(Node->getOpcode(),
Node->getValueType(0))
== TargetLowering::Legal)
break;
// We fall back to use stack operation when the FP_ROUND operation
// isn't available.
if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0),
Node->getValueType(0), dl,
Node->getOperand(0)))) {
ReplaceNode(Node, Tmp1.getNode());
LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
return true;
}
break;
case ISD::FP_ROUND:
case ISD::BITCAST:
if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
Node->getValueType(0), dl)))
Results.push_back(Tmp1);
break;
case ISD::STRICT_FP_EXTEND:
// When strict mode is enforced we can't do expansion because it
// does not honor the "strict" properties. Only libcall is allowed.
if (TLI.isStrictFPEnabled())
break;
// We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
// since this operation is more efficient than stack operation.
if (TLI.getStrictFPOperationAction(Node->getOpcode(),
Node->getValueType(0))
== TargetLowering::Legal)
break;
// We fall back to use stack operation when the FP_EXTEND operation
// isn't available.
if ((Tmp1 = EmitStackConvert(
Node->getOperand(1), Node->getOperand(1).getValueType(),
Node->getValueType(0), dl, Node->getOperand(0)))) {
ReplaceNode(Node, Tmp1.getNode());
LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
return true;
}
break;
case ISD::FP_EXTEND:
if ((Tmp1 = EmitStackConvert(Node->getOperand(0),
Node->getOperand(0).getValueType(),
Node->getValueType(0), dl)))
Results.push_back(Tmp1);
break;
case ISD::SIGN_EXTEND_INREG: {
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
EVT VT = Node->getValueType(0);
// An in-register sign-extend of a boolean is a negation:
// 'true' (1) sign-extended is -1.
// 'false' (0) sign-extended is 0.
// However, we must mask the high bits of the source operand because the
// SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
// TODO: Do this for vectors too?
if (ExtraVT.getSizeInBits() == 1) {
SDValue One = DAG.getConstant(1, dl, VT);
SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
Results.push_back(Neg);
break;
}
// NOTE: we could fall back on load/store here too for targets without
// SRA. However, it is doubtful that any exist.
EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
unsigned BitsDiff = VT.getScalarSizeInBits() -
ExtraVT.getScalarSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
Results.push_back(Tmp1);
break;
}
case ISD::UINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
Results.push_back(Tmp1);
if (Node->isStrictFPOpcode())
Results.push_back(Tmp2);
break;
}
LLVM_FALLTHROUGH;
case ISD::SINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
Results.push_back(Tmp1);
if (Node->isStrictFPOpcode())
Results.push_back(Tmp2);
}
break;
case ISD::FP_TO_SINT:
if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::STRICT_FP_TO_SINT:
if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
ReplaceNode(Node, Tmp1.getNode());
LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
return true;
}
break;
case ISD::FP_TO_UINT:
if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
Results.push_back(Tmp1);
break;
case ISD::STRICT_FP_TO_UINT:
if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
// Relink the chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
// Replace the new UINT result.
ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
return true;
}
break;
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG));
break;
case ISD::VAARG:
Results.push_back(DAG.expandVAArg(Node));
Results.push_back(Results[0].getValue(1));
break;
case ISD::VACOPY:
Results.push_back(DAG.expandVACopy(Node));
break;
case ISD::EXTRACT_VECTOR_ELT:
if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
// This must be an access of the only element. Return it.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
Node->getOperand(0));
else
Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
Results.push_back(Tmp1);
break;
case ISD::EXTRACT_SUBVECTOR:
Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
break;
case ISD::INSERT_SUBVECTOR:
Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
break;
case ISD::CONCAT_VECTORS:
Results.push_back(ExpandVectorBuildThroughStack(Node));
break;
case ISD::SCALAR_TO_VECTOR:
Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
break;
case ISD::INSERT_VECTOR_ELT:
Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
Node->getOperand(1),
Node->getOperand(2), dl));
break;
case ISD::VECTOR_SHUFFLE: {
SmallVector<int, 32> NewMask;
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
EVT VT = Node->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
if (!TLI.isTypeLegal(EltVT)) {
EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
// BUILD_VECTOR operands are allowed to be wider than the element type.
// But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
// it.
if (NewEltVT.bitsLT(EltVT)) {
// Convert shuffle node.
// If original node was v4i64 and the new EltVT is i32,
// cast operands to v8i32 and re-build the mask.
// Calculate new VT, the size of the new VT should be equal to original.
EVT NewVT =
EVT::getVectorVT(*DAG.getContext(), NewEltVT,
VT.getSizeInBits() / NewEltVT.getSizeInBits());
assert(NewVT.bitsEq(VT));
// cast operands to new VT
Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
// Convert the shuffle mask
unsigned int factor =
NewVT.getVectorNumElements()/VT.getVectorNumElements();
// EltVT gets smaller
assert(factor > 0);
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
if (Mask[i] < 0) {
for (unsigned fi = 0; fi < factor; ++fi)
NewMask.push_back(Mask[i]);
}
else {
for (unsigned fi = 0; fi < factor; ++fi)
NewMask.push_back(Mask[i]*factor+fi);
}
}
Mask = NewMask;
VT = NewVT;
}
EltVT = NewEltVT;
}
unsigned NumElems = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0; i != NumElems; ++i) {
if (Mask[i] < 0) {
Ops.push_back(DAG.getUNDEF(EltVT));
continue;
}
unsigned Idx = Mask[i];
if (Idx < NumElems)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getVectorIdxConstant(Idx, dl)));
else
Ops.push_back(
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
DAG.getVectorIdxConstant(Idx - NumElems, dl)));
}
Tmp1 = DAG.getBuildVector(VT, dl, Ops);
// We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
Results.push_back(Tmp1);
break;
}
case ISD::VECTOR_SPLICE: {
Results.push_back(TLI.expandVectorSplice(Node, DAG));
break;
}
case ISD::EXTRACT_ELEMENT: {
EVT OpTy = Node->getOperand(0).getValueType();
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
// 1 -> Hi
Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
TLI.getShiftAmountTy(
Node->getOperand(0).getValueType(),
DAG.getDataLayout())));
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
} else {
// 0 -> Lo
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
Node->getOperand(0));
}
Results.push_back(Tmp1);
break;
}
case ISD::STACKSAVE:
// Expand to CopyFromReg if the target set
// StackPointerRegisterToSaveRestore.
