1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/test/CodeGen/ARM/vector-DAGCombine.ll
Craig Topper 0d537b1b78 [LegalizeVectorTypes] Don't use SplitVecOp_TruncateHelper if we're heading towards scalarizing the type.
This code takes a truncate, fp_to_int, or int_to_fp with a legal result type and an input type that needs to be split and enlarges the elements in the result type before doing the split. Then inserts a follow up truncate or fp_round after concatenating the two halves back together.

But if the input type of the original op is being split on its way to ultimately being scalarized we're just going to end up building a vector from scalars and then truncating or rounding it in the vector register. Seems kind of silly to enlarge the result element type of the operation only to end up with scalar code and then building a vector with large elements only to make the elements smaller again in the vector register. Seems better to just try to get away producing smaller result types in the scalarized code.

The X86 test case that changes is a pretty contrived test case that exists because of a bug we used to have in our AVG matching code. I think the code is better now, but its not realistic anyway.

llvm-svn: 347482
2018-11-23 02:32:13 +00:00

248 lines
9.4 KiB
LLVM

; RUN: llc < %s -mtriple=armv7-apple-darwin | FileCheck %s
; PR7158
define i32 @test_pr7158() nounwind {
bb.nph55.bb.nph55.split_crit_edge:
br label %bb3
bb3: ; preds = %bb3, %bb.nph55.bb.nph55.split_crit_edge
br i1 undef, label %bb.i19, label %bb3
bb.i19: ; preds = %bb.i19, %bb3
%0 = insertelement <4 x float> undef, float undef, i32 3 ; <<4 x float>> [#uses=3]
%1 = fmul <4 x float> %0, %0 ; <<4 x float>> [#uses=1]
%2 = bitcast <4 x float> %1 to <2 x double> ; <<2 x double>> [#uses=0]
%3 = fmul <4 x float> %0, undef ; <<4 x float>> [#uses=0]
br label %bb.i19
}
; Check that the DAG combiner does not arbitrarily modify BUILD_VECTORs
; after legalization.
define void @test_illegal_build_vector() nounwind {
entry:
store <2 x i64> undef, <2 x i64>* undef, align 16
%0 = load <16 x i8>, <16 x i8>* undef, align 16 ; <<16 x i8>> [#uses=1]
%1 = or <16 x i8> zeroinitializer, %0 ; <<16 x i8>> [#uses=1]
store <16 x i8> %1, <16 x i8>* undef, align 16
ret void
}
; PR22678
; Check CONCAT_VECTORS DAG combiner pass doesn't introduce illegal types.
define void @test_pr22678() {
%1 = fptoui <16 x float> undef to <16 x i8>
store <16 x i8> %1, <16 x i8>* undef
ret void
}
; Radar 8407927: Make sure that VMOVRRD gets optimized away when the result is
; converted back to be used as a vector type.
; CHECK-LABEL: test_vmovrrd_combine:
define <4 x i32> @test_vmovrrd_combine() nounwind {
entry:
br i1 undef, label %bb1, label %bb2
bb1:
%0 = bitcast <2 x i64> zeroinitializer to <2 x double>
%1 = extractelement <2 x double> %0, i32 0
%2 = bitcast double %1 to i64
%3 = insertelement <1 x i64> undef, i64 %2, i32 0
; CHECK-NOT: vmov s
; CHECK: vext.8
%4 = shufflevector <1 x i64> %3, <1 x i64> undef, <2 x i32> <i32 0, i32 1>
%tmp2006.3 = bitcast <2 x i64> %4 to <16 x i8>
%5 = shufflevector <16 x i8> %tmp2006.3, <16 x i8> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 16, i32 17, i32 18, i32 19>
%tmp2004.3 = bitcast <16 x i8> %5 to <4 x i32>
br i1 undef, label %bb2, label %bb1
bb2:
%result = phi <4 x i32> [ undef, %entry ], [ %tmp2004.3, %bb1 ]
ret <4 x i32> %result
}
; Test trying to do a ShiftCombine on illegal types.
; The vector should be split first.
