1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/unittests/Linker/LinkModulesTest.cpp
James Y Knight c8b30de05f [opaque pointer types] Pass value type to LoadInst creation.
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57172

llvm-svn: 352911
2019-02-01 20:44:24 +00:00

363 lines
13 KiB
C++

//===- llvm/unittest/Linker/LinkModulesTest.cpp - IRBuilder tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm-c/Core.h"
#include "llvm-c/Linker.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class LinkModuleTest : public testing::Test {
protected:
void SetUp() override {
M.reset(new Module("MyModule", Ctx));
FunctionType *FTy = FunctionType::get(
Type::getInt8PtrTy(Ctx), Type::getInt32Ty(Ctx), false /*=isVarArg*/);
F = Function::Create(FTy, Function::ExternalLinkage, "ba_func", M.get());
F->setCallingConv(CallingConv::C);
EntryBB = BasicBlock::Create(Ctx, "entry", F);
SwitchCase1BB = BasicBlock::Create(Ctx, "switch.case.1", F);
SwitchCase2BB = BasicBlock::Create(Ctx, "switch.case.2", F);
ExitBB = BasicBlock::Create(Ctx, "exit", F);
AT = ArrayType::get(Type::getInt8PtrTy(Ctx), 3);
GV = new GlobalVariable(*M.get(), AT, false /*=isConstant*/,
GlobalValue::InternalLinkage, nullptr,"switch.bas");
// Global Initializer
std::vector<Constant *> Init;
Constant *SwitchCase1BA = BlockAddress::get(SwitchCase1BB);
Init.push_back(SwitchCase1BA);
Constant *SwitchCase2BA = BlockAddress::get(SwitchCase2BB);
Init.push_back(SwitchCase2BA);
ConstantInt *One = ConstantInt::get(Type::getInt32Ty(Ctx), 1);
Constant *OnePtr = ConstantExpr::getCast(Instruction::IntToPtr, One,
Type::getInt8PtrTy(Ctx));
Init.push_back(OnePtr);
GV->setInitializer(ConstantArray::get(AT, Init));
}
void TearDown() override { M.reset(); }
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F;
ArrayType *AT;
GlobalVariable *GV;
BasicBlock *EntryBB;
BasicBlock *SwitchCase1BB;
BasicBlock *SwitchCase2BB;
BasicBlock *ExitBB;
};
static void expectNoDiags(const DiagnosticInfo &DI, void *C) {
EXPECT_TRUE(false);
}
TEST_F(LinkModuleTest, BlockAddress) {
IRBuilder<> Builder(EntryBB);
std::vector<Value *> GEPIndices;
GEPIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ctx), 0));
GEPIndices.push_back(&*F->arg_begin());
Value *GEP = Builder.CreateGEP(AT, GV, GEPIndices, "switch.gep");
Value *Load = Builder.CreateLoad(AT->getElementType(), GEP, "switch.load");
Builder.CreateRet(Load);
Builder.SetInsertPoint(SwitchCase1BB);
Builder.CreateBr(ExitBB);
Builder.SetInsertPoint(SwitchCase2BB);
Builder.CreateBr(ExitBB);
Builder.SetInsertPoint(ExitBB);
Builder.CreateRet(ConstantPointerNull::get(Type::getInt8PtrTy(Ctx)));
Module *LinkedModule = new Module("MyModuleLinked", Ctx);
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
Linker::linkModules(*LinkedModule, std::move(M));
// Check that the global "@switch.bas" is well-formed.
const GlobalVariable *LinkedGV = LinkedModule->getNamedGlobal("switch.bas");
const Constant *Init = LinkedGV->getInitializer();
// @switch.bas = internal global [3 x i8*]
// [i8* blockaddress(@ba_func, %switch.case.1),
// i8* blockaddress(@ba_func, %switch.case.2),
// i8* inttoptr (i32 1 to i8*)]
ArrayType *AT = ArrayType::get(Type::getInt8PtrTy(Ctx), 3);
EXPECT_EQ(AT, Init->getType());
Value *Elem = Init->getOperand(0);
ASSERT_TRUE(isa<BlockAddress>(Elem));
EXPECT_EQ(cast<BlockAddress>(Elem)->getFunction(),
LinkedModule->getFunction("ba_func"));
EXPECT_EQ(cast<BlockAddress>(Elem)->getBasicBlock()->getParent(),
LinkedModule->getFunction("ba_func"));
Elem = Init->getOperand(1);
ASSERT_TRUE(isa<BlockAddress>(Elem));
EXPECT_EQ(cast<BlockAddress>(Elem)->getFunction(),
LinkedModule->getFunction("ba_func"));
EXPECT_EQ(cast<BlockAddress>(Elem)->getBasicBlock()->getParent(),
LinkedModule->getFunction("ba_func"));
delete LinkedModule;
}
static Module *getExternal(LLVMContext &Ctx, StringRef FuncName) {
// Create a module with an empty externally-linked function
Module *M = new Module("ExternalModule", Ctx);
FunctionType *FTy = FunctionType::get(
Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false /*=isVarArgs*/);
Function *F =
Function::Create(FTy, Function::ExternalLinkage, FuncName, M);
F->setCallingConv(CallingConv::C);
BasicBlock *BB = BasicBlock::Create(Ctx, "", F);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
return M;
}
static Module *getInternal(LLVMContext &Ctx) {
Module *InternalM = new Module("InternalModule", Ctx);
FunctionType *FTy = FunctionType::get(
Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false /*=isVarArgs*/);
Function *F =
Function::Create(FTy, Function::InternalLinkage, "bar", InternalM);
F->setCallingConv(CallingConv::C);
BasicBlock *BB = BasicBlock::Create(Ctx, "", F);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
StructType *STy = StructType::create(Ctx, PointerType::get(FTy, 0));
GlobalVariable *GV =
new GlobalVariable(*InternalM, STy, false /*=isConstant*/,
GlobalValue::InternalLinkage, nullptr, "g");
GV->setInitializer(ConstantStruct::get(STy, F));
return InternalM;
}
TEST_F(LinkModuleTest, EmptyModule) {
std::unique_ptr<Module> InternalM(getInternal(Ctx));
std::unique_ptr<Module> EmptyM(new Module("EmptyModule1", Ctx));
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
Linker::linkModules(*EmptyM, std::move(InternalM));
}
TEST_F(LinkModuleTest, EmptyModule2) {
std::unique_ptr<Module> InternalM(getInternal(Ctx));
std::unique_ptr<Module> EmptyM(new Module("EmptyModule1", Ctx));
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
Linker::linkModules(*InternalM, std::move(EmptyM));
}
TEST_F(LinkModuleTest, TypeMerge) {
LLVMContext C;
SMDiagnostic Err;
const char *M1Str = "%t = type {i32}\n"
"@t1 = weak global %t zeroinitializer\n";
std::unique_ptr<Module> M1 = parseAssemblyString(M1Str, Err, C);
const char *M2Str = "%t = type {i32}\n"
"@t2 = weak global %t zeroinitializer\n";
std::unique_ptr<Module> M2 = parseAssemblyString(M2Str, Err, C);
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
Linker::linkModules(*M1, std::move(M2));
EXPECT_EQ(M1->getNamedGlobal("t1")->getType(),
M1->getNamedGlobal("t2")->getType());
}
TEST_F(LinkModuleTest, NewCAPISuccess) {
std::unique_ptr<Module> DestM(getExternal(Ctx, "foo"));
std::unique_ptr<Module> SourceM(getExternal(Ctx, "bar"));
LLVMBool Result =
LLVMLinkModules2(wrap(DestM.get()), wrap(SourceM.release()));
EXPECT_EQ(0, Result);
// "bar" is present in destination module
EXPECT_NE(nullptr, DestM->getFunction("bar"));
}
static void diagnosticHandler(LLVMDiagnosticInfoRef DI, void *C) {
auto *Err = reinterpret_cast<std::string *>(C);
char *CErr = LLVMGetDiagInfoDescription(DI);
*Err = CErr;
LLVMDisposeMessage(CErr);
}
TEST_F(LinkModuleTest, NewCAPIFailure) {
// Symbol clash between two modules
LLVMContext Ctx;
std::string Err;
LLVMContextSetDiagnosticHandler(wrap(&Ctx), diagnosticHandler, &Err);
std::unique_ptr<Module> DestM(getExternal(Ctx, "foo"));
std::unique_ptr<Module> SourceM(getExternal(Ctx, "foo"));
LLVMBool Result =
LLVMLinkModules2(wrap(DestM.get()), wrap(SourceM.release()));
EXPECT_EQ(1, Result);
EXPECT_EQ("Linking globals named 'foo': symbol multiply defined!", Err);
}
TEST_F(LinkModuleTest, MoveDistinctMDs) {
LLVMContext C;
SMDiagnostic Err;
const char *SrcStr = "define void @foo() !attach !0 {\n"
"entry:\n"
" call void @llvm.md(metadata !1)\n"
" ret void, !attach !2\n"
"}\n"
"declare void @llvm.md(metadata)\n"
"!named = !{!3, !4}\n"
"!0 = distinct !{}\n"
"!1 = distinct !{}\n"
"!2 = distinct !{}\n"
"!3 = distinct !{}\n"
"!4 = !{!3}\n";
std::unique_ptr<Module> Src = parseAssemblyString(SrcStr, Err, C);
assert(Src);
ASSERT_TRUE(Src.get());
// Get the addresses of the Metadata before merging.
Function *F = &*Src->begin();
ASSERT_EQ("foo", F->getName());
BasicBlock *BB = &F->getEntryBlock();
auto *CI = cast<CallInst>(&BB->front());
auto *RI = cast<ReturnInst>(BB->getTerminator());
NamedMDNode *NMD = &*Src->named_metadata_begin();
MDNode *M0 = F->getMetadata("attach");
MDNode *M1 =
cast<MDNode>(cast<MetadataAsValue>(CI->getArgOperand(0))->getMetadata());
MDNode *M2 = RI->getMetadata("attach");
MDNode *M3 = NMD->getOperand(0);
MDNode *M4 = NMD->getOperand(1);
// Confirm a few things about the IR.
EXPECT_TRUE(M0->isDistinct());
EXPECT_TRUE(M1->isDistinct());
EXPECT_TRUE(M2->isDistinct());
EXPECT_TRUE(M3->isDistinct());
EXPECT_TRUE(M4->isUniqued());
EXPECT_EQ(M3, M4->getOperand(0));
// Link into destination module.
auto Dst = llvm::make_unique<Module>("Linked", C);
ASSERT_TRUE(Dst.get());
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
Linker::linkModules(*Dst, std::move(Src));
// Check that distinct metadata was moved, not cloned. Even !4, the uniqued
// node, should effectively be moved, since its only operand hasn't changed.
F = &*Dst->begin();
BB = &F->getEntryBlock();
CI = cast<CallInst>(&BB->front());
RI = cast<ReturnInst>(BB->getTerminator());
NMD = &*Dst->named_metadata_begin();
EXPECT_EQ(M0, F->getMetadata("attach"));
EXPECT_EQ(M1, cast<MetadataAsValue>(CI->getArgOperand(0))->getMetadata());
EXPECT_EQ(M2, RI->getMetadata("attach"));
EXPECT_EQ(M3, NMD->getOperand(0));
EXPECT_EQ(M4, NMD->getOperand(1));
// Confirm a few things about the IR. This shouldn't have changed.
EXPECT_TRUE(M0->isDistinct());
EXPECT_TRUE(M1->isDistinct());
EXPECT_TRUE(M2->isDistinct());
EXPECT_TRUE(M3->isDistinct());
EXPECT_TRUE(M4->isUniqued());
EXPECT_EQ(M3, M4->getOperand(0));
}
TEST_F(LinkModuleTest, RemangleIntrinsics) {
LLVMContext C;
SMDiagnostic Err;
// We load two modules inside the same context C. In both modules there is a
// "struct.rtx_def" type. In the module loaded the second (Bar) this type will
// be renamed to "struct.rtx_def.0". Check that the intrinsics which have this
// type in the signature are properly remangled.
const char *FooStr =
"%struct.rtx_def = type { i16 }\n"
"define void @foo(%struct.rtx_def* %a, i8 %b, i32 %c) {\n"
" call void @llvm.memset.p0s_struct.rtx_defs.i32(%struct.rtx_def* %a, i8 %b, i32 %c, i32 4, i1 true)\n"
" ret void\n"
"}\n"
"declare void @llvm.memset.p0s_struct.rtx_defs.i32(%struct.rtx_def*, i8, i32, i32, i1)\n";
const char *BarStr =
"%struct.rtx_def = type { i16 }\n"
"define void @bar(%struct.rtx_def* %a, i8 %b, i32 %c) {\n"
" call void @llvm.memset.p0s_struct.rtx_defs.i32(%struct.rtx_def* %a, i8 %b, i32 %c, i32 4, i1 true)\n"
" ret void\n"
"}\n"
"declare void @llvm.memset.p0s_struct.rtx_defs.i32(%struct.rtx_def*, i8, i32, i32, i1)\n";
std::unique_ptr<Module> Foo = parseAssemblyString(FooStr, Err, C);
assert(Foo);
ASSERT_TRUE(Foo.get());
// Foo is loaded first, so the type and the intrinsic have theis original
// names.
ASSERT_TRUE(Foo->getFunction("llvm.memset.p0s_struct.rtx_defs.i32"));
ASSERT_FALSE(Foo->getFunction("llvm.memset.p0s_struct.rtx_defs.0.i32"));
std::unique_ptr<Module> Bar = parseAssemblyString(BarStr, Err, C);
assert(Bar);
ASSERT_TRUE(Bar.get());
// Bar is loaded after Foo, so the type is renamed to struct.rtx_def.0. Check
// that the intrinsic is also renamed.
ASSERT_FALSE(Bar->getFunction("llvm.memset.p0s_struct.rtx_defs.i32"));
ASSERT_TRUE(Bar->getFunction("llvm.memset.p0s_struct.rtx_def.0s.i32"));
// Link two modules together.
auto Dst = llvm::make_unique<Module>("Linked", C);
ASSERT_TRUE(Dst.get());
Ctx.setDiagnosticHandlerCallBack(expectNoDiags);
bool Failed = Linker::linkModules(*Foo, std::move(Bar));
ASSERT_FALSE(Failed);
// "struct.rtx_def" from Foo and "struct.rtx_def.0" from Bar are isomorphic
// types, so they must be uniquified by linker. Check that they use the same
// intrinsic definition.
Function *F = Foo->getFunction("llvm.memset.p0s_struct.rtx_defs.i32");
ASSERT_EQ(F->getNumUses(), (unsigned)2);
}
} // end anonymous namespace