1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/CodeGen/TargetPassConfig.cpp
Djordje Todorovic c793732c01 [RemoveRedundantDebugValues] Add a Pass that removes redundant DBG_VALUEs
This new MIR pass removes redundant DBG_VALUEs.

After the register allocator is done, more precisely, after
the Virtual Register Rewriter, we end up having duplicated
DBG_VALUEs, since some virtual registers are being rewritten
into the same physical register as some of existing DBG_VALUEs.
Each DBG_VALUE should indicate (at least before the LiveDebugValues)
variables assignment, but it is being clobbered for function
parameters during the SelectionDAG since it generates new DBG_VALUEs
after COPY instructions, even though the parameter has no assignment.
For example, if we had a DBG_VALUE $regX as an entry debug value
representing the parameter, and a COPY and after the COPY,
DBG_VALUE $virt_reg, and after the virtregrewrite the $virt_reg gets
rewritten into $regX, we'd end up having redundant DBG_VALUE.

This breaks the definition of the DBG_VALUE since some analysis passes
might be built on top of that premise..., and this patch tries to fix
the MIR with the respect to that.

This first patch performs bacward scan, by trying to detect a sequence of
consecutive DBG_VALUEs, and to remove all DBG_VALUEs describing one
variable but the last one:

For example:

(1) DBG_VALUE $edi, !"var1", ...
(2) DBG_VALUE $esi, !"var2", ...
(3) DBG_VALUE $edi, !"var1", ...
 ...

in this case, we can remove (1).

By combining the forward scan that will be introduced in the next patch
(from this stack), by inspecting the statistics, the RemoveRedundantDebugValues
removes 15032 instructions by using gdb-7.11 as a testbed.

Differential Revision: https://reviews.llvm.org/D105279
2021-07-14 04:29:42 -07:00

1493 lines
57 KiB
C++

//===- TargetPassConfig.cpp - Target independent code generation passes ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines interfaces to access the target independent code
// generation passes provided by the LLVM backend.
//
//===---------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/CodeGen/CSEConfigBase.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassInstrumentation.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Discriminator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/Threading.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/SymbolRewriter.h"
#include <cassert>
#include <string>
using namespace llvm;
static cl::opt<bool>
EnableIPRA("enable-ipra", cl::init(false), cl::Hidden,
cl::desc("Enable interprocedural register allocation "
"to reduce load/store at procedure calls."));
static cl::opt<bool> DisablePostRASched("disable-post-ra", cl::Hidden,
cl::desc("Disable Post Regalloc Scheduler"));
static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
cl::desc("Disable branch folding"));
static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
cl::desc("Disable tail duplication"));
static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden,
cl::desc("Disable pre-register allocation tail duplication"));
static cl::opt<bool> DisableBlockPlacement("disable-block-placement",
cl::Hidden, cl::desc("Disable probability-driven block placement"));
static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats",
cl::Hidden, cl::desc("Collect probability-driven block placement stats"));
static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden,
cl::desc("Disable Stack Slot Coloring"));
static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden,
cl::desc("Disable Machine Dead Code Elimination"));
static cl::opt<bool> DisableEarlyIfConversion("disable-early-ifcvt", cl::Hidden,
cl::desc("Disable Early If-conversion"));
static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden,
cl::desc("Disable Machine LICM"));
static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden,
cl::desc("Disable Machine Common Subexpression Elimination"));
static cl::opt<cl::boolOrDefault> OptimizeRegAlloc(
"optimize-regalloc", cl::Hidden,
cl::desc("Enable optimized register allocation compilation path."));
static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
cl::Hidden,
cl::desc("Disable Machine LICM"));
static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden,
cl::desc("Disable Machine Sinking"));
static cl::opt<bool> DisablePostRAMachineSink("disable-postra-machine-sink",
cl::Hidden,
cl::desc("Disable PostRA Machine Sinking"));
static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden,
cl::desc("Disable Loop Strength Reduction Pass"));
static cl::opt<bool> DisableConstantHoisting("disable-constant-hoisting",
cl::Hidden, cl::desc("Disable ConstantHoisting"));
static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
cl::desc("Disable Codegen Prepare"));
static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
cl::desc("Disable Copy Propagation pass"));
static cl::opt<bool> DisablePartialLibcallInlining("disable-partial-libcall-inlining",
cl::Hidden, cl::desc("Disable Partial Libcall Inlining"));
static cl::opt<bool> EnableImplicitNullChecks(
"enable-implicit-null-checks",
cl::desc("Fold null checks into faulting memory operations"),
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableMergeICmps("disable-mergeicmps",
cl::desc("Disable MergeICmps Pass"),
cl::init(false), cl::Hidden);
static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
cl::desc("Print LLVM IR produced by the loop-reduce pass"));
static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
cl::desc("Print LLVM IR input to isel pass"));
static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
cl::desc("Dump garbage collector data"));
static cl::opt<cl::boolOrDefault>
VerifyMachineCode("verify-machineinstrs", cl::Hidden,
cl::desc("Verify generated machine code"),
cl::ZeroOrMore);
static cl::opt<cl::boolOrDefault> DebugifyAndStripAll(
"debugify-and-strip-all-safe", cl::Hidden,
cl::desc(
"Debugify MIR before and Strip debug after "
"each pass except those known to be unsafe when debug info is present"),
cl::ZeroOrMore);
static cl::opt<cl::boolOrDefault> DebugifyCheckAndStripAll(
"debugify-check-and-strip-all-safe", cl::Hidden,
cl::desc(
"Debugify MIR before, by checking and stripping the debug info after, "
"each pass except those known to be unsafe when debug info is present"),
cl::ZeroOrMore);
// Enable or disable the MachineOutliner.
static cl::opt<RunOutliner> EnableMachineOutliner(
"enable-machine-outliner", cl::desc("Enable the machine outliner"),
cl::Hidden, cl::ValueOptional, cl::init(RunOutliner::TargetDefault),
cl::values(clEnumValN(RunOutliner::AlwaysOutline, "always",
"Run on all functions guaranteed to be beneficial"),
clEnumValN(RunOutliner::NeverOutline, "never",
"Disable all outlining"),
// Sentinel value for unspecified option.
clEnumValN(RunOutliner::AlwaysOutline, "", "")));
// Enable or disable FastISel. Both options are needed, because
// FastISel is enabled by default with -fast, and we wish to be
// able to enable or disable fast-isel independently from -O0.
static cl::opt<cl::boolOrDefault>
EnableFastISelOption("fast-isel", cl::Hidden,
cl::desc("Enable the \"fast\" instruction selector"));
static cl::opt<cl::boolOrDefault> EnableGlobalISelOption(
"global-isel", cl::Hidden,
cl::desc("Enable the \"global\" instruction selector"));
// FIXME: remove this after switching to NPM or GlobalISel, whichever gets there
// first...
static cl::opt<bool>
PrintAfterISel("print-after-isel", cl::init(false), cl::Hidden,
cl::desc("Print machine instrs after ISel"));
static cl::opt<GlobalISelAbortMode> EnableGlobalISelAbort(
"global-isel-abort", cl::Hidden,
cl::desc("Enable abort calls when \"global\" instruction selection "
"fails to lower/select an instruction"),
cl::values(
clEnumValN(GlobalISelAbortMode::Disable, "0", "Disable the abort"),
clEnumValN(GlobalISelAbortMode::Enable, "1", "Enable the abort"),
clEnumValN(GlobalISelAbortMode::DisableWithDiag, "2",
"Disable the abort but emit a diagnostic on failure")));
// An option that disables inserting FS-AFDO discriminators before emit.
// This is mainly for debugging and tuning purpose.
static cl::opt<bool>
FSNoFinalDiscrim("fs-no-final-discrim", cl::init(false), cl::Hidden,
cl::desc("Do not insert FS-AFDO discriminators before "
"emit."));
// Temporary option to allow experimenting with MachineScheduler as a post-RA
// scheduler. Targets can "properly" enable this with
// substitutePass(&PostRASchedulerID, &PostMachineSchedulerID).
// Targets can return true in targetSchedulesPostRAScheduling() and
// insert a PostRA scheduling pass wherever it wants.
static cl::opt<bool> MISchedPostRA(
"misched-postra", cl::Hidden,
cl::desc(
"Run MachineScheduler post regalloc (independent of preRA sched)"));
// Experimental option to run live interval analysis early.
static cl::opt<bool> EarlyLiveIntervals("early-live-intervals", cl::Hidden,
cl::desc("Run live interval analysis earlier in the pipeline"));
// Experimental option to use CFL-AA in codegen
static cl::opt<CFLAAType> UseCFLAA(
"use-cfl-aa-in-codegen", cl::init(CFLAAType::None), cl::Hidden,
cl::desc("Enable the new, experimental CFL alias analysis in CodeGen"),
cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
clEnumValN(CFLAAType::Steensgaard, "steens",
"Enable unification-based CFL-AA"),
clEnumValN(CFLAAType::Andersen, "anders",
"Enable inclusion-based CFL-AA"),
clEnumValN(CFLAAType::Both, "both",
"Enable both variants of CFL-AA")));
/// Option names for limiting the codegen pipeline.
/// Those are used in error reporting and we didn't want
/// to duplicate their names all over the place.
static const char StartAfterOptName[] = "start-after";
static const char StartBeforeOptName[] = "start-before";
static const char StopAfterOptName[] = "stop-after";
static const char StopBeforeOptName[] = "stop-before";
static cl::opt<std::string>
StartAfterOpt(StringRef(StartAfterOptName),
cl::desc("Resume compilation after a specific pass"),
cl::value_desc("pass-name"), cl::init(""), cl::Hidden);
static cl::opt<std::string>
StartBeforeOpt(StringRef(StartBeforeOptName),
cl::desc("Resume compilation before a specific pass"),
cl::value_desc("pass-name"), cl::init(""), cl::Hidden);
static cl::opt<std::string>
StopAfterOpt(StringRef(StopAfterOptName),
cl::desc("Stop compilation after a specific pass"),
cl::value_desc("pass-name"), cl::init(""), cl::Hidden);
static cl::opt<std::string>
StopBeforeOpt(StringRef(StopBeforeOptName),
cl::desc("Stop compilation before a specific pass"),
cl::value_desc("pass-name"), cl::init(""), cl::Hidden);
/// Enable the machine function splitter pass.
static cl::opt<bool> EnableMachineFunctionSplitter(
"enable-split-machine-functions", cl::Hidden,
cl::desc("Split out cold blocks from machine functions based on profile "
"information."));
/// Disable the expand reductions pass for testing.
static cl::opt<bool> DisableExpandReductions(
"disable-expand-reductions", cl::init(false), cl::Hidden,
cl::desc("Disable the expand reduction intrinsics pass from running"));
/// Allow standard passes to be disabled by command line options. This supports
/// simple binary flags that either suppress the pass or do nothing.
/// i.e. -disable-mypass=false has no effect.
/// These should be converted to boolOrDefault in order to use applyOverride.
static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID,
bool Override) {
if (Override)
return IdentifyingPassPtr();
return PassID;
}
/// Allow standard passes to be disabled by the command line, regardless of who
/// is adding the pass.
///
/// StandardID is the pass identified in the standard pass pipeline and provided
/// to addPass(). It may be a target-specific ID in the case that the target
/// directly adds its own pass, but in that case we harmlessly fall through.
///
/// TargetID is the pass that the target has configured to override StandardID.
///
/// StandardID may be a pseudo ID. In that case TargetID is the name of the real
/// pass to run. This allows multiple options to control a single pass depending
/// on where in the pipeline that pass is added.
static IdentifyingPassPtr overridePass(AnalysisID StandardID,
IdentifyingPassPtr TargetID) {
if (StandardID == &PostRASchedulerID)
return applyDisable(TargetID, DisablePostRASched);
if (StandardID == &BranchFolderPassID)
return applyDisable(TargetID, DisableBranchFold);
if (StandardID == &TailDuplicateID)
return applyDisable(TargetID, DisableTailDuplicate);
if (StandardID == &EarlyTailDuplicateID)
return applyDisable(TargetID, DisableEarlyTailDup);
if (StandardID == &MachineBlockPlacementID)
return applyDisable(TargetID, DisableBlockPlacement);
if (StandardID == &StackSlotColoringID)
return applyDisable(TargetID, DisableSSC);
if (StandardID == &DeadMachineInstructionElimID)
return applyDisable(TargetID, DisableMachineDCE);
if (StandardID == &EarlyIfConverterID)
return applyDisable(TargetID, DisableEarlyIfConversion);
if (StandardID == &EarlyMachineLICMID)
return applyDisable(TargetID, DisableMachineLICM);
if (StandardID == &MachineCSEID)
return applyDisable(TargetID, DisableMachineCSE);
if (StandardID == &MachineLICMID)
return applyDisable(TargetID, DisablePostRAMachineLICM);
if (StandardID == &MachineSinkingID)
return applyDisable(TargetID, DisableMachineSink);
if (StandardID == &PostRAMachineSinkingID)
return applyDisable(TargetID, DisablePostRAMachineSink);
if (StandardID == &MachineCopyPropagationID)
return applyDisable(TargetID, DisableCopyProp);
return TargetID;
}
//===---------------------------------------------------------------------===//
/// TargetPassConfig
//===---------------------------------------------------------------------===//
INITIALIZE_PASS(TargetPassConfig, "targetpassconfig",
"Target Pass Configuration", false, false)
char TargetPassConfig::ID = 0;
namespace {
struct InsertedPass {
AnalysisID TargetPassID;
IdentifyingPassPtr InsertedPassID;
bool VerifyAfter;
InsertedPass(AnalysisID TargetPassID, IdentifyingPassPtr InsertedPassID,
bool VerifyAfter)
: TargetPassID(TargetPassID), InsertedPassID(InsertedPassID),
VerifyAfter(VerifyAfter) {}
Pass *getInsertedPass() const {
assert(InsertedPassID.isValid() && "Illegal Pass ID!");
if (InsertedPassID.isInstance())
return InsertedPassID.getInstance();
Pass *NP = Pass::createPass(InsertedPassID.getID());
assert(NP && "Pass ID not registered");
return NP;
}
};
} // end anonymous namespace
namespace llvm {
extern cl::opt<bool> EnableFSDiscriminator;
class PassConfigImpl {
public:
// List of passes explicitly substituted by this target. Normally this is
// empty, but it is a convenient way to suppress or replace specific passes
// that are part of a standard pass pipeline without overridding the entire
// pipeline. This mechanism allows target options to inherit a standard pass's
// user interface. For example, a target may disable a standard pass by
// default by substituting a pass ID of zero, and the user may still enable
// that standard pass with an explicit command line option.
DenseMap<AnalysisID,IdentifyingPassPtr> TargetPasses;
/// Store the pairs of <AnalysisID, AnalysisID> of which the second pass
/// is inserted after each instance of the first one.
SmallVector<InsertedPass, 4> InsertedPasses;
};
} // end namespace llvm
// Out of line virtual method.
TargetPassConfig::~TargetPassConfig() {
delete Impl;
}
static const PassInfo *getPassInfo(StringRef PassName) {
if (PassName.empty())
return nullptr;
const PassRegistry &PR = *PassRegistry::getPassRegistry();
const PassInfo *PI = PR.getPassInfo(PassName);
if (!PI)
report_fatal_error(Twine('\"') + Twine(PassName) +
Twine("\" pass is not registered."));
return PI;
}
static AnalysisID getPassIDFromName(StringRef PassName) {
const PassInfo *PI = getPassInfo(PassName);
return PI ? PI->getTypeInfo() : nullptr;
}
static std::pair<StringRef, unsigned>
getPassNameAndInstanceNum(StringRef PassName) {
StringRef Name, InstanceNumStr;
std::tie(Name, InstanceNumStr) = PassName.split(',');
unsigned InstanceNum = 0;
if (!InstanceNumStr.empty() && InstanceNumStr.getAsInteger(10, InstanceNum))
report_fatal_error("invalid pass instance specifier " + PassName);
return std::make_pair(Name, InstanceNum);
}
void TargetPassConfig::setStartStopPasses() {
StringRef StartBeforeName;
std::tie(StartBeforeName, StartBeforeInstanceNum) =
getPassNameAndInstanceNum(StartBeforeOpt);
StringRef StartAfterName;
std::tie(StartAfterName, StartAfterInstanceNum) =
getPassNameAndInstanceNum(StartAfterOpt);
StringRef StopBeforeName;
std::tie(StopBeforeName, StopBeforeInstanceNum)
= getPassNameAndInstanceNum(StopBeforeOpt);
StringRef StopAfterName;
std::tie(StopAfterName, StopAfterInstanceNum)
= getPassNameAndInstanceNum(StopAfterOpt);
StartBefore = getPassIDFromName(StartBeforeName);
StartAfter = getPassIDFromName(StartAfterName);
StopBefore = getPassIDFromName(StopBeforeName);
StopAfter = getPassIDFromName(StopAfterName);
if (StartBefore && StartAfter)
report_fatal_error(Twine(StartBeforeOptName) + Twine(" and ") +
Twine(StartAfterOptName) + Twine(" specified!"));
if (StopBefore && StopAfter)
report_fatal_error(Twine(StopBeforeOptName) + Twine(" and ") +
Twine(StopAfterOptName) + Twine(" specified!"));
Started = (StartAfter == nullptr) && (StartBefore == nullptr);
}
CGPassBuilderOption llvm::getCGPassBuilderOption() {
CGPassBuilderOption Opt;
#define SET_OPTION(Option) \
if (Option.getNumOccurrences()) \
Opt.Option = Option;
SET_OPTION(EnableFastISelOption)
SET_OPTION(EnableGlobalISelAbort)
SET_OPTION(EnableGlobalISelOption)
SET_OPTION(EnableIPRA)
SET_OPTION(OptimizeRegAlloc)
SET_OPTION(VerifyMachineCode)
#define SET_BOOLEAN_OPTION(Option) Opt.Option = Option;
SET_BOOLEAN_OPTION(EarlyLiveIntervals)
SET_BOOLEAN_OPTION(EnableBlockPlacementStats)
SET_BOOLEAN_OPTION(EnableImplicitNullChecks)
SET_BOOLEAN_OPTION(EnableMachineOutliner)
SET_BOOLEAN_OPTION(MISchedPostRA)
SET_BOOLEAN_OPTION(UseCFLAA)
SET_BOOLEAN_OPTION(DisableMergeICmps)
SET_BOOLEAN_OPTION(DisableLSR)
SET_BOOLEAN_OPTION(DisableConstantHoisting)
SET_BOOLEAN_OPTION(DisableCGP)
SET_BOOLEAN_OPTION(DisablePartialLibcallInlining)
SET_BOOLEAN_OPTION(PrintLSR)
SET_BOOLEAN_OPTION(PrintISelInput)
SET_BOOLEAN_OPTION(PrintGCInfo)
return Opt;
}
static void registerPartialPipelineCallback(PassInstrumentationCallbacks &PIC,
LLVMTargetMachine &LLVMTM) {
StringRef StartBefore;
StringRef StartAfter;
StringRef StopBefore;
StringRef StopAfter;
unsigned StartBeforeInstanceNum = 0;
unsigned StartAfterInstanceNum = 0;
unsigned StopBeforeInstanceNum = 0;
unsigned StopAfterInstanceNum = 0;
std::tie(StartBefore, StartBeforeInstanceNum) =
getPassNameAndInstanceNum(StartBeforeOpt);
std::tie(StartAfter, StartAfterInstanceNum) =
getPassNameAndInstanceNum(StartAfterOpt);
std::tie(StopBefore, StopBeforeInstanceNum) =
getPassNameAndInstanceNum(StopBeforeOpt);
std::tie(StopAfter, StopAfterInstanceNum) =
getPassNameAndInstanceNum(StopAfterOpt);
if (StartBefore.empty() && StartAfter.empty() && StopBefore.empty() &&
StopAfter.empty())
return;
std::tie(StartBefore, std::ignore) =
LLVMTM.getPassNameFromLegacyName(StartBefore);
std::tie(StartAfter, std::ignore) =
LLVMTM.getPassNameFromLegacyName(StartAfter);
std::tie(StopBefore, std::ignore) =
LLVMTM.getPassNameFromLegacyName(StopBefore);
std::tie(StopAfter, std::ignore) =
LLVMTM.getPassNameFromLegacyName(StopAfter);
if (!StartBefore.empty() && !StartAfter.empty())
report_fatal_error(Twine(StartBeforeOptName) + Twine(" and ") +
Twine(StartAfterOptName) + Twine(" specified!"));
if (!StopBefore.empty() && !StopAfter.empty())
report_fatal_error(Twine(StopBeforeOptName) + Twine(" and ") +
Twine(StopAfterOptName) + Twine(" specified!"));
PIC.registerShouldRunOptionalPassCallback(
[=, EnableCurrent = StartBefore.empty() && StartAfter.empty(),
EnableNext = Optional<bool>(), StartBeforeCount = 0u,
StartAfterCount = 0u, StopBeforeCount = 0u,
StopAfterCount = 0u](StringRef P, Any) mutable {
bool StartBeforePass = !StartBefore.empty() && P.contains(StartBefore);
bool StartAfterPass = !StartAfter.empty() && P.contains(StartAfter);
bool StopBeforePass = !StopBefore.empty() && P.contains(StopBefore);
bool StopAfterPass = !StopAfter.empty() && P.contains(StopAfter);
// Implement -start-after/-stop-after
if (EnableNext) {
EnableCurrent = *EnableNext;
EnableNext.reset();
}
// Using PIC.registerAfterPassCallback won't work because if this
// callback returns false, AfterPassCallback is also skipped.
if (StartAfterPass && StartAfterCount++ == StartAfterInstanceNum) {
assert(!EnableNext && "Error: assign to EnableNext more than once");
EnableNext = true;
}
if (StopAfterPass && StopAfterCount++ == StopAfterInstanceNum) {
assert(!EnableNext && "Error: assign to EnableNext more than once");
EnableNext = false;
}
if (StartBeforePass && StartBeforeCount++ == StartBeforeInstanceNum)
EnableCurrent = true;
if (StopBeforePass && StopBeforeCount++ == StopBeforeInstanceNum)
EnableCurrent = false;
return EnableCurrent;
});
}
void llvm::registerCodeGenCallback(PassInstrumentationCallbacks &PIC,
LLVMTargetMachine &LLVMTM) {
// Register a callback for disabling passes.
PIC.registerShouldRunOptionalPassCallback([](StringRef P, Any) {
#define DISABLE_PASS(Option, Name) \
if (Option && P.contains(#Name)) \
return false;
DISABLE_PASS(DisableBlockPlacement, MachineBlockPlacementPass)
DISABLE_PASS(DisableBranchFold, BranchFolderPass)
DISABLE_PASS(DisableCopyProp, MachineCopyPropagationPass)
DISABLE_PASS(DisableEarlyIfConversion, EarlyIfConverterPass)
DISABLE_PASS(DisableEarlyTailDup, EarlyTailDuplicatePass)
DISABLE_PASS(DisableMachineCSE, MachineCSEPass)
DISABLE_PASS(DisableMachineDCE, DeadMachineInstructionElimPass)
DISABLE_PASS(DisableMachineLICM, EarlyMachineLICMPass)
DISABLE_PASS(DisableMachineSink, MachineSinkingPass)
DISABLE_PASS(DisablePostRAMachineLICM, MachineLICMPass)
DISABLE_PASS(DisablePostRAMachineSink, PostRAMachineSinkingPass)
DISABLE_PASS(DisablePostRASched, PostRASchedulerPass)
DISABLE_PASS(DisableSSC, StackSlotColoringPass)
DISABLE_PASS(DisableTailDuplicate, TailDuplicatePass)
return true;
});
registerPartialPipelineCallback(PIC, LLVMTM);
}
// Out of line constructor provides default values for pass options and
// registers all common codegen passes.
TargetPassConfig::TargetPassConfig(LLVMTargetMachine &TM, PassManagerBase &pm)
: ImmutablePass(ID), PM(&pm), TM(&TM) {
Impl = new PassConfigImpl();
// Register all target independent codegen passes to activate their PassIDs,
// including this pass itself.
initializeCodeGen(*PassRegistry::getPassRegistry());
// Also register alias analysis passes required by codegen passes.
initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
if (EnableIPRA.getNumOccurrences())
TM.Options.EnableIPRA = EnableIPRA;
else {
// If not explicitly specified, use target default.
TM.Options.EnableIPRA |= TM.useIPRA();
}
if (TM.Options.EnableIPRA)
setRequiresCodeGenSCCOrder();
if (EnableGlobalISelAbort.getNumOccurrences())
TM.Options.GlobalISelAbort = EnableGlobalISelAbort;
setStartStopPasses();
}
CodeGenOpt::Level TargetPassConfig::getOptLevel() const {
return TM->getOptLevel();
}
/// Insert InsertedPassID pass after TargetPassID.
void TargetPassConfig::insertPass(AnalysisID TargetPassID,
IdentifyingPassPtr InsertedPassID,
bool VerifyAfter) {
assert(((!InsertedPassID.isInstance() &&
TargetPassID != InsertedPassID.getID()) ||
(InsertedPassID.isInstance() &&
TargetPassID != InsertedPassID.getInstance()->getPassID())) &&
"Insert a pass after itself!");
Impl->InsertedPasses.emplace_back(TargetPassID, InsertedPassID, VerifyAfter);
}
/// createPassConfig - Create a pass configuration object to be used by
/// addPassToEmitX methods for generating a pipeline of CodeGen passes.
///
/// Targets may override this to extend TargetPassConfig.
TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) {
return new TargetPassConfig(*this, PM);
}
TargetPassConfig::TargetPassConfig()
: ImmutablePass(ID) {
report_fatal_error("Trying to construct TargetPassConfig without a target "
"machine. Scheduling a CodeGen pass without a target "
"triple set?");
}
bool TargetPassConfig::willCompleteCodeGenPipeline() {
return StopBeforeOpt.empty() && StopAfterOpt.empty();
}
bool TargetPassConfig::hasLimitedCodeGenPipeline() {
return !StartBeforeOpt.empty() || !StartAfterOpt.empty() ||
!willCompleteCodeGenPipeline();
}
std::string
TargetPassConfig::getLimitedCodeGenPipelineReason(const char *Separator) {
if (!hasLimitedCodeGenPipeline())
return std::string();
std::string Res;
static cl::opt<std::string> *PassNames[] = {&StartAfterOpt, &StartBeforeOpt,
&StopAfterOpt, &StopBeforeOpt};
static const char *OptNames[] = {StartAfterOptName, StartBeforeOptName,
StopAfterOptName, StopBeforeOptName};
bool IsFirst = true;
for (int Idx = 0; Idx < 4; ++Idx)
if (!PassNames[Idx]->empty()) {
if (!IsFirst)
Res += Separator;
IsFirst = false;
Res += OptNames[Idx];
}
return Res;
}
// Helper to verify the analysis is really immutable.
void TargetPassConfig::setOpt(bool &Opt, bool Val) {
assert(!Initialized && "PassConfig is immutable");
Opt = Val;
}
void TargetPassConfig::substitutePass(AnalysisID StandardID,
IdentifyingPassPtr TargetID) {
Impl->TargetPasses[StandardID] = TargetID;
}
IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
DenseMap<AnalysisID, IdentifyingPassPtr>::const_iterator
I = Impl->TargetPasses.find(ID);
if (I == Impl->TargetPasses.end())
return ID;
return I->second;
}
bool TargetPassConfig::isPassSubstitutedOrOverridden(AnalysisID ID) const {
IdentifyingPassPtr TargetID = getPassSubstitution(ID);
IdentifyingPassPtr FinalPtr = overridePass(ID, TargetID);
return !FinalPtr.isValid() || FinalPtr.isInstance() ||
FinalPtr.getID() != ID;
}
/// Add a pass to the PassManager if that pass is supposed to be run. If the
/// Started/Stopped flags indicate either that the compilation should start at
/// a later pass or that it should stop after an earlier pass, then do not add
/// the pass. Finally, compare the current pass against the StartAfter
/// and StopAfter options and change the Started/Stopped flags accordingly.
void TargetPassConfig::addPass(Pass *P, bool verifyAfter) {
assert(!Initialized && "PassConfig is immutable");
// Cache the Pass ID here in case the pass manager finds this pass is
// redundant with ones already scheduled / available, and deletes it.
// Fundamentally, once we add the pass to the manager, we no longer own it
// and shouldn't reference it.
AnalysisID PassID = P->getPassID();
if (StartBefore == PassID && StartBeforeCount++ == StartBeforeInstanceNum)
Started = true;
if (StopBefore == PassID && StopBeforeCount++ == StopBeforeInstanceNum)
Stopped = true;
if (Started && !Stopped) {
if (AddingMachinePasses)
addMachinePrePasses();
std::string Banner;
// Construct banner message before PM->add() as that may delete the pass.
if (AddingMachinePasses && verifyAfter)
Banner = std::string("After ") + std::string(P->getPassName());
PM->add(P);
if (AddingMachinePasses)
addMachinePostPasses(Banner, /*AllowVerify*/ verifyAfter);
// Add the passes after the pass P if there is any.
for (const auto &IP : Impl->InsertedPasses) {
if (IP.TargetPassID == PassID)
addPass(IP.getInsertedPass(), IP.VerifyAfter);
}
} else {
delete P;
}
if (StopAfter == PassID && StopAfterCount++ == StopAfterInstanceNum)
Stopped = true;
if (StartAfter == PassID && StartAfterCount++ == StartAfterInstanceNum)
Started = true;
if (Stopped && !Started)
report_fatal_error("Cannot stop compilation after pass that is not run");
}
/// Add a CodeGen pass at this point in the pipeline after checking for target
/// and command line overrides.
///
/// addPass cannot return a pointer to the pass instance because is internal the
/// PassManager and the instance we create here may already be freed.
AnalysisID TargetPassConfig::addPass(AnalysisID PassID, bool verifyAfter) {
IdentifyingPassPtr TargetID = getPassSubstitution(PassID);
IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID);
if (!FinalPtr.isValid())
return nullptr;
Pass *P;
if (FinalPtr.isInstance())
P = FinalPtr.getInstance();
else {
P = Pass::createPass(FinalPtr.getID());
if (!P)
llvm_unreachable("Pass ID not registered");
}
AnalysisID FinalID = P->getPassID();
addPass(P, verifyAfter); // Ends the lifetime of P.
return FinalID;
}
void TargetPassConfig::printAndVerify(const std::string &Banner) {
addPrintPass(Banner);
addVerifyPass(Banner);
}
void TargetPassConfig::addPrintPass(const std::string &Banner) {
if (PrintAfterISel)
PM->add(createMachineFunctionPrinterPass(dbgs(), Banner));
}
void TargetPassConfig::addVerifyPass(const std::string &Banner) {
bool Verify = VerifyMachineCode == cl::BOU_TRUE;
#ifdef EXPENSIVE_CHECKS
if (VerifyMachineCode == cl::BOU_UNSET)
Verify = TM->isMachineVerifierClean();
#endif
if (Verify)
PM->add(createMachineVerifierPass(Banner));
}
void TargetPassConfig::addDebugifyPass() {
PM->add(createDebugifyMachineModulePass());
}
void TargetPassConfig::addStripDebugPass() {
PM->add(createStripDebugMachineModulePass(/*OnlyDebugified=*/true));
}
void TargetPassConfig::addCheckDebugPass() {
PM->add(createCheckDebugMachineModulePass());
}
void TargetPassConfig::addMachinePrePasses(bool AllowDebugify) {
if (AllowDebugify && DebugifyIsSafe &&
(DebugifyAndStripAll == cl::BOU_TRUE ||
DebugifyCheckAndStripAll == cl::BOU_TRUE))
addDebugifyPass();
}
void TargetPassConfig::addMachinePostPasses(const std::string &Banner,
bool AllowVerify, bool AllowStrip) {
if (DebugifyIsSafe) {
if (DebugifyCheckAndStripAll == cl::BOU_TRUE) {
addCheckDebugPass();
addStripDebugPass();
} else if (DebugifyAndStripAll == cl::BOU_TRUE)
addStripDebugPass();
}
if (AllowVerify)
addVerifyPass(Banner);
}
/// Add common target configurable passes that perform LLVM IR to IR transforms
/// following machine independent optimization.
void TargetPassConfig::addIRPasses() {
// Before running any passes, run the verifier to determine if the input
// coming from the front-end and/or optimizer is valid.
if (!DisableVerify)
addPass(createVerifierPass());
if (getOptLevel() != CodeGenOpt::None) {
switch (UseCFLAA) {
case CFLAAType::Steensgaard:
addPass(createCFLSteensAAWrapperPass());
break;
case CFLAAType::Andersen:
addPass(createCFLAndersAAWrapperPass());
break;
case CFLAAType::Both:
addPass(createCFLAndersAAWrapperPass());
addPass(createCFLSteensAAWrapperPass());
break;
default:
break;
}
// Basic AliasAnalysis support.
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
addPass(createTypeBasedAAWrapperPass());
addPass(createScopedNoAliasAAWrapperPass());
addPass(createBasicAAWrapperPass());
// Run loop strength reduction before anything else.
if (!DisableLSR) {
addPass(createCanonicalizeFreezeInLoopsPass());
addPass(createLoopStrengthReducePass());
if (PrintLSR)
addPass(createPrintFunctionPass(dbgs(),
"\n\n*** Code after LSR ***\n"));
}
// The MergeICmpsPass tries to create memcmp calls by grouping sequences of
// loads and compares. ExpandMemCmpPass then tries to expand those calls
// into optimally-sized loads and compares. The transforms are enabled by a
// target lowering hook.
if (!DisableMergeICmps)
addPass(createMergeICmpsLegacyPass());
addPass(createExpandMemCmpPass());
}
// Run GC lowering passes for builtin collectors
// TODO: add a pass insertion point here
addPass(&GCLoweringID);
addPass(&ShadowStackGCLoweringID);
addPass(createLowerConstantIntrinsicsPass());
// Make sure that no unreachable blocks are instruction selected.
addPass(createUnreachableBlockEliminationPass());
// Prepare expensive constants for SelectionDAG.
if (getOptLevel() != CodeGenOpt::None && !DisableConstantHoisting)
addPass(createConstantHoistingPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createReplaceWithVeclibLegacyPass());
if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining)
addPass(createPartiallyInlineLibCallsPass());
// Expand vector predication intrinsics into standard IR instructions.
// This pass has to run before ScalarizeMaskedMemIntrin and ExpandReduction
// passes since it emits those kinds of intrinsics.
addPass(createExpandVectorPredicationPass());
// Add scalarization of target's unsupported masked memory intrinsics pass.
// the unsupported intrinsic will be replaced with a chain of basic blocks,
// that stores/loads element one-by-one if the appropriate mask bit is set.
addPass(createScalarizeMaskedMemIntrinLegacyPass());
// Expand reduction intrinsics into shuffle sequences if the target wants to.
// Allow disabling it for testing purposes.
if (!DisableExpandReductions)
addPass(createExpandReductionsPass());
}
/// Turn exception handling constructs into something the code generators can
/// handle.
void TargetPassConfig::addPassesToHandleExceptions() {
const MCAsmInfo *MCAI = TM->getMCAsmInfo();
assert(MCAI && "No MCAsmInfo");
switch (MCAI->getExceptionHandlingType()) {
case ExceptionHandling::SjLj:
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
// Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
// catch info can get misplaced when a selector ends up more than one block
// removed from the parent invoke(s). This could happen when a landing
// pad is shared by multiple invokes and is also a target of a normal
// edge from elsewhere.
addPass(createSjLjEHPreparePass(TM));
LLVM_FALLTHROUGH;
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
case ExceptionHandling::AIX:
addPass(createDwarfEHPass(getOptLevel()));
break;
case ExceptionHandling::WinEH:
// We support using both GCC-style and MSVC-style exceptions on Windows, so
// add both preparation passes. Each pass will only actually run if it
// recognizes the personality function.
addPass(createWinEHPass());
addPass(createDwarfEHPass(getOptLevel()));
break;
case ExceptionHandling::Wasm:
// Wasm EH uses Windows EH instructions, but it does not need to demote PHIs
// on catchpads and cleanuppads because it does not outline them into
// funclets. Catchswitch blocks are not lowered in SelectionDAG, so we
// should remove PHIs there.
addPass(createWinEHPass(/*DemoteCatchSwitchPHIOnly=*/false));
addPass(createWasmEHPass());
break;
case ExceptionHandling::None:
addPass(createLowerInvokePass());
// The lower invoke pass may create unreachable code. Remove it.
addPass(createUnreachableBlockEliminationPass());
break;
}
}
/// Add pass to prepare the LLVM IR for code generation. This should be done
/// before exception handling preparation passes.
void TargetPassConfig::addCodeGenPrepare() {
if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
addPass(createCodeGenPreparePass());
}
/// Add common passes that perform LLVM IR to IR transforms in preparation for
/// instruction selection.
void TargetPassConfig::addISelPrepare() {
addPreISel();
// Force codegen to run according to the callgraph.
if (requiresCodeGenSCCOrder())
addPass(new DummyCGSCCPass);
// Add both the safe stack and the stack protection passes: each of them will
// only protect functions that have corresponding attributes.
addPass(createSafeStackPass());
addPass(createStackProtectorPass());
if (PrintISelInput)
addPass(createPrintFunctionPass(
dbgs(), "\n\n*** Final LLVM Code input to ISel ***\n"));
// All passes which modify the LLVM IR are now complete; run the verifier
// to ensure that the IR is valid.
if (!DisableVerify)
addPass(createVerifierPass());
}
bool TargetPassConfig::addCoreISelPasses() {
// Enable FastISel with -fast-isel, but allow that to be overridden.
TM->setO0WantsFastISel(EnableFastISelOption != cl::BOU_FALSE);
// Determine an instruction selector.
enum class SelectorType { SelectionDAG, FastISel, GlobalISel };
SelectorType Selector;
if (EnableFastISelOption == cl::BOU_TRUE)
Selector = SelectorType::FastISel;
else if (EnableGlobalISelOption == cl::BOU_TRUE ||
(TM->Options.EnableGlobalISel &&
EnableGlobalISelOption != cl::BOU_FALSE))
Selector = SelectorType::GlobalISel;
else if (TM->getOptLevel() == CodeGenOpt::None && TM->getO0WantsFastISel())
Selector = SelectorType::FastISel;
else
Selector = SelectorType::SelectionDAG;
// Set consistently TM->Options.EnableFastISel and EnableGlobalISel.
if (Selector == SelectorType::FastISel) {
TM->setFastISel(true);
TM->setGlobalISel(false);
} else if (Selector == SelectorType::GlobalISel) {
TM->setFastISel(false);
TM->setGlobalISel(true);
}
// FIXME: Injecting into the DAGISel pipeline seems to cause issues with
// analyses needing to be re-run. This can result in being unable to
// schedule passes (particularly with 'Function Alias Analysis
// Results'). It's not entirely clear why but AFAICT this seems to be
// due to one FunctionPassManager not being able to use analyses from a
// previous one. As we're injecting a ModulePass we break the usual
// pass manager into two. GlobalISel with the fallback path disabled
// and -run-pass seem to be unaffected. The majority of GlobalISel
// testing uses -run-pass so this probably isn't too bad.
SaveAndRestore<bool> SavedDebugifyIsSafe(DebugifyIsSafe);
if (Selector != SelectorType::GlobalISel || !isGlobalISelAbortEnabled())
DebugifyIsSafe = false;
// Add instruction selector passes.
if (Selector == SelectorType::GlobalISel) {
SaveAndRestore<bool> SavedAddingMachinePasses(AddingMachinePasses, true);
if (addIRTranslator())
return true;
addPreLegalizeMachineIR();
if (addLegalizeMachineIR())
return true;
// Before running the register bank selector, ask the target if it
// wants to run some passes.
addPreRegBankSelect();
if (addRegBankSelect())
return true;
addPreGlobalInstructionSelect();
if (addGlobalInstructionSelect())
return true;
// Pass to reset the MachineFunction if the ISel failed.
addPass(createResetMachineFunctionPass(
reportDiagnosticWhenGlobalISelFallback(), isGlobalISelAbortEnabled()));
// Provide a fallback path when we do not want to abort on
// not-yet-supported input.
if (!isGlobalISelAbortEnabled() && addInstSelector())
return true;
} else if (addInstSelector())
return true;
// Expand pseudo-instructions emitted by ISel. Don't run the verifier before
// FinalizeISel.
addPass(&FinalizeISelID);
// Print the instruction selected machine code...
printAndVerify("After Instruction Selection");
return false;
}
bool TargetPassConfig::addISelPasses() {
if (TM->useEmulatedTLS())
addPass(createLowerEmuTLSPass());
addPass(createPreISelIntrinsicLoweringPass());
PM->add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));
addIRPasses();
addCodeGenPrepare();
addPassesToHandleExceptions();
addISelPrepare();
return addCoreISelPasses();
}
/// -regalloc=... command line option.
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
static cl::opt<RegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<RegisterRegAlloc>>
RegAlloc("regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use"));
/// Add the complete set of target-independent postISel code generator passes.
///
/// This can be read as the standard order of major LLVM CodeGen stages. Stages
/// with nontrivial configuration or multiple passes are broken out below in
/// add%Stage routines.
///
/// Any TargetPassConfig::addXX routine may be overriden by the Target. The
/// addPre/Post methods with empty header implementations allow injecting
/// target-specific fixups just before or after major stages. Additionally,
/// targets have the flexibility to change pass order within a stage by
/// overriding default implementation of add%Stage routines below. Each
/// technique has maintainability tradeoffs because alternate pass orders are
/// not well supported. addPre/Post works better if the target pass is easily
/// tied to a common pass. But if it has subtle dependencies on multiple passes,
/// the target should override the stage instead.
///
/// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
/// before/after any target-independent pass. But it's currently overkill.
void TargetPassConfig::addMachinePasses() {
AddingMachinePasses = true;
// Add passes that optimize machine instructions in SSA form.
if (getOptLevel() != CodeGenOpt::None) {
addMachineSSAOptimization();
} else {
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(&LocalStackSlotAllocationID);
}
if (TM->Options.EnableIPRA)
addPass(createRegUsageInfoPropPass());
// Run pre-ra passes.
addPreRegAlloc();
// Debugifying the register allocator passes seems to provoke some
// non-determinism that affects CodeGen and there doesn't seem to be a point
// where it becomes safe again so stop debugifying here.
DebugifyIsSafe = false;
// Run register allocation and passes that are tightly coupled with it,
// including phi elimination and scheduling.
if (getOptimizeRegAlloc())
addOptimizedRegAlloc();
else
addFastRegAlloc();
// Run post-ra passes.
addPostRegAlloc();
addPass(&RemoveRedundantDebugValuesID, false);
addPass(&FixupStatepointCallerSavedID);
// Insert prolog/epilog code. Eliminate abstract frame index references...
if (getOptLevel() != CodeGenOpt::None) {
addPass(&PostRAMachineSinkingID);
addPass(&ShrinkWrapID);
}
// Prolog/Epilog inserter needs a TargetMachine to instantiate. But only
// do so if it hasn't been disabled, substituted, or overridden.
if (!isPassSubstitutedOrOverridden(&PrologEpilogCodeInserterID))
addPass(createPrologEpilogInserterPass());
/// Add passes that optimize machine instructions after register allocation.
if (getOptLevel() != CodeGenOpt::None)
addMachineLateOptimization();
// Expand pseudo instructions before second scheduling pass.
addPass(&ExpandPostRAPseudosID);
// Run pre-sched2 passes.
addPreSched2();
if (EnableImplicitNullChecks)
addPass(&ImplicitNullChecksID);
// Second pass scheduler.
// Let Target optionally insert this pass by itself at some other
// point.
if (getOptLevel() != CodeGenOpt::None &&
!TM->targetSchedulesPostRAScheduling()) {
if (MISchedPostRA)
addPass(&PostMachineSchedulerID);
else
addPass(&PostRASchedulerID);
}
// GC
if (addGCPasses()) {
if (PrintGCInfo)
addPass(createGCInfoPrinter(dbgs()), false);
}
// Basic block placement.
if (getOptLevel() != CodeGenOpt::None)
addBlockPlacement();
// Insert before XRay Instrumentation.
addPass(&FEntryInserterID);
addPass(&XRayInstrumentationID);
addPass(&PatchableFunctionID);
if (EnableFSDiscriminator && !FSNoFinalDiscrim)
// Add FS discriminators here so that all the instruction duplicates
// in different BBs get their own discriminators. With this, we can "sum"
// the SampleFDO counters instead of using MAX. This will improve the
// SampleFDO profile quality.
addPass(createMIRAddFSDiscriminatorsPass(
sampleprof::FSDiscriminatorPass::PassLast));
addPreEmitPass();
if (TM->Options.EnableIPRA)
// Collect register usage information and produce a register mask of
// clobbered registers, to be used to optimize call sites.
addPass(createRegUsageInfoCollector());
// FIXME: Some backends are incompatible with running the verifier after
// addPreEmitPass. Maybe only pass "false" here for those targets?
addPass(&FuncletLayoutID, false);
addPass(&StackMapLivenessID, false);
addPass(&LiveDebugValuesID, false);
if (TM->Options.EnableMachineOutliner && getOptLevel() != CodeGenOpt::None &&
EnableMachineOutliner != RunOutliner::NeverOutline) {
bool RunOnAllFunctions =
(EnableMachineOutliner == RunOutliner::AlwaysOutline);
bool AddOutliner =
RunOnAllFunctions || TM->Options.SupportsDefaultOutlining;
if (AddOutliner)
addPass(createMachineOutlinerPass(RunOnAllFunctions));
}
// Machine function splitter uses the basic block sections feature. Both
// cannot be enabled at the same time. Basic block sections takes precedence.
// FIXME: In principle, BasicBlockSection::Labels and splitting can used
// together. Update this check once we have addressed any issues.
if (TM->getBBSectionsType() != llvm::BasicBlockSection::None) {
addPass(llvm::createBasicBlockSectionsPass(TM->getBBSectionsFuncListBuf()));
} else if (TM->Options.EnableMachineFunctionSplitter ||
EnableMachineFunctionSplitter) {
addPass(createMachineFunctionSplitterPass());
}
// Add passes that directly emit MI after all other MI passes.
addPreEmitPass2();
// Insert pseudo probe annotation for callsite profiling
if (TM->Options.PseudoProbeForProfiling)
addPass(createPseudoProbeInserter());
AddingMachinePasses = false;
}
/// Add passes that optimize machine instructions in SSA form.
void TargetPassConfig::addMachineSSAOptimization() {
// Pre-ra tail duplication.
addPass(&EarlyTailDuplicateID);
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
addPass(&OptimizePHIsID);
// This pass merges large allocas. StackSlotColoring is a different pass
// which merges spill slots.
addPass(&StackColoringID);
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(&LocalStackSlotAllocationID);
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
addPass(&DeadMachineInstructionElimID);
// Allow targets to insert passes that improve instruction level parallelism,
// like if-conversion. Such passes will typically need dominator trees and
// loop info, just like LICM and CSE below.
addILPOpts();
addPass(&EarlyMachineLICMID);
addPass(&MachineCSEID);
addPass(&MachineSinkingID);
addPass(&PeepholeOptimizerID);
// Clean-up the dead code that may have been generated by peephole
// rewriting.
addPass(&DeadMachineInstructionElimID);
}
//===---------------------------------------------------------------------===//
/// Register Allocation Pass Configuration
//===---------------------------------------------------------------------===//
bool TargetPassConfig::getOptimizeRegAlloc() const {
switch (OptimizeRegAlloc) {
case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None;
case cl::BOU_TRUE: return true;
case cl::BOU_FALSE: return false;
}
llvm_unreachable("Invalid optimize-regalloc state");
}
/// A dummy default pass factory indicates whether the register allocator is
/// overridden on the command line.
static llvm::once_flag InitializeDefaultRegisterAllocatorFlag;
static RegisterRegAlloc
defaultRegAlloc("default",
"pick register allocator based on -O option",
useDefaultRegisterAllocator);
static void initializeDefaultRegisterAllocatorOnce() {
if (!RegisterRegAlloc::getDefault())
RegisterRegAlloc::setDefault(RegAlloc);
}
/// Instantiate the default register allocator pass for this target for either
/// the optimized or unoptimized allocation path. This will be added to the pass
/// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
/// in the optimized case.
///
/// A target that uses the standard regalloc pass order for fast or optimized
/// allocation may still override this for per-target regalloc
/// selection. But -regalloc=... always takes precedence.
FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) {
if (Optimized)
return createGreedyRegisterAllocator();
else
return createFastRegisterAllocator();
}
/// Find and instantiate the register allocation pass requested by this target
/// at the current optimization level. Different register allocators are
/// defined as separate passes because they may require different analysis.
///
/// This helper ensures that the regalloc= option is always available,
/// even for targets that override the default allocator.
///
/// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs,
/// this can be folded into addPass.
FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultRegisterAllocatorFlag,
initializeDefaultRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
// With no -regalloc= override, ask the target for a regalloc pass.
return createTargetRegisterAllocator(Optimized);
}
bool TargetPassConfig::addRegAssignAndRewriteFast() {
if (RegAlloc != (RegisterRegAlloc::FunctionPassCtor)&useDefaultRegisterAllocator &&
RegAlloc != (RegisterRegAlloc::FunctionPassCtor)&createFastRegisterAllocator)
report_fatal_error("Must use fast (default) register allocator for unoptimized regalloc.");
addPass(createRegAllocPass(false));
// Allow targets to change the register assignments after
// fast register allocation.
addPostFastRegAllocRewrite();
return true;
}
bool TargetPassConfig::addRegAssignAndRewriteOptimized() {
// Add the selected register allocation pass.
addPass(createRegAllocPass(true));
// Allow targets to change the register assignments before rewriting.
addPreRewrite();
// Finally rewrite virtual registers.
addPass(&VirtRegRewriterID);
return true;
}
/// Return true if the default global register allocator is in use and
/// has not be overriden on the command line with '-regalloc=...'
bool TargetPassConfig::usingDefaultRegAlloc() const {
return RegAlloc.getNumOccurrences() == 0;
}
/// Add the minimum set of target-independent passes that are required for
/// register allocation. No coalescing or scheduling.
void TargetPassConfig::addFastRegAlloc() {
addPass(&PHIEliminationID, false);
addPass(&TwoAddressInstructionPassID, false);
addRegAssignAndRewriteFast();
}
/// Add standard target-independent passes that are tightly coupled with
/// optimized register allocation, including coalescing, machine instruction
/// scheduling, and register allocation itself.
void TargetPassConfig::addOptimizedRegAlloc() {
addPass(&DetectDeadLanesID, false);
addPass(&ProcessImplicitDefsID, false);
// LiveVariables currently requires pure SSA form.
//
// FIXME: Once TwoAddressInstruction pass no longer uses kill flags,
// LiveVariables can be removed completely, and LiveIntervals can be directly
// computed. (We still either need to regenerate kill flags after regalloc, or
// preferably fix the scavenger to not depend on them).
// FIXME: UnreachableMachineBlockElim is a dependant pass of LiveVariables.
// When LiveVariables is removed this has to be removed/moved either.
// Explicit addition of UnreachableMachineBlockElim allows stopping before or
// after it with -stop-before/-stop-after.
addPass(&UnreachableMachineBlockElimID, false);
addPass(&LiveVariablesID, false);
// Edge splitting is smarter with machine loop info.
addPass(&MachineLoopInfoID, false);
addPass(&PHIEliminationID, false);
// Eventually, we want to run LiveIntervals before PHI elimination.
if (EarlyLiveIntervals)
addPass(&LiveIntervalsID, false);
addPass(&TwoAddressInstructionPassID, false);
addPass(&RegisterCoalescerID);
// The machine scheduler may accidentally create disconnected components
// when moving subregister definitions around, avoid this by splitting them to
// separate vregs before. Splitting can also improve reg. allocation quality.
addPass(&RenameIndependentSubregsID);
// PreRA instruction scheduling.
addPass(&MachineSchedulerID);
if (addRegAssignAndRewriteOptimized()) {
// Perform stack slot coloring and post-ra machine LICM.
//
// FIXME: Re-enable coloring with register when it's capable of adding
// kill markers.
addPass(&StackSlotColoringID);
// Allow targets to expand pseudo instructions depending on the choice of
// registers before MachineCopyPropagation.
addPostRewrite();
// Copy propagate to forward register uses and try to eliminate COPYs that
// were not coalesced.
addPass(&MachineCopyPropagationID);
// Run post-ra machine LICM to hoist reloads / remats.
//
// FIXME: can this move into MachineLateOptimization?
addPass(&MachineLICMID);
}
}
//===---------------------------------------------------------------------===//
/// Post RegAlloc Pass Configuration
//===---------------------------------------------------------------------===//
/// Add passes that optimize machine instructions after register allocation.
void TargetPassConfig::addMachineLateOptimization() {
// Branch folding must be run after regalloc and prolog/epilog insertion.
addPass(&BranchFolderPassID);
// Tail duplication.
// Note that duplicating tail just increases code size and degrades
// performance for targets that require Structured Control Flow.
// In addition it can also make CFG irreducible. Thus we disable it.
if (!TM->requiresStructuredCFG())
addPass(&TailDuplicateID);
// Copy propagation.
addPass(&MachineCopyPropagationID);
}
/// Add standard GC passes.
bool TargetPassConfig::addGCPasses() {
addPass(&GCMachineCodeAnalysisID, false);
return true;
}
/// Add standard basic block placement passes.
void TargetPassConfig::addBlockPlacement() {
if (addPass(&MachineBlockPlacementID)) {
// Run a separate pass to collect block placement statistics.
if (EnableBlockPlacementStats)
addPass(&MachineBlockPlacementStatsID);
}
}
//===---------------------------------------------------------------------===//
/// GlobalISel Configuration
//===---------------------------------------------------------------------===//
bool TargetPassConfig::isGlobalISelAbortEnabled() const {
return TM->Options.GlobalISelAbort == GlobalISelAbortMode::Enable;
}
bool TargetPassConfig::reportDiagnosticWhenGlobalISelFallback() const {
return TM->Options.GlobalISelAbort == GlobalISelAbortMode::DisableWithDiag;
}
bool TargetPassConfig::isGISelCSEEnabled() const {
return true;
}
std::unique_ptr<CSEConfigBase> TargetPassConfig::getCSEConfig() const {
return std::make_unique<CSEConfigBase>();
}