define void @lshrIllegalType(<8 x i32>* %A) nounwind {
%tmp1 = load <8 x i32>, <8 x i32>* %A
%tmp2 = lshr <8 x i32> %tmp1, < i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3>
store <8 x i32> %tmp2, <8 x i32>* %A
ret void
}
; Test folding a binary vector operation with constant BUILD_VECTOR
; operands with i16 elements.
define void @test_i16_constant_fold() nounwind optsize {
entry:
%0 = sext <4 x i1> zeroinitializer to <4 x i16>
%1 = add <4 x i16> %0, zeroinitializer
%2 = shufflevector <4 x i16> %1, <4 x i16> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%3 = add <8 x i16> %2, <i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1>
%4 = trunc <8 x i16> %3 to <8 x i8>
tail call void @llvm.arm.neon.vst1.p0i8.v8i8(i8* undef, <8 x i8> %4, i32 1)
unreachable
}
declare void @llvm.arm.neon.vst1.p0i8.v8i8(i8*, <8 x i8>, i32) nounwind
; Test that loads and stores of i64 vector elements are handled as f64 values
; so they are not split up into i32 values. Radar 8755338.
define void @i64_buildvector(i64* %ptr, <2 x i64>* %vp) nounwind {
; CHECK: i64_buildvector
; CHECK: vldr
%t0 = load i64, i64* %ptr, align 4
%t1 = insertelement <2 x i64> undef, i64 %t0, i32 0
store <2 x i64> %t1, <2 x i64>* %vp
ret void
}
define void @i64_insertelement(i64* %ptr, <2 x i64>* %vp) nounwind {
; CHECK: i64_insertelement
; CHECK: vldr
%t0 = load i64, i64* %ptr, align 4
%vec = load <2 x i64>, <2 x i64>* %vp
%t1 = insertelement <2 x i64> %vec, i64 %t0, i32 0
store <2 x i64> %t1, <2 x i64>* %vp
ret void
}
define void @i64_extractelement(i64* %ptr, <2 x i64>* %vp) nounwind {
; CHECK: i64_extractelement
; CHECK: vstr
%vec = load <2 x i64>, <2 x i64>* %vp
%t1 = extractelement <2 x i64> %vec, i32 0
store i64 %t1, i64* %ptr
ret void
}
; Test trying to do a AND Combine on illegal types.
define void @andVec(<3 x i8>* %A) nounwind {
%tmp = load <3 x i8>, <3 x i8>* %A, align 4
%and = and <3 x i8> %tmp, <i8 7, i8 7, i8 7>
store <3 x i8> %and, <3 x i8>* %A
ret void
}
; Test trying to do an OR Combine on illegal types.
define void @orVec(<3 x i8>* %A) nounwind {
%tmp = load <3 x i8>, <3 x i8>* %A, align 4
%or = or <3 x i8> %tmp, <i8 7, i8 7, i8 7>
store <3 x i8> %or, <3 x i8>* %A
ret void
}
; The following test was hitting an assertion in the DAG combiner when
; constant folding the multiply because the "sext undef" was translated to
; a BUILD_VECTOR with i32 0 operands, which did not match the i16 operands
; of the other BUILD_VECTOR.
define i16 @foldBuildVectors() {
%1 = sext <8 x i8> undef to <8 x i16>
%2 = mul <8 x i16> %1, <i16 255, i16 255, i16 255, i16 255, i16 255, i16 255, i16 255, i16 255>
%3 = extractelement <8 x i16> %2, i32 0
ret i16 %3
}
; Test that we are generating vrev and vext for reverse shuffles of v8i16
; shuffles.
; CHECK-LABEL: reverse_v8i16:
define void @reverse_v8i16(<8 x i16>* %loadaddr, <8 x i16>* %storeaddr) {
%v0 = load <8 x i16>, <8 x i16>* %loadaddr
; CHECK: vrev64.16
; CHECK: vext.16
%v1 = shufflevector <8 x i16> %v0, <8 x i16> undef,
<8 x i32> <i32 7, i32 6, i32 5, i32 4, i32 3, i32 2, i32 1, i32 0>
store <8 x i16> %v1, <8 x i16>* %storeaddr
ret void
}
; Test that we are generating vrev and vext for reverse shuffles of v16i8
; shuffles.
; CHECK-LABEL: reverse_v16i8:
define void @reverse_v16i8(<16 x i8>* %loadaddr, <16 x i8>* %storeaddr) {
%v0 = load <16 x i8>, <16 x i8>* %loadaddr
; CHECK: vrev64.8
; CHECK: vext.8
%v1 = shufflevector <16 x i8> %v0, <16 x i8> undef,
<16 x i32> <i32 15, i32 14, i32 13, i32 12, i32 11, i32 10, i32 9, i32 8,
i32 7, i32 6, i32 5, i32 4, i32 3, i32 2, i32 1, i32 0>
store <16 x i8> %v1, <16 x i8>* %storeaddr
ret void
}
; <rdar://problem/14170854>.
; vldr cannot handle unaligned loads.
; Fall back to vld1.32, which can, instead of using the general purpose loads
; followed by a costly sequence of instructions to build the vector register.
; CHECK-LABEL: t3:
; CHECK: vld1.32 {[[REG:d[0-9]+]][0]}
; CHECK: vld1.32 {[[REG]][1]}
; CHECK: vmull.u8 q{{[0-9]+}}, [[REG]], [[REG]]
define <8 x i16> @t3(i8 zeroext %xf, i8* nocapture %sp0, i8* nocapture %sp1, i32* nocapture %outp) {
entry:
%pix_sp0.0.cast = bitcast i8* %sp0 to i32*
%pix_sp0.0.copyload = load i32, i32* %pix_sp0.0.cast, align 1
%pix_sp1.0.cast = bitcast i8* %sp1 to i32*
%pix_sp1.0.copyload = load i32, i32* %pix_sp1.0.cast, align 1
%vecinit = insertelement <2 x i32> undef, i32 %pix_sp0.0.copyload, i32 0
%vecinit1 = insertelement <2 x i32> %vecinit, i32 %pix_sp1.0.copyload, i32 1
%0 = bitcast <2 x i32> %vecinit1 to <8 x i8>
%vmull.i = tail call <8 x i16> @llvm.arm.neon.vmullu.v8i16(<8 x i8> %0, <8 x i8> %0)
ret <8 x i16> %vmull.i
}
; Function Attrs: nounwind readnone
declare <8 x i16> @llvm.arm.neon.vmullu.v8i16(<8 x i8>, <8 x i8>)
; Check that (insert_vector_elt (load)) => (vector_load).
; Thus, check that scalar_to_vector do not interfer with that.
define <8 x i16> @t4(i8* nocapture %sp0) {
; CHECK-LABEL: t4:
; CHECK: vld1.32 {{{d[0-9]+}}[0]}, [r0]
entry:
%pix_sp0.0.cast = bitcast i8* %sp0 to i32*
%pix_sp0.0.copyload = load i32, i32* %pix_sp0.0.cast, align 1
%vec = insertelement <2 x i32> undef, i32 %pix_sp0.0.copyload, i32 0
%0 = bitcast <2 x i32> %vec to <8 x i8>
%vmull.i = tail call <8 x i16> @llvm.arm.neon.vmullu.v8i16(<8 x i8> %0, <8 x i8> %0)
ret <8 x i16> %vmull.i
}
; Make sure vector load is used for all three loads.
; Lowering to build vector was breaking the single use property of the load of
; %pix_sp0.0.copyload.
; CHECK-LABEL: t5:
; CHECK: vld1.32 {[[REG1:d[0-9]+]][1]}, [r0]
; CHECK: vorr [[REG2:d[0-9]+]], [[REG1]], [[REG1]]
; CHECK: vld1.32 {[[REG1]][0]}, [r1]
; CHECK: vld1.32 {[[REG2]][0]}, [r2]
; CHECK: vmull.u8 q{{[0-9]+}}, [[REG1]], [[REG2]]
define <8 x i16> @t5(i8* nocapture %sp0, i8* nocapture %sp1, i8* nocapture %sp2) {
entry:
%pix_sp0.0.cast = bitcast i8* %sp0 to i32*
%pix_sp0.0.copyload = load i32, i32* %pix_sp0.0.cast, align 1
%pix_sp1.0.cast = bitcast i8* %sp1 to i32*
%pix_sp1.0.copyload = load i32, i32* %pix_sp1.0.cast, align 1
%pix_sp2.0.cast = bitcast i8* %sp2 to i32*
%pix_sp2.0.copyload = load i32, i32* %pix_sp2.0.cast, align 1
%vec = insertelement <2 x i32> undef, i32 %pix_sp0.0.copyload, i32 1
%vecinit1 = insertelement <2 x i32> %vec, i32 %pix_sp1.0.copyload, i32 0
%vecinit2 = insertelement <2 x i32> %vec, i32 %pix_sp2.0.copyload, i32 0
%0 = bitcast <2 x i32> %vecinit1 to <8 x i8>
%1 = bitcast <2 x i32> %vecinit2 to <8 x i8>
%vmull.i = tail call <8 x i16> @llvm.arm.neon.vmullu.v8i16(<8 x i8> %0, <8 x i8> %1)
ret <8 x i16> %vmull.i
}
; <rdar://problem/14989896> Make sure we manage to truncate a vector from an
; illegal type to a legal type.
define <2 x i8> @test_truncate(<2 x i128> %in) {
; CHECK-LABEL: test_truncate:
; CHECK: vmov.32 [[REG:d[0-9]+]][0], r0
; CHECK-NEXT: mov [[BASE:r[0-9]+]], sp
; CHECK-NEXT: vld1.32 {[[REG]][1]}, {{\[}}[[BASE]]:32]
; CHECK-NEXT: vmov r0, r1, [[REG]]
entry:
%res = trunc <2 x i128> %in to <2 x i8>
ret <2 x i8> %res
}