if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
Node->getValueType(0)));
Results.push_back(Results[0].getValue(1));
} else {
Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
Results.push_back(Node->getOperand(0));
}
break;
case ISD::STACKRESTORE:
// Expand to CopyToReg if the target set
// StackPointerRegisterToSaveRestore.
if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
Node->getOperand(1)));
} else {
Results.push_back(Node->getOperand(0));
}
break;
case ISD::GET_DYNAMIC_AREA_OFFSET:
Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
Results.push_back(Results[0].getValue(0));
break;
case ISD::FCOPYSIGN:
Results.push_back(ExpandFCOPYSIGN(Node));
break;
case ISD::FNEG:
Results.push_back(ExpandFNEG(Node));
break;
case ISD::FABS:
Results.push_back(ExpandFABS(Node));
break;
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: {
// Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
ISD::CondCode Pred;
switch (Node->getOpcode()) {
default: llvm_unreachable("How did we get here?");
case ISD::SMAX: Pred = ISD::SETGT; break;
case ISD::SMIN: Pred = ISD::SETLT; break;
case ISD::UMAX: Pred = ISD::SETUGT; break;
case ISD::UMIN: Pred = ISD::SETULT; break;
}
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
Results.push_back(Tmp1);
break;
}
case ISD::FMINNUM:
case ISD::FMAXNUM: {
if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
Results.push_back(Expanded);
break;
}
case ISD::FSIN:
case ISD::FCOS: {
EVT VT = Node->getValueType(0);
// Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
// fcos which share the same operand and both are used.
if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
isSinCosLibcallAvailable(Node, TLI))
&& useSinCos(Node)) {
SDVTList VTs = DAG.getVTList(VT, VT);
Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
if (Node->getOpcode() == ISD::FCOS)
Tmp1 = Tmp1.getValue(1);
Results.push_back(Tmp1);
}
break;
}
case ISD::FMAD:
llvm_unreachable("Illegal fmad should never be formed");
case ISD::FP16_TO_FP:
if (Node->getValueType(0) != MVT::f32) {
// We can extend to types bigger than f32 in two steps without changing
// the result. Since "f16 -> f32" is much more commonly available, give
// CodeGen the option of emitting that before resorting to a libcall.
SDValue Res =
DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
Results.push_back(
DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
}
break;
case ISD::STRICT_FP16_TO_FP:
if (Node->getValueType(0) != MVT::f32) {
// We can extend to types bigger than f32 in two steps without changing
// the result. Since "f16 -> f32" is much more commonly available, give
// CodeGen the option of emitting that before resorting to a libcall.
SDValue Res =
DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
{Node->getOperand(0), Node->getOperand(1)});
Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
{Node->getValueType(0), MVT::Other},
{Res.getValue(1), Res});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
}
break;
case ISD::FP_TO_FP16:
LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
SDValue Op = Node->getOperand(0);
MVT SVT = Op.getSimpleValueType();
if ((SVT == MVT::f64 || SVT == MVT::f80) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
// Under fastmath, we can expand this node into a fround followed by
// a float-half conversion.
SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
DAG.getIntPtrConstant(0, dl));
Results.push_back(
DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
}
}
break;
case ISD::ConstantFP: {
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
// Check to see if this FP immediate is already legal.
// If this is a legal constant, turn it into a TargetConstantFP node.
if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
DAG.shouldOptForSize()))
Results.push_back(ExpandConstantFP(CFP, true));
break;
}
case ISD::Constant: {
ConstantSDNode *CP = cast<ConstantSDNode>(Node);
Results.push_back(ExpandConstant(CP));
break;
}
case ISD::FSUB: {
EVT VT = Node->getValueType(0);
if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
const SDNodeFlags Flags = Node->getFlags();
Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
Results.push_back(Tmp1);
}
break;
}
case ISD::SUB: {
EVT VT = Node->getValueType(0);
assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
"Don't know how to expand this subtraction!");
Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
VT));
Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
break;
}
case ISD::UREM:
case ISD::SREM:
if (TLI.expandREM(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::UDIV:
case ISD::SDIV: {
bool isSigned = Node->getOpcode() == ISD::SDIV;
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
EVT VT = Node->getValueType(0);
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
SDVTList VTs = DAG.getVTList(VT, VT);
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
Results.push_back(Tmp1);
}
break;
}
case ISD::MULHU:
case ISD::MULHS: {
unsigned ExpandOpcode =
Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
Results.push_back(Tmp1.getValue(1));
break;
}
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: {
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
MVT VT = LHS.getSimpleValueType();
unsigned MULHOpcode =
Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
break;
}
SmallVector<SDValue, 4> Halves;
EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
assert(TLI.isTypeLegal(HalfType));
if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
HalfType, DAG,
TargetLowering::MulExpansionKind::Always)) {
for (unsigned i = 0; i < 2; ++i) {
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
SDValue Shift = DAG.getConstant(
HalfType.getScalarSizeInBits(), dl,
TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
}
break;
}
break;
}
case ISD::MUL: {
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
// See if multiply or divide can be lowered using two-result operations.
// We just need the low half of the multiply; try both the signed
// and unsigned forms. If the target supports both SMUL_LOHI and
// UMUL_LOHI, form a preference by checking which forms of plain
// MULH it supports.
bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
unsigned OpToUse = 0;
if (HasSMUL_LOHI && !HasMULHS) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI && !HasMULHU) {
OpToUse = ISD::UMUL_LOHI;
} else if (HasSMUL_LOHI) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI) {
OpToUse = ISD::UMUL_LOHI;
}
if (OpToUse) {
Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
Node->getOperand(1)));
break;
}
SDValue Lo, Hi;
EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
SDValue Shift =
DAG.getConstant(HalfType.getSizeInBits(), dl,
TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
}
break;
}
case ISD::FSHL:
case ISD::FSHR:
if (TLI.expandFunnelShift(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::ROTL:
case ISD::ROTR:
if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT:
Results.push_back(TLI.expandAddSubSat(Node, DAG));
break;
case ISD::SSHLSAT:
case ISD::USHLSAT:
Results.push_back(TLI.expandShlSat(Node, DAG));
break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
Results.push_back(TLI.expandFixedPointMul(Node, DAG));
break;
case ISD::SDIVFIX:
case ISD::SDIVFIXSAT:
case ISD::UDIVFIX:
case ISD::UDIVFIXSAT:
if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
Node->getOperand(0),
Node->getOperand(1),
Node->getConstantOperandVal(2),
DAG)) {
Results.push_back(V);
break;
}
// FIXME: We might want to retry here with a wider type if we fail, if that
// type is legal.
// FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
// <= 128 (which is the case for all of the default Embedded-C types),
// we will only get here with types and scales that we could always expand
// if we were allowed to generate libcalls to division functions of illegal
// type. But we cannot do that.
llvm_unreachable("Cannot expand DIVFIX!");
case ISD::ADDCARRY:
case ISD::SUBCARRY: {
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDValue Carry = Node->getOperand(2);
bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
// Initial add of the 2 operands.
unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
EVT VT = LHS.getValueType();
SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
// Initial check for overflow.
EVT CarryType = Node->getValueType(1);
EVT SetCCType = getSetCCResultType(Node->getValueType(0));
ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
// Add of the sum and the carry.
SDValue One = DAG.getConstant(1, dl, VT);
SDValue CarryExt =
DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
// Second check for overflow. If we are adding, we can only overflow if the
// initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
// If we are subtracting, we can only overflow if the initial sum is 0 and
// the carry is set, resulting in a new sum of all 1s.
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue Overflow2 =
IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
: DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
DAG.getZExtOrTrunc(Carry, dl, SetCCType));
SDValue ResultCarry =
DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
Results.push_back(Sum2);
Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
break;
}
case ISD::SADDO:
case ISD::SSUBO: {
SDValue Result, Overflow;
TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
Results.push_back(Result);
Results.push_back(Overflow);
break;
}
case ISD::UADDO:
case ISD::USUBO: {
SDValue Result, Overflow;
TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
Results.push_back(Result);
Results.push_back(Overflow);
break;
}
case ISD::UMULO:
case ISD::SMULO: {
SDValue Result, Overflow;
if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
Results.push_back(Result);
Results.push_back(Overflow);
}
break;
}
case ISD::BUILD_PAIR: {
EVT PairTy = Node->getValueType(0);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
Tmp2 = DAG.getNode(
ISD::SHL, dl, PairTy, Tmp2,
DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
break;
}
case ISD::SELECT:
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
if (Tmp1.getOpcode() == ISD::SETCC) {
Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
Tmp2, Tmp3,
cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
} else {
Tmp1 = DAG.getSelectCC(dl, Tmp1,
DAG.getConstant(0, dl, Tmp1.getValueType()),
Tmp2, Tmp3, ISD::SETNE);
}
Tmp1->setFlags(Node->getFlags());
Results.push_back(Tmp1);
break;
case ISD::BR_JT: {
SDValue Chain = Node->getOperand(0);
SDValue Table = Node->getOperand(1);
SDValue Index = Node->getOperand(2);
const DataLayout &TD = DAG.getDataLayout();
EVT PTy = TLI.getPointerTy(TD);
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
// For power-of-two jumptable entry sizes convert multiplication to a shift.
// This transformation needs to be done here since otherwise the MIPS
// backend will end up emitting a three instruction multiply sequence
// instead of a single shift and MSP430 will call a runtime function.
if (llvm::isPowerOf2_32(EntrySize))
Index = DAG.getNode(
ISD::SHL, dl, Index.getValueType(), Index,
DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
else
Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
DAG.getConstant(EntrySize, dl, Index.getValueType()));
SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
Index, Table);
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
SDValue LD = DAG.getExtLoad(
ISD::SEXTLOAD, dl, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
Addr = LD;
if (TLI.isJumpTableRelative()) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
TLI.getPICJumpTableRelocBase(Table, DAG));
}
Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
Results.push_back(Tmp1);
break;
}
case ISD::BRCOND:
// Expand brcond's setcc into its constituent parts and create a BR_CC
// Node.
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
if (Tmp2.getOpcode() == ISD::SETCC) {
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
Tmp1, Tmp2.getOperand(2),
Tmp2.getOperand(0), Tmp2.getOperand(1),
Node->getOperand(2));
} else {
// We test only the i1 bit. Skip the AND if UNDEF or another AND.
if (Tmp2.isUndef() ||
(Tmp2.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
Tmp3 = Tmp2;
else
Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
DAG.getConstant(1, dl, Tmp2.getValueType()));
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
DAG.getCondCode(ISD::SETNE), Tmp3,
DAG.getConstant(0, dl, Tmp3.getValueType()),
Node->getOperand(2));
}
Results.push_back(Tmp1);
break;
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: {
bool IsStrict = Node->getOpcode() != ISD::SETCC;
bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
unsigned Offset = IsStrict ? 1 : 0;
Tmp1 = Node->getOperand(0 + Offset);
Tmp2 = Node->getOperand(1 + Offset);
Tmp3 = Node->getOperand(2 + Offset);
bool Legalized =
TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3,
NeedInvert, dl, Chain, IsSignaling);
if (Legalized) {
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
// condition code, create a new SETCC node.
if (Tmp3.getNode())
Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
Tmp1, Tmp2, Tmp3, Node->getFlags());
// If we expanded the SETCC by inverting the condition code, then wrap
// the existing SETCC in a NOT to restore the intended condition.
if (NeedInvert)
Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
Results.push_back(Tmp1);
if (IsStrict)
Results.push_back(Chain);
break;
}
// FIXME: It seems Legalized is false iff CCCode is Legal. I don't
// understand if this code is useful for strict nodes.
assert(!IsStrict && "Don't know how to expand for strict nodes.");
// Otherwise, SETCC for the given comparison type must be completely
// illegal; expand it into a SELECT_CC.
EVT VT = Node->getValueType(0);
int TrueValue;
switch (TLI.getBooleanContents(Tmp1.getValueType())) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
TrueValue = 1;
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
TrueValue = -1;
break;
}
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
DAG.getConstant(TrueValue, dl, VT),
DAG.getConstant(0, dl, VT),
Tmp3);
Tmp1->setFlags(Node->getFlags());
Results.push_back(Tmp1);
break;
}
case ISD::SELECT_CC: {
// TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
Tmp1 = Node->getOperand(0); // LHS
Tmp2 = Node->getOperand(1); // RHS
Tmp3 = Node->getOperand(2); // True
Tmp4 = Node->getOperand(3); // False
EVT VT = Node->getValueType(0);
SDValue Chain;
SDValue CC = Node->getOperand(4);
ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
// If the condition code is legal, then we need to expand this
// node using SETCC and SELECT.
EVT CmpVT = Tmp1.getValueType();
assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
"Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
"expanded.");
EVT CCVT = getSetCCResultType(CmpVT);
SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
break;
}
// SELECT_CC is legal, so the condition code must not be.
bool Legalized = false;
// Try to legalize by inverting the condition. This is for targets that
// might support an ordered version of a condition, but not the unordered
// version (or vice versa).
ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
// Use the new condition code and swap true and false
Legalized = true;
Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
Tmp1->setFlags(Node->getFlags());
} else {
// If The inverse is not legal, then try to swap the arguments using
// the inverse condition code.
ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
// The swapped inverse condition is legal, so swap true and false,
// lhs and rhs.
Legalized = true;
Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
Tmp1->setFlags(Node->getFlags());
}
}
if (!Legalized) {
Legalized = TLI.LegalizeSetCCCondCode(
DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC,
NeedInvert, dl, Chain);
assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
// If we expanded the SETCC by inverting the condition code, then swap
// the True/False operands to match.
if (NeedInvert)
std::swap(Tmp3, Tmp4);
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
// condition code, create a new SELECT_CC node.
if (CC.getNode()) {
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
Tmp1, Tmp2, Tmp3, Tmp4, CC);
} else {
Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
CC = DAG.getCondCode(ISD::SETNE);
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
Tmp2, Tmp3, Tmp4, CC);
}
Tmp1->setFlags(Node->getFlags());
}
Results.push_back(Tmp1);
break;
}
case ISD::BR_CC: {
// TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
SDValue Chain;
Tmp1 = Node->getOperand(0); // Chain
Tmp2 = Node->getOperand(2); // LHS
Tmp3 = Node->getOperand(3); // RHS
Tmp4 = Node->getOperand(1); // CC
bool Legalized =
TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()),
Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain);
(void)Legalized;
assert(Legalized && "Can't legalize BR_CC with legal condition!");
// If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
// node.
if (Tmp4.getNode()) {
assert(!NeedInvert && "Don't know how to invert BR_CC!");
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
Tmp4, Tmp2, Tmp3, Node->getOperand(4));
} else {
Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE);
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
Tmp2, Tmp3, Node->getOperand(4));
}
Results.push_back(Tmp1);
break;
}
case ISD::BUILD_VECTOR:
Results.push_back(ExpandBUILD_VECTOR(Node));
break;
case ISD::SPLAT_VECTOR:
Results.push_back(ExpandSPLAT_VECTOR(Node));
break;
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: {
// Scalarize vector SRA/SRL/SHL.
EVT VT = Node->getValueType(0);
assert(VT.isVector() && "Unable to legalize non-vector shift");
assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
unsigned NumElem = VT.getVectorNumElements();
SmallVector<SDValue, 8> Scalars;
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
SDValue Ex =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
SDValue Sh =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
VT.getScalarType(), Ex, Sh));
}
SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
Results.push_back(Result);
break;
}
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
Results.push_back(TLI.expandVecReduce(Node, DAG));
break;
case ISD::GLOBAL_OFFSET_TABLE:
case ISD::GlobalAddress:
case ISD::GlobalTLSAddress:
case ISD::ExternalSymbol:
case ISD::ConstantPool:
case ISD::JumpTable:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID:
// FIXME: Custom lowering for these operations shouldn't return null!
// Return true so that we don't call ConvertNodeToLibcall which also won't
// do anything.
return true;
}
if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
// FIXME: We were asked to expand a strict floating-point operation,
// but there is currently no expansion implemented that would preserve
// the "strict" properties. For now, we just fall back to the non-strict
// version if that is legal on the target. The actual mutation of the
// operation will happen in SelectionDAGISel::DoInstructionSelection.
switch (Node->getOpcode()) {
default:
if (TLI.getStrictFPOperationAction(Node->getOpcode(),
Node->getValueType(0))
== TargetLowering::Legal)
return true;
break;
case ISD::STRICT_FSUB: {
if (TLI.getStrictFPOperationAction(
ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
return true;
if (TLI.getStrictFPOperationAction(
ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
break;
EVT VT = Node->getValueType(0);
const SDNodeFlags Flags = Node->getFlags();
SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
{Node->getOperand(0), Node->getOperand(1), Neg},
Flags);
Results.push_back(Fadd);
Results.push_back(Fadd.getValue(1));
break;
}
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::STRICT_LRINT:
case ISD::STRICT_LLRINT:
case ISD::STRICT_LROUND:
case ISD::STRICT_LLROUND:
// These are registered by the operand type instead of the value
// type. Reflect that here.
if (TLI.getStrictFPOperationAction(Node->getOpcode(),
Node->getOperand(1).getValueType())
== TargetLowering::Legal)
return true;
break;
}
}
// Replace the original node with the legalized result.
if (Results.empty()) {
LLVM_DEBUG(dbgs() << "Cannot expand node\n");
return false;
}
LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
ReplaceNode(Node, Results.data());
return true;
}
void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
SmallVector<SDValue, 8> Results;
SDLoc dl(Node);
// FIXME: Check flags on the node to see if we can use a finite call.
unsigned Opc = Node->getOpcode();
switch (Opc) {
case ISD::ATOMIC_FENCE: {
// If the target didn't lower this, lower it to '__sync_synchronize()' call
// FIXME: handle "fence singlethread" more efficiently.
TargetLowering::ArgListTy Args;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Node->getOperand(0))
.setLibCallee(
CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("__sync_synchronize",
TLI.getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
Results.push_back(CallResult.second);
break;
}
// By default, atomic intrinsics are marked Legal and lowered. Targets
// which don't support them directly, however, may want libcalls, in which
// case they mark them Expand, and we get here.
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_CMP_SWAP: {
MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering();
RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT);
EVT RetVT = Node->getValueType(0);
TargetLowering::MakeLibCallOptions CallOptions;
SmallVector<SDValue, 4> Ops;
if (TLI.getLibcallName(LC)) {
// If outline atomic available, prepare its arguments and expand.
Ops.append(Node->op_begin() + 2, Node->op_end());
Ops.push_back(Node->getOperand(1));
} else {
LC = RTLIB::getSYNC(Opc, VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unexpected atomic op or value type!");
// Arguments for expansion to sync libcall
Ops.append(Node->op_begin() + 1, Node->op_end());
}
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
Ops, CallOptions,
SDLoc(Node),
Node->getOperand(0));
Results.push_back(Tmp.first);
Results.push_back(Tmp.second);
break;
}
case ISD::TRAP: {
// If this operation is not supported, lower it to 'abort()' call
TargetLowering::ArgListTy Args;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Node->getOperand(0))
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(
"abort", TLI.getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
Results.push_back(CallResult.second);
break;
}
case ISD::FMINNUM:
case ISD::STRICT_FMINNUM:
ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
RTLIB::FMIN_F80, RTLIB::FMIN_F128,
RTLIB::FMIN_PPCF128, Results);
break;
case ISD::FMAXNUM:
case ISD::STRICT_FMAXNUM:
ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
RTLIB::FMAX_F80, RTLIB::FMAX_F128,
RTLIB::FMAX_PPCF128, Results);
break;
case ISD::FSQRT:
case ISD::STRICT_FSQRT:
ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_F128,
RTLIB::SQRT_PPCF128, Results);
break;
case ISD::FCBRT:
ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
RTLIB::CBRT_F80, RTLIB::CBRT_F128,
RTLIB::CBRT_PPCF128, Results);
break;
case ISD::FSIN:
case ISD::STRICT_FSIN:
ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_F128,
RTLIB::SIN_PPCF128, Results);
break;
case ISD::FCOS:
case ISD::STRICT_FCOS:
ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_F128,
RTLIB::COS_PPCF128, Results);
break;
case ISD::FSINCOS:
// Expand into sincos libcall.
ExpandSinCosLibCall(Node, Results);
break;
case ISD::FLOG:
case ISD::STRICT_FLOG:
ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
break;
case ISD::FLOG2:
case ISD::STRICT_FLOG2:
ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
break;
case ISD::FLOG10:
case ISD::STRICT_FLOG10:
ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
break;
case ISD::FEXP:
case ISD::STRICT_FEXP:
ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
break;
case ISD::FEXP2:
case ISD::STRICT_FEXP2:
ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
break;
case ISD::FTRUNC:
case ISD::STRICT_FTRUNC:
ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
RTLIB::TRUNC_PPCF128, Results);
break;
case ISD::FFLOOR:
case ISD::STRICT_FFLOOR:
ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
RTLIB::FLOOR_PPCF128, Results);
break;
case ISD::FCEIL:
case ISD::STRICT_FCEIL:
ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_F128,
RTLIB::CEIL_PPCF128, Results);
break;
case ISD::FRINT:
case ISD::STRICT_FRINT:
ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_F128,
RTLIB::RINT_PPCF128, Results);
break;
case ISD::FNEARBYINT:
case ISD::STRICT_FNEARBYINT:
ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128, Results);
break;
case ISD::FROUND:
case ISD::STRICT_FROUND:
ExpandFPLibCall(Node, RTLIB::ROUND_F32,
RTLIB::ROUND_F64,
RTLIB::ROUND_F80,
RTLIB::ROUND_F128,
RTLIB::ROUND_PPCF128, Results);
break;
case ISD::FROUNDEVEN:
case ISD::STRICT_FROUNDEVEN:
ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
RTLIB::ROUNDEVEN_F64,
RTLIB::ROUNDEVEN_F80,
RTLIB::ROUNDEVEN_F128,
RTLIB::ROUNDEVEN_PPCF128, Results);
break;
case ISD::FPOWI:
case ISD::STRICT_FPOWI: {
RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi.");
if (!TLI.getLibcallName(LC)) {
// Some targets don't have a powi libcall; use pow instead.
SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
Node->getValueType(0),
Node->getOperand(1));
Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
Node->getValueType(0), Node->getOperand(0),
Exponent));
break;
}
unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0;
bool ExponentHasSizeOfInt =
DAG.getLibInfo().getIntSize() ==
Node->getOperand(1 + Offset).getValueType().getSizeInBits();
if (!ExponentHasSizeOfInt) {
// If the exponent does not match with sizeof(int) a libcall to
// RTLIB::POWI would use the wrong type for the argument.
DAG.getContext()->emitError("POWI exponent does not match sizeof(int)");
Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
break;
}
ExpandFPLibCall(Node, LC, Results);
break;
}
case ISD::FPOW:
case ISD::STRICT_FPOW:
ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
break;
case ISD::LROUND:
case ISD::STRICT_LROUND:
ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
RTLIB::LROUND_F64, RTLIB::LROUND_F80,
RTLIB::LROUND_F128,
RTLIB::LROUND_PPCF128, Results);
break;
case ISD::LLROUND:
case ISD::STRICT_LLROUND:
ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
RTLIB::LLROUND_F128,
RTLIB::LLROUND_PPCF128, Results);
break;
case ISD::LRINT:
case ISD::STRICT_LRINT:
ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
RTLIB::LRINT_F64, RTLIB::LRINT_F80,
RTLIB::LRINT_F128,
RTLIB::LRINT_PPCF128, Results);
break;
case ISD::LLRINT:
case ISD::STRICT_LLRINT:
ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
RTLIB::LLRINT_F128,
RTLIB::LLRINT_PPCF128, Results);
break;
case ISD::FDIV:
case ISD::STRICT_FDIV:
ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
RTLIB::DIV_F80, RTLIB::DIV_F128,
RTLIB::DIV_PPCF128, Results);
break;
case ISD::FREM:
case ISD::STRICT_FREM:
ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
RTLIB::REM_F80, RTLIB::REM_F128,
RTLIB::REM_PPCF128, Results);
break;
case ISD::FMA:
case ISD::STRICT_FMA:
ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
RTLIB::FMA_F80, RTLIB::FMA_F128,
RTLIB::FMA_PPCF128, Results);
break;
case ISD::FADD:
case ISD::STRICT_FADD:
ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
RTLIB::ADD_F80, RTLIB::ADD_F128,
RTLIB::ADD_PPCF128, Results);
break;
case ISD::FMUL:
case ISD::STRICT_FMUL:
ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
RTLIB::MUL_F80, RTLIB::MUL_F128,
RTLIB::MUL_PPCF128, Results);
break;
case ISD::FP16_TO_FP:
if (Node->getValueType(0) == MVT::f32) {
Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
}
break;
case ISD::STRICT_FP16_TO_FP: {
if (Node->getValueType(0) == MVT::f32) {
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
SDLoc(Node), Node->getOperand(0));
Results.push_back(Tmp.first);
Results.push_back(Tmp.second);
}
break;
}
case ISD::FP_TO_FP16: {
RTLIB::Libcall LC =
RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
Results.push_back(ExpandLibCall(LC, Node, false));
break;
}
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
// TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP
bool IsStrict = Node->isStrictFPOpcode();
bool Signed = Node->getOpcode() == ISD::SINT_TO_FP ||
Node->getOpcode() == ISD::STRICT_SINT_TO_FP;
EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType();
EVT RVT = Node->getValueType(0);
EVT NVT = EVT();
SDLoc dl(Node);
// Even if the input is legal, no libcall may exactly match, eg. we don't
// have i1 -> fp conversions. So, it needs to be promoted to a larger type,
// eg: i13 -> fp. Then, look for an appropriate libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
++t) {
NVT = (MVT::SimpleValueType)t;
// The source needs to big enough to hold the operand.
if (NVT.bitsGE(SVT))
LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT)
: RTLIB::getUINTTOFP(NVT, RVT);
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
// Sign/zero extend the argument if the libcall takes a larger type.
SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
NVT, Node->getOperand(IsStrict ? 1 : 0));
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(Signed);
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain);
Results.push_back(Tmp.first);
if (IsStrict)
Results.push_back(Tmp.second);
break;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT: {
// TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT.
bool IsStrict = Node->isStrictFPOpcode();
bool Signed = Node->getOpcode() == ISD::FP_TO_SINT ||
Node->getOpcode() == ISD::STRICT_FP_TO_SINT;
SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
EVT SVT = Op.getValueType();
EVT RVT = Node->getValueType(0);
EVT NVT = EVT();
SDLoc dl(Node);
// Even if the result is legal, no libcall may exactly match, eg. we don't
// have fp -> i1 conversions. So, it needs to be promoted to a larger type,
// eg: fp -> i32. Then, look for an appropriate libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
++IntVT) {
NVT = (MVT::SimpleValueType)IntVT;
// The type needs to big enough to hold the result.
if (NVT.bitsGE(RVT))
LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT)
: RTLIB::getFPTOUINT(SVT, NVT);
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
// Truncate the result if the libcall returns a larger type.
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first));
if (IsStrict)
Results.push_back(Tmp.second);
break;
}
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND: {
// X = FP_ROUND(Y, TRUNC)
// TRUNC is a flag, which is always an integer that is zero or one.
// If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND
// is known to not change the value of Y.
// We can only expand it into libcall if the TRUNC is 0.
bool IsStrict = Node->isStrictFPOpcode();
SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
EVT VT = Node->getValueType(0);
assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))
->isNullValue() &&
"Unable to expand as libcall if it is not normal rounding");
RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain);
Results.push_back(Tmp.first);
if (IsStrict)
Results.push_back(Tmp.second);
break;
}
case ISD::FP_EXTEND: {
Results.push_back(
ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(),
Node->getValueType(0)),
Node, false));
break;
}
case ISD::STRICT_FP_EXTEND:
case ISD::STRICT_FP_TO_FP16: {
RTLIB::Libcall LC =
Node->getOpcode() == ISD::STRICT_FP_TO_FP16
? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16)
: RTLIB::getFPEXT(Node->getOperand(1).getValueType(),
Node->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
CallOptions, SDLoc(Node), Node->getOperand(0));
Results.push_back(Tmp.first);
Results.push_back(Tmp.second);
break;
}
case ISD::FSUB:
case ISD::STRICT_FSUB:
ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
RTLIB::SUB_F80, RTLIB::SUB_F128,
RTLIB::SUB_PPCF128, Results);
break;
case ISD::SREM:
Results.push_back(ExpandIntLibCall(Node, true,
RTLIB::SREM_I8,
RTLIB::SREM_I16, RTLIB::SREM_I32,
RTLIB::SREM_I64, RTLIB::SREM_I128));
break;
case ISD::UREM:
Results.push_back(ExpandIntLibCall(Node, false,
RTLIB::UREM_I8,
RTLIB::UREM_I16, RTLIB::UREM_I32,
RTLIB::UREM_I64, RTLIB::UREM_I128));
break;
case ISD::SDIV:
Results.push_back(ExpandIntLibCall(Node, true,
RTLIB::SDIV_I8,
RTLIB::SDIV_I16, RTLIB::SDIV_I32,
RTLIB::SDIV_I64, RTLIB::SDIV_I128));
break;
case ISD::UDIV:
Results.push_back(ExpandIntLibCall(Node, false,
RTLIB::UDIV_I8,
RTLIB::UDIV_I16, RTLIB::UDIV_I32,
RTLIB::UDIV_I64, RTLIB::UDIV_I128));
break;
case ISD::SDIVREM:
case ISD::UDIVREM:
// Expand into divrem libcall
ExpandDivRemLibCall(Node, Results);
break;
case ISD::MUL:
Results.push_back(ExpandIntLibCall(Node, false,
RTLIB::MUL_I8,
RTLIB::MUL_I16, RTLIB::MUL_I32,
RTLIB::MUL_I64, RTLIB::MUL_I128));
break;
case ISD::CTLZ_ZERO_UNDEF:
switch (Node->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("LibCall explicitly requested, but not available");
case MVT::i32:
Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
break;
case MVT::i64:
Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
break;
case MVT::i128:
Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
break;
}
break;
}
// Replace the original node with the legalized result.
if (!Results.empty()) {
LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
ReplaceNode(Node, Results.data());
} else
LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
}
// Determine the vector type to use in place of an original scalar element when
// promoting equally sized vectors.
static MVT getPromotedVectorElementType(const TargetLowering &TLI,
MVT EltVT, MVT NewEltVT) {
unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
assert(TLI.isTypeLegal(MidVT) && "unexpected");
return MidVT;
}
void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
LLVM_DEBUG(dbgs() << "Trying to promote node\n");
SmallVector<SDValue, 8> Results;
MVT OVT = Node->getSimpleValueType(0);
if (Node->getOpcode() == ISD::UINT_TO_FP ||
Node->getOpcode() == ISD::SINT_TO_FP ||
Node->getOpcode() == ISD::SETCC ||
Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
OVT = Node->getOperand(0).getSimpleValueType();
}
if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
Node->getOpcode() == ISD::STRICT_FSETCC ||
Node->getOpcode() == ISD::STRICT_FSETCCS)
OVT = Node->getOperand(1).getSimpleValueType();
if (Node->getOpcode() == ISD::BR_CC ||
Node->getOpcode() == ISD::SELECT_CC)
OVT = Node->getOperand(2).getSimpleValueType();
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
SDLoc dl(Node);
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
switch (Node->getOpcode()) {
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
// Zero extend the argument unless its cttz, then use any_extend.
if (Node->getOpcode() == ISD::CTTZ ||
Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
else
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
if (Node->getOpcode() == ISD::CTTZ) {
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
OVT.getSizeInBits());
Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
DAG.getConstant(TopBit, dl, NVT));
}
// Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
// already the correct result.
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
if (Node->getOpcode() == ISD::CTLZ ||
Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
// Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
DAG.getConstant(NVT.getSizeInBits() -
OVT.getSizeInBits(), dl, NVT));
}
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
break;
case ISD::BITREVERSE:
case ISD::BSWAP: {
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
Tmp1 = DAG.getNode(
ISD::SRL, dl, NVT, Tmp1,
DAG.getConstant(DiffBits, dl,
TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
break;
}
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
PromoteLegalFP_TO_INT(Node, dl, Results);
break;
case ISD::FP_TO_UINT_SAT:
case ISD::FP_TO_SINT_SAT:
Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
break;
case ISD::UINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
PromoteLegalINT_TO_FP(Node, dl, Results);
break;
case ISD::VAARG: {
SDValue Chain = Node->getOperand(0); // Get the chain.
SDValue Ptr = Node->getOperand(1); // Get the pointer.
unsigned TruncOp;
if (OVT.isVector()) {
TruncOp = ISD::BITCAST;
} else {
assert(OVT.isInteger()
&& "VAARG promotion is supported only for vectors or integer types");
TruncOp = ISD::TRUNCATE;
}
// Perform the larger operation, then convert back
Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
Node->getConstantOperandVal(3));
Chain = Tmp1.getValue(1);
Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
// Modified the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
if (UpdatedNodes) {
UpdatedNodes->insert(Tmp2.getNode());
UpdatedNodes->insert(Chain.getNode());
}
ReplacedNode(Node);
break;
}
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
case ISD::UDIV:
case ISD::UREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
unsigned ExtOp, TruncOp;
if (OVT.isVector()) {
ExtOp = ISD::BITCAST;
TruncOp = ISD::BITCAST;
} else {
assert(OVT.isInteger() && "Cannot promote logic operation");
switch (Node->getOpcode()) {
default:
ExtOp = ISD::ANY_EXTEND;
break;
case ISD::SDIV:
case ISD::SREM:
ExtOp = ISD::SIGN_EXTEND;
break;
case ISD::UDIV:
case ISD::UREM:
ExtOp = ISD::ZERO_EXTEND;
break;
}
TruncOp = ISD::TRUNCATE;
}
// Promote each of the values to the new type.
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
// Perform the larger operation, then convert back
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
break;
}
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: {
// Promote to a multiply in a wider integer type.
unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND;
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
auto &DL = DAG.getDataLayout();
unsigned OriginalSize = OVT.getScalarSizeInBits();
Tmp2 = DAG.getNode(
ISD::SRL, dl, NVT, Tmp1,
DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
break;
}
case ISD::SELECT: {
unsigned ExtOp, TruncOp;
if (Node->getValueType(0).isVector() ||
Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
ExtOp = ISD::BITCAST;
TruncOp = ISD::BITCAST;
} else if (Node->getValueType(0).isInteger()) {
ExtOp = ISD::ANY_EXTEND;
TruncOp = ISD::TRUNCATE;
} else {
ExtOp = ISD::FP_EXTEND;
TruncOp = ISD::FP_ROUND;
}
Tmp1 = Node->getOperand(0);
// Promote each of the values to the new type.
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
// Perform the larger operation, then round down.
Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
Tmp1->setFlags(Node->getFlags());
if (TruncOp != ISD::FP_ROUND)
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
else
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Tmp1);
break;
}
case ISD::VECTOR_SHUFFLE: {
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
// Cast the two input vectors.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
// Convert the shuffle mask to the right # elements.
Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
Results.push_back(Tmp1);
break;
}
case ISD::VECTOR_SPLICE: {
Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2,
Node->getOperand(2));
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3));
break;
}
case ISD::SELECT_CC: {
SDValue Cond = Node->getOperand(4);
ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get();
// Type of the comparison operands.
MVT CVT = Node->getSimpleValueType(0);
assert(CVT == OVT && "not handled");
unsigned ExtOp = ISD::FP_EXTEND;
if (NVT.isInteger()) {
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
// Promote the comparison operands, if needed.
if (TLI.isCondCodeLegal(CCCode, CVT)) {
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
} else {
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
}
// Cast the true/false operands.
Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond},
Node->getFlags());
// Cast the result back to the original type.
if (ExtOp != ISD::FP_EXTEND)
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1);
else
Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Tmp1);
break;
}
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: {
unsigned ExtOp = ISD::FP_EXTEND;
if (NVT.isInteger()) {
ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
if (Node->isStrictFPOpcode()) {
SDValue InChain = Node->getOperand(0);
std::tie(Tmp1, std::ignore) =
DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT);
std::tie(Tmp2, std::ignore) =
DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT);
SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)};
SDValue OutChain = DAG.getTokenFactor(dl, TmpChains);
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs,
{OutChain, Tmp1, Tmp2, Node->getOperand(3)},
Node->getFlags()));
Results.push_back(Results.back().getValue(1));
break;
}
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
Tmp2, Node->getOperand(2), Node->getFlags()));
break;
}
case ISD::BR_CC: {
unsigned ExtOp = ISD::FP_EXTEND;
if (NVT.isInteger()) {
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(1))->get();
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
Node->getOperand(0), Node->getOperand(1),
Tmp1, Tmp2, Node->getOperand(4)));
break;
}
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FPOW:
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
Node->getFlags());
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp3, DAG.getIntPtrConstant(0, dl)));
break;
case ISD::STRICT_FREM:
case ISD::STRICT_FPOW:
Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
{Node->getOperand(0), Node->getOperand(1)});
Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
{Node->getOperand(0), Node->getOperand(2)});
Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
Tmp2.getValue(1));
Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
{Tmp3, Tmp1, Tmp2});
Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
{Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
Results.push_back(Tmp1);
Results.push_back(Tmp1.getValue(1));
break;
case ISD::FMA:
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
Results.push_back(
DAG.getNode(ISD::FP_ROUND, dl, OVT,
DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
DAG.getIntPtrConstant(0, dl)));
break;
case ISD::FCOPYSIGN:
case ISD::FPOWI: {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = Node->getOperand(1);
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
// fcopysign doesn't change anything but the sign bit, so
// (fp_round (fcopysign (fpext a), b))
// is as precise as
// (fp_round (fpext a))
// which is a no-op. Mark it as a TRUNCating FP_ROUND.
const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
break;
}
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FROUNDEVEN:
case ISD::FTRUNC:
case ISD::FNEG:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FABS:
case ISD::FEXP:
case ISD::FEXP2:
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp2, DAG.getIntPtrConstant(0, dl)));
break;
case ISD::STRICT_FFLOOR:
case ISD::STRICT_FCEIL:
case ISD::STRICT_FSIN:
case ISD::STRICT_FCOS:
case ISD::STRICT_FLOG:
case ISD::STRICT_FLOG10:
case ISD::STRICT_FEXP:
Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
{Node->getOperand(0), Node->getOperand(1)});
Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
{Tmp1.getValue(1), Tmp1});
Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
{Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
Results.push_back(Tmp3);
Results.push_back(Tmp3.getValue(1));
break;
case ISD::BUILD_VECTOR: {
MVT EltVT = OVT.getVectorElementType();
MVT NewEltVT = NVT.getVectorElementType();
// Handle bitcasts to a different vector type with the same total bit size
//
// e.g. v2i64 = build_vector i64:x, i64:y => v4i32
// =>
// v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
"Invalid promote type for build_vector");
assert(NewEltVT.bitsLT(EltVT) && "not handled");
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
SmallVector<SDValue, 8> NewOps;
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
SDValue Op = Node->getOperand(I);
NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
}
SDLoc SL(Node);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
Results.push_back(CvtVec);
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
MVT EltVT = OVT.getVectorElementType();
MVT NewEltVT = NVT.getVectorElementType();
// Handle bitcasts to a different vector type with the same total bit size.
//
// e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
// =>
// v4i32:castx = bitcast x:v2i64
//
// i64 = bitcast
// (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
// (i32 (extract_vector_elt castx, (2 * y + 1)))
//
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
"Invalid promote type for extract_vector_elt");
assert(NewEltVT.bitsLT(EltVT) && "not handled");
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
SDValue Idx = Node->getOperand(1);
EVT IdxVT = Idx.getValueType();
SDLoc SL(Node);
SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
SmallVector<SDValue, 8> NewOps;
for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
CastVec, TmpIdx);
NewOps.push_back(Elt);
}
SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
break;
}
case ISD::INSERT_VECTOR_ELT: {
MVT EltVT = OVT.getVectorElementType();
MVT NewEltVT = NVT.getVectorElementType();
// Handle bitcasts to a different vector type with the same total bit size
//
// e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
// =>
// v4i32:castx = bitcast x:v2i64
// v2i32:casty = bitcast y:i64
//
// v2i64 = bitcast
// (v4i32 insert_vector_elt
// (v4i32 insert_vector_elt v4i32:castx,
// (extract_vector_elt casty, 0), 2 * z),
// (extract_vector_elt casty, 1), (2 * z + 1))
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
"Invalid promote type for insert_vector_elt");
assert(NewEltVT.bitsLT(EltVT) && "not handled");
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
SDValue Val = Node->getOperand(1);
SDValue Idx = Node->getOperand(2);
EVT IdxVT = Idx.getValueType();
SDLoc SL(Node);
SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
SDValue NewVec = CastVec;
for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
CastVal, IdxOffset);
NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
NewVec, Elt, InEltIdx);
}
Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
break;
}
case ISD::SCALAR_TO_VECTOR: {
MVT EltVT = OVT.getVectorElementType();
MVT NewEltVT = NVT.getVectorElementType();
// Handle bitcasts to different vector type with the same total bit size.
//
// e.g. v2i64 = scalar_to_vector x:i64
// =>
// concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
//
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
SDValue Val = Node->getOperand(0);
SDLoc SL(Node);
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
SDValue Undef = DAG.getUNDEF(MidVT);
SmallVector<SDValue, 8> NewElts;
NewElts.push_back(CastVal);
for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
NewElts.push_back(Undef);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
Results.push_back(CvtVec);
break;
}
case ISD::ATOMIC_SWAP: {
AtomicSDNode *AM = cast<AtomicSDNode>(Node);
SDLoc SL(Node);
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
"unexpected promotion type");
assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
"unexpected atomic_swap with illegal type");
SDValue NewAtomic
= DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
DAG.getVTList(NVT, MVT::Other),
{ AM->getChain(), AM->getBasePtr(), CastVal },
AM->getMemOperand());
Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
Results.push_back(NewAtomic.getValue(1));
break;
}
}
// Replace the original node with the legalized result.
if (!Results.empty()) {
LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
ReplaceNode(Node, Results.data());
} else
LLVM_DEBUG(dbgs() << "Could not promote node\n");
}
/// This is the entry point for the file.
void SelectionDAG::Legalize() {
AssignTopologicalOrder();
SmallPtrSet<SDNode *, 16> LegalizedNodes;
// Use a delete listener to remove nodes which were deleted during
// legalization from LegalizeNodes. This is needed to handle the situation
// where a new node is allocated by the object pool to the same address of a
// previously deleted node.
DAGNodeDeletedListener DeleteListener(
*this,
[&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
// Visit all the nodes. We start in topological order, so that we see
// nodes with their original operands intact. Legalization can produce
// new nodes which may themselves need to be legalized. Iterate until all
// nodes have been legalized.
while (true) {
bool AnyLegalized = false;
for (auto NI = allnodes_end(); NI != allnodes_begin();) {
--NI;
SDNode *N = &*NI;
if (N->use_empty() && N != getRoot().getNode()) {
++NI;
DeleteNode(N);
continue;
}
if (LegalizedNodes.insert(N).second) {
AnyLegalized = true;
Legalizer.LegalizeOp(N);
if (N->use_empty() && N != getRoot().getNode()) {
++NI;
DeleteNode(N);
}
}
}
if (!AnyLegalized)
break;
}
// Remove dead nodes now.
RemoveDeadNodes();
}
bool SelectionDAG::LegalizeOp(SDNode *N,
SmallSetVector<SDNode *, 16> &UpdatedNodes) {
SmallPtrSet<SDNode *, 16> LegalizedNodes;
SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
// Directly insert the node in question, and legalize it. This will recurse
// as needed through operands.
LegalizedNodes.insert(N);
Legalizer.LegalizeOp(N);
return LegalizedNodes.count(N);
}