1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/unittests/ADT/DenseMapTest.cpp
Reid Kleckner d32bedafdb [ADT] Allow K to be incomplete during DenseMap<K*, V> instantiation
DenseMap requires two sentinel values for keys: empty and tombstone
values. To avoid undefined behavior, LLVM aligns the two sentinel
pointers to alignof(T). This requires T to be complete, which is
needlessly restrictive.

Instead, assume that DenseMap pointer keys have a maximum alignment of
4096, and use the same sentinel values for all pointer keys. The new
sentinels are:
  empty:     static_cast<uintptr_t>(-1) << 12
  tombstone: static_cast<uintptr_t>(-2) << 12

These correspond to the addresses of -4096 and -8192. Hopefully, such a
key is never inserted into a DenseMap.

I encountered this while looking at making clang's SourceManager not
require FileManager.h, but it has several maps keyed on classes defined
in FileManager.h. FileManager depends on various LLVM FS headers, which
cumulatively take ~200ms to parse, and are generally not needed.

Reviewed By: hans

Differential Revision: https://reviews.llvm.org/D75301
2020-02-28 14:24:04 -08:00

650 lines
21 KiB
C++

//===- llvm/unittest/ADT/DenseMapMap.cpp - DenseMap unit tests --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "gtest/gtest.h"
#include <map>
#include <set>
using namespace llvm;
namespace {
uint32_t getTestKey(int i, uint32_t *) { return i; }
uint32_t getTestValue(int i, uint32_t *) { return 42 + i; }
uint32_t *getTestKey(int i, uint32_t **) {
static uint32_t dummy_arr1[8192];
assert(i < 8192 && "Only support 8192 dummy keys.");
return &dummy_arr1[i];
}
uint32_t *getTestValue(int i, uint32_t **) {
static uint32_t dummy_arr1[8192];
assert(i < 8192 && "Only support 8192 dummy keys.");
return &dummy_arr1[i];
}
/// A test class that tries to check that construction and destruction
/// occur correctly.
class CtorTester {
static std::set<CtorTester *> Constructed;
int Value;
public:
explicit CtorTester(int Value = 0) : Value(Value) {
EXPECT_TRUE(Constructed.insert(this).second);
}
CtorTester(uint32_t Value) : Value(Value) {
EXPECT_TRUE(Constructed.insert(this).second);
}
CtorTester(const CtorTester &Arg) : Value(Arg.Value) {
EXPECT_TRUE(Constructed.insert(this).second);
}
CtorTester &operator=(const CtorTester &) = default;
~CtorTester() {
EXPECT_EQ(1u, Constructed.erase(this));
}
operator uint32_t() const { return Value; }
int getValue() const { return Value; }
bool operator==(const CtorTester &RHS) const { return Value == RHS.Value; }
};
std::set<CtorTester *> CtorTester::Constructed;
struct CtorTesterMapInfo {
static inline CtorTester getEmptyKey() { return CtorTester(-1); }
static inline CtorTester getTombstoneKey() { return CtorTester(-2); }
static unsigned getHashValue(const CtorTester &Val) {
return Val.getValue() * 37u;
}
static bool isEqual(const CtorTester &LHS, const CtorTester &RHS) {
return LHS == RHS;
}
};
CtorTester getTestKey(int i, CtorTester *) { return CtorTester(i); }
CtorTester getTestValue(int i, CtorTester *) { return CtorTester(42 + i); }
// Test fixture, with helper functions implemented by forwarding to global
// function overloads selected by component types of the type parameter. This
// allows all of the map implementations to be tested with shared
// implementations of helper routines.
template <typename T>
class DenseMapTest : public ::testing::Test {
protected:
T Map;
static typename T::key_type *const dummy_key_ptr;
static typename T::mapped_type *const dummy_value_ptr;
typename T::key_type getKey(int i = 0) {
return getTestKey(i, dummy_key_ptr);
}
typename T::mapped_type getValue(int i = 0) {
return getTestValue(i, dummy_value_ptr);
}
};
template <typename T>
typename T::key_type *const DenseMapTest<T>::dummy_key_ptr = nullptr;
template <typename T>
typename T::mapped_type *const DenseMapTest<T>::dummy_value_ptr = nullptr;
// Register these types for testing.
typedef ::testing::Types<DenseMap<uint32_t, uint32_t>,
DenseMap<uint32_t *, uint32_t *>,
DenseMap<CtorTester, CtorTester, CtorTesterMapInfo>,
SmallDenseMap<uint32_t, uint32_t>,
SmallDenseMap<uint32_t *, uint32_t *>,
SmallDenseMap<CtorTester, CtorTester, 4,
CtorTesterMapInfo>
> DenseMapTestTypes;
TYPED_TEST_CASE(DenseMapTest, DenseMapTestTypes);
// Empty map tests
TYPED_TEST(DenseMapTest, EmptyIntMapTest) {
// Size tests
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
// Iterator tests
EXPECT_TRUE(this->Map.begin() == this->Map.end());
// Lookup tests
EXPECT_FALSE(this->Map.count(this->getKey()));
EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.end());
EXPECT_EQ(typename TypeParam::mapped_type(),
this->Map.lookup(this->getKey()));
}
// Constant map tests
TYPED_TEST(DenseMapTest, ConstEmptyMapTest) {
const TypeParam &ConstMap = this->Map;
EXPECT_EQ(0u, ConstMap.size());
EXPECT_TRUE(ConstMap.empty());
EXPECT_TRUE(ConstMap.begin() == ConstMap.end());
}
// A map with a single entry
TYPED_TEST(DenseMapTest, SingleEntryMapTest) {
this->Map[this->getKey()] = this->getValue();
// Size tests
EXPECT_EQ(1u, this->Map.size());
EXPECT_FALSE(this->Map.begin() == this->Map.end());
EXPECT_FALSE(this->Map.empty());
// Iterator tests
typename TypeParam::iterator it = this->Map.begin();
EXPECT_EQ(this->getKey(), it->first);
EXPECT_EQ(this->getValue(), it->second);
++it;
EXPECT_TRUE(it == this->Map.end());
// Lookup tests
EXPECT_TRUE(this->Map.count(this->getKey()));
EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.begin());
EXPECT_EQ(this->getValue(), this->Map.lookup(this->getKey()));
EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);
}
// Test clear() method
TYPED_TEST(DenseMapTest, ClearTest) {
this->Map[this->getKey()] = this->getValue();
this->Map.clear();
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
EXPECT_TRUE(this->Map.begin() == this->Map.end());
}
// Test erase(iterator) method
TYPED_TEST(DenseMapTest, EraseTest) {
this->Map[this->getKey()] = this->getValue();
this->Map.erase(this->Map.begin());
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
EXPECT_TRUE(this->Map.begin() == this->Map.end());
}
// Test erase(value) method
TYPED_TEST(DenseMapTest, EraseTest2) {
this->Map[this->getKey()] = this->getValue();
this->Map.erase(this->getKey());
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
EXPECT_TRUE(this->Map.begin() == this->Map.end());
}
// Test insert() method
TYPED_TEST(DenseMapTest, InsertTest) {
this->Map.insert(std::make_pair(this->getKey(), this->getValue()));
EXPECT_EQ(1u, this->Map.size());
EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);
}
// Test copy constructor method
TYPED_TEST(DenseMapTest, CopyConstructorTest) {
this->Map[this->getKey()] = this->getValue();
TypeParam copyMap(this->Map);
EXPECT_EQ(1u, copyMap.size());
EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);
}
// Test copy constructor method where SmallDenseMap isn't small.
TYPED_TEST(DenseMapTest, CopyConstructorNotSmallTest) {
for (int Key = 0; Key < 5; ++Key)
this->Map[this->getKey(Key)] = this->getValue(Key);
TypeParam copyMap(this->Map);
EXPECT_EQ(5u, copyMap.size());
for (int Key = 0; Key < 5; ++Key)
EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);
}
// Test copying from a default-constructed map.
TYPED_TEST(DenseMapTest, CopyConstructorFromDefaultTest) {
TypeParam copyMap(this->Map);
EXPECT_TRUE(copyMap.empty());
}
// Test copying from an empty map where SmallDenseMap isn't small.
TYPED_TEST(DenseMapTest, CopyConstructorFromEmptyTest) {
for (int Key = 0; Key < 5; ++Key)
this->Map[this->getKey(Key)] = this->getValue(Key);
this->Map.clear();
TypeParam copyMap(this->Map);
EXPECT_TRUE(copyMap.empty());
}
// Test assignment operator method
TYPED_TEST(DenseMapTest, AssignmentTest) {
this->Map[this->getKey()] = this->getValue();
TypeParam copyMap = this->Map;
EXPECT_EQ(1u, copyMap.size());
EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);
// test self-assignment.
copyMap = static_cast<TypeParam &>(copyMap);
EXPECT_EQ(1u, copyMap.size());
EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);
}
TYPED_TEST(DenseMapTest, AssignmentTestNotSmall) {
for (int Key = 0; Key < 5; ++Key)
this->Map[this->getKey(Key)] = this->getValue(Key);
TypeParam copyMap = this->Map;
EXPECT_EQ(5u, copyMap.size());
for (int Key = 0; Key < 5; ++Key)
EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);
// test self-assignment.
copyMap = static_cast<TypeParam &>(copyMap);
EXPECT_EQ(5u, copyMap.size());
for (int Key = 0; Key < 5; ++Key)
EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);
}
// Test swap method
TYPED_TEST(DenseMapTest, SwapTest) {
this->Map[this->getKey()] = this->getValue();
TypeParam otherMap;
this->Map.swap(otherMap);
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
EXPECT_EQ(1u, otherMap.size());
EXPECT_EQ(this->getValue(), otherMap[this->getKey()]);
this->Map.swap(otherMap);
EXPECT_EQ(0u, otherMap.size());
EXPECT_TRUE(otherMap.empty());
EXPECT_EQ(1u, this->Map.size());
EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);
// Make this more interesting by inserting 100 numbers into the map.
for (int i = 0; i < 100; ++i)
this->Map[this->getKey(i)] = this->getValue(i);
this->Map.swap(otherMap);
EXPECT_EQ(0u, this->Map.size());
EXPECT_TRUE(this->Map.empty());
EXPECT_EQ(100u, otherMap.size());
for (int i = 0; i < 100; ++i)
EXPECT_EQ(this->getValue(i), otherMap[this->getKey(i)]);
this->Map.swap(otherMap);
EXPECT_EQ(0u, otherMap.size());
EXPECT_TRUE(otherMap.empty());
EXPECT_EQ(100u, this->Map.size());
for (int i = 0; i < 100; ++i)
EXPECT_EQ(this->getValue(i), this->Map[this->getKey(i)]);
}
// A more complex iteration test
TYPED_TEST(DenseMapTest, IterationTest) {
bool visited[100];
std::map<typename TypeParam::key_type, unsigned> