1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/test/Transforms/LICM/hoisting.ll
David Sherwood 999d6d6e7c [SVE] Fix isLoadInvariantInLoop for scalable vectors
I've amended the isLoadInvariantInLoop function to bail out for
scalable vectors for now since the invariant.start intrinsic is only
ever generated by the clang frontend for thread locals or struct
and class constructors, neither of which support sizeless types.
In addition, the intrinsic itself does not currently support the
concept of a scaled size, which makes it impossible to compare
the sizes of different scalable objects, e.g. <vscale x 32 x i8>
and <vscale x 16 x i8>.

Added new tests here:

  Transforms/LICM/AArch64/sve-load-hoist.ll
  Transforms/LICM/hoisting.ll

Differential Revision: https://reviews.llvm.org/D87227
2020-09-15 08:30:19 +01:00

396 lines
12 KiB
LLVM

; RUN: opt < %s -licm -S | FileCheck %s
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<opt-remark-emit>,loop(licm)' -S | FileCheck %s
; RUN: opt < %s -licm -enable-mssa-loop-dependency=true -verify-memoryssa -S | FileCheck %s
@X = global i32 0 ; <i32*> [#uses=1]
declare void @foo()
declare i32 @llvm.bitreverse.i32(i32)
; This testcase tests for a problem where LICM hoists
; potentially trapping instructions when they are not guaranteed to execute.
define i32 @test1(i1 %c) {
; CHECK-LABEL: @test1(
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop: ; preds = %LoopTail, %0
call void @foo( )
br i1 %c, label %LoopTail, label %IfUnEqual
IfUnEqual: ; preds = %Loop
; CHECK: IfUnEqual:
; CHECK-NEXT: sdiv i32 4, %A
%B1 = sdiv i32 4, %A ; <i32> [#uses=1]
br label %LoopTail
LoopTail: ; preds = %IfUnEqual, %Loop
%B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ] ; <i32> [#uses=1]
br i1 %c, label %Loop, label %Out
Out: ; preds = %LoopTail
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
declare void @foo2(i32) nounwind
;; It is ok and desirable to hoist this potentially trapping instruction.
define i32 @test2(i1 %c) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: load i32, i32* @X
; CHECK-NEXT: %B = sdiv i32 4, %A
%A = load i32, i32* @X
br label %Loop
Loop:
;; Should have hoisted this div!
%B = sdiv i32 4, %A
br label %loop2
loop2:
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out:
%C = sub i32 %A, %B
ret i32 %C
}
; This loop invariant instruction should be constant folded, not hoisted.
define i32 @test3(i1 %c) {
; CHECK-LABEL: define i32 @test3(
; CHECK: call void @foo2(i32 6)
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop:
%B = add i32 4, 2 ; <i32> [#uses=2]
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out: ; preds = %Loop
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
; CHECK-LABEL: @test4(
; CHECK: call
; CHECK: sdiv
; CHECK: ret
define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ]
call void @foo_may_call_exit(i32 0)
%div = sdiv i32 %x, %y
%add = add nsw i32 %n.01, %div
%inc = add nsw i32 %i.02, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%n.0.lcssa = phi i32 [ %add, %for.body ]
ret i32 %n.0.lcssa
}
declare void @foo_may_call_exit(i32)
; PR14854
; CHECK-LABEL: @test5(
; CHECK: extractvalue
; CHECK: br label %tailrecurse
; CHECK: tailrecurse:
; CHECK: ifend:
; CHECK: insertvalue
define { i32*, i32 } @test5(i32 %i, { i32*, i32 } %e) {
entry:
br label %tailrecurse
tailrecurse: ; preds = %then, %entry
%i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ]
%out = extractvalue { i32*, i32 } %e, 1
%d = insertvalue { i32*, i32 } %e, i32* null, 0
%cmp1 = icmp sgt i32 %out, %i.tr
br i1 %cmp1, label %then, label %ifend
then: ; preds = %tailrecurse
call void @foo()
%cmp2 = add i32 %i.tr, 1
br label %tailrecurse
ifend: ; preds = %tailrecurse
ret { i32*, i32 } %d
}
; CHECK: define void @test6(float %f)
; CHECK: fneg
; CHECK: br label %for.body
define void @test6(float %f) #2 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @foo_may_call_exit(i32 0)
%neg = fneg float %f
call void @use(float %neg)
%inc = add nsw i32 %i, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
declare void @use(float)
; CHECK: define i32 @hoist_bitreverse(i32 %0)
; CHECK: bitreverse
; CHECK: br label %header
define i32 @hoist_bitreverse(i32 %0) {
br label %header
header:
%sum = phi i32 [ 0, %1 ], [ %5, %latch ]
%2 = phi i32 [ 0, %1 ], [ %6, %latch ]
%3 = icmp slt i32 %2, 1024
br i1 %3, label %body, label %return
body:
%4 = call i32 @llvm.bitreverse.i32(i32 %0)
%5 = add i32 %sum, %4
br label %latch
latch:
%6 = add nsw i32 %2, 1
br label %header
return:
ret i32 %sum
}
; Can neither sink nor hoist
define i32 @test_volatile(i1 %c) {
; CHECK-LABEL: @test_volatile(
; CHECK-LABEL: Loop:
; CHECK: load volatile i32, i32* @X
; CHECK-LABEL: Out:
br label %Loop
Loop:
%A = load volatile i32, i32* @X
br i1 %c, label %Loop, label %Out
Out:
ret i32 %A
}
declare {}* @llvm.invariant.start.p0i8(i64, i8* nocapture) nounwind readonly
declare void @llvm.invariant.end.p0i8({}*, i64, i8* nocapture) nounwind
declare void @escaping.invariant.start({}*) nounwind
; invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
define i32 @test_fence(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; Same as test above, but the load is no longer invariant (presence of
; invariant.end). We cannot hoist the addrld out of loop.
define i32 @test_fence1(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence1
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NEXT: invariant.end
; CHECK-NEXT: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @llvm.invariant.end.p0i8({}* %invst, i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; same as test above, but instead of invariant.end, we have the result of
; invariant.start escaping through a call. We cannot hoist the load.
define i32 @test_fence2(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence2
; CHECK-LABEL: entry
; CHECK-NOT: load
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @escaping.invariant.start({}* %invst)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; FIXME: invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
; Consider the loadoperand addr.i bitcasted before being passed to
; invariant.start
define i32 @test_fence3(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence3
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We should not hoist the addrld out of the loop.
define i32 @test_fence4(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence4
; CHECK-LABEL: entry
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We can't hoist the invariant load out of the loop because
; the marker is given a variable size (-1).
define i32 @test_fence5(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence5
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 -1, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}