1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/SplitKit.cpp
Jakob Stoklund Olesen 2b379c4339 Add SplitEditor to SplitKit. This class will be used to edit live intervals and
rewrite instructions for live range splitting.

Still work in progress.

llvm-svn: 109469
2010-07-26 23:44:11 +00:00

487 lines
17 KiB
C++

//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "splitter"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: mf_(mf),
lis_(lis),
loops_(mli),
tii_(*mf.getTarget().getInstrInfo()),
curli_(0) {}
void SplitAnalysis::clear() {
usingInstrs_.clear();
usingBlocks_.clear();
usingLoops_.clear();
curli_ = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = mf_.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
continue;
MachineBasicBlock *MBB = MI->getParent();
if (usingBlocks_[MBB]++)
continue;
if (MachineLoop *Loop = loops_.getLoopFor(MBB))
usingLoops_.insert(Loop);
}
DEBUG(dbgs() << "Counted "
<< usingInstrs_.size() << " instrs, "
<< usingBlocks_.size() << " blocks, "
<< usingLoops_.size() << " loops in "
<< *curli_ << "\n");
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
if (Blocks.Loop.count(MBB))
continue;
// It must be an unrelated block.
return OutsideLoop;
}
return use;
}
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
/// blocks that need special treatment into CriticalExits.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
// A critical exit block contains a phi def of curli, and has a predecessor
// that is not in the loop nor a loop predecessor.
// For such an exit block, the edges carrying the new variable must be moved
// to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
// This exit may not have curli live in at all. No need to split.
if (!SuccVNI)
continue;
// If this is not a PHI def, it is either using a value from before the
// loop, or a value defined inside the loop. Both are safe.
if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
continue;
// This exit block does have a PHI. Does it also have a predecessor that is
// not a loop block or loop predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Succ);
break;
}
}
}
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == mf_.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
curli_ = li;
analyzeUses();
}
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
assert(curli_ && "Call analyze() before getBestSplitLoop");
if (usingLoops_.empty())
return 0;
LoopPtrSet Loops, SecondLoops;
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
// Find first-class and second class candidate loops.
// We prefer to split around loops where curli is used outside the periphery.
for (LoopPtrSet::const_iterator I = usingLoops_.begin(),
E = usingLoops_.end(); I != E; ++I) {
getLoopBlocks(*I, Blocks);
LoopPtrSet *LPS = 0;
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
LPS = &Loops;
break;
case MultiPeripheral:
LPS = &SecondLoops;
break;
case ContainedInLoop:
DEBUG(dbgs() << "ContainedInLoop: " << **I);
continue;
case SinglePeripheral:
DEBUG(dbgs() << "SinglePeripheral: " << **I);
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << CriticalExits.size() << " critical exits: " << **I);
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
assert(LPS);
LPS->insert(*I);
}
DEBUG(dbgs() << "Got " << Loops.size() << " + " << SecondLoops.size()
<< " candidate loops\n");
// If there are no first class loops available, look at second class loops.
if (Loops.empty())
Loops = SecondLoops;
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << "Best: " << *Best);
return Best;
}
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm)
: sa_(sa), lis_(lis), vrm_(vrm),
mri_(vrm.getMachineFunction().getRegInfo()),
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
dupli_(0), openli_(0)
{
const LiveInterval *curli = sa_.getCurLI();
assert(curli && "SplitEditor created from empty SplitAnalysis");
// Make sure curli is assigned a stack slot, so all our intervals get the
// same slot as curli.
if (vrm_.getStackSlot(curli->reg) == VirtRegMap::NO_STACK_SLOT)
vrm_.assignVirt2StackSlot(curli->reg);
// Create an interval for dupli that is a copy of curli.
dupli_ = createInterval();
dupli_->Copy(*curli, &mri_, lis_.getVNInfoAllocator());
DEBUG(dbgs() << "SplitEditor DupLI: " << *dupli_ << '\n');
}
LiveInterval *SplitEditor::createInterval() {
unsigned curli = sa_.getCurLI()->reg;
unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli));
LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
vrm_.grow();
vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli));
return &Intv;
}
VNInfo *SplitEditor::mapValue(VNInfo *dupliVNI) {
VNInfo *&VNI = valueMap_[dupliVNI];
if (!VNI)
VNI = openli_->createValueCopy(dupliVNI, lis_.getVNInfoAllocator());
return VNI;
}
/// Create a new virtual register and live interval to be used by following
/// use* and copy* calls.
void SplitEditor::openLI() {
assert(!openli_ && "Previous LI not closed before openLI");
openli_ = createInterval();
}
/// copyToPHI - Insert a copy to openli at the end of A, and catch it with a
/// PHI def at the beginning of the successor B. This call is ignored if dupli
/// is not live out of A.
void SplitEditor::copyToPHI(MachineBasicBlock &A, MachineBasicBlock &B) {
assert(openli_ && "openLI not called before copyToPHI");
SlotIndex EndA = lis_.getMBBEndIdx(&A);
VNInfo *DupVNIA = dupli_->getVNInfoAt(EndA.getPrevIndex());
if (!DupVNIA) {
DEBUG(dbgs() << " ignoring copyToPHI, dupli not live out of BB#"
<< A.getNumber() << ".\n");
return;
}
// Insert the COPY instruction at the end of A.
MachineInstr *MI = BuildMI(A, A.getFirstTerminator(), DebugLoc(),
tii_.get(TargetOpcode::COPY), dupli_->reg)
.addReg(openli_->reg);
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
// Add a phi kill value and live range out of A.
VNInfo *VNIA = openli_->getNextValue(DefIdx, MI, true,
lis_.getVNInfoAllocator());
openli_->addRange(LiveRange(DefIdx, EndA, VNIA));
// Now look at the start of B.
SlotIndex StartB = lis_.getMBBStartIdx(&B);
SlotIndex EndB = lis_.getMBBEndIdx(&B);
LiveRange *DupB = dupli_->getLiveRangeContaining(StartB);
if (!DupB) {
DEBUG(dbgs() << " copyToPHI:, dupli not live in to BB#"
<< B.getNumber() << ".\n");
return;
}
VNInfo *VNIB = openli_->getVNInfoAt(StartB);
if (!VNIB) {
// Create a phi value.
VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false,
lis_.getVNInfoAllocator());
VNIB->setIsPHIDef(true);
// Add a minimal range for the new value.
openli_->addRange(LiveRange(VNIB->def, std::min(EndB, DupB->end), VNIB));
VNInfo *&mapVNI = valueMap_[DupB->valno];
if (mapVNI) {
// Multiple copies - must create PHI value.
abort();
} else {
// This is the first copy of dupLR. Mark the mapping.
mapVNI = VNIB;
}
}
DEBUG(dbgs() << " copyToPHI at " << DefIdx << ": " << *openli_ << '\n');
}
/// useLI - indicate that all instructions in MBB should use openli.
void SplitEditor::useLI(const MachineBasicBlock &MBB) {
useLI(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
}
void SplitEditor::useLI(SlotIndex Start, SlotIndex End) {
assert(openli_ && "openLI not called before useLI");
// Map the dupli values from the interval into openli_
LiveInterval::const_iterator B = dupli_->begin(), E = dupli_->end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
if (I != B) {
--I;
// I begins before Start, but overlaps. openli may already have a value from
// copyToLI.
if (I->end > Start && !openli_->liveAt(Start))
openli_->addRange(LiveRange(Start, std::min(End, I->end),
mapValue(I->valno)));
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
openli_->addRange(LiveRange(I->start, std::min(End, I->end),
mapValue(I->valno)));
DEBUG(dbgs() << " added range [" << Start << ';' << End << "): " << *openli_
<< '\n');
}
/// copyFromLI - Insert a copy back to dupli from openli at position I.
SlotIndex SplitEditor::copyFromLI(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) {
assert(openli_ && "openLI not called before copyFromLI");
// Insert the COPY instruction.
MachineInstr *MI =
BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), openli_->reg)
.addReg(dupli_->reg);
SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI);
DEBUG(dbgs() << " copyFromLI at " << Idx << ": " << *openli_ << '\n');
return Idx;
}
/// closeLI - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeLI() {
assert(openli_ && "openLI not called before closeLI");
openli_ = 0;
}
/// rewrite - after all the new live ranges have been created, rewrite
/// instructions using curli to use the new intervals.
void SplitEditor::rewrite() {
assert(!openli_ && "Previous LI not closed before rewrite");
}
//===----------------------------------------------------------------------===//
// Loop Splitting
//===----------------------------------------------------------------------===//
void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
SplitAnalysis::LoopBlocks Blocks;
sa_.getLoopBlocks(Loop, Blocks);
// Break critical edges as needed.
SplitAnalysis::BlockPtrSet CriticalExits;
sa_.getCriticalExits(Blocks, CriticalExits);
assert(CriticalExits.empty() && "Cannot break critical exits yet");
// Create new live interval for the loop.
openLI();
// Insert copies in the predecessors.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
E = Blocks.Preds.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
copyToPHI(MBB, *Loop->getHeader());
}
// Switch all loop blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
E = Blocks.Loop.end(); I != E; ++I)
useLI(**I);
// Insert back copies in the exit blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
E = Blocks.Exits.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
VNInfo *VNI = sa_.getCurLI()->getVNInfoAt(Start);
// Only insert a back copy if curli is live and is either a phi or a value
// defined inside the loop.
if (!VNI) continue;
if (openli_->liveAt(VNI->def) ||
(VNI->isPHIDef() && VNI->def.getBaseIndex() == Start))
copyFromLI(MBB, MBB.begin());
}
// Done.
closeLI();
rewrite();
abort();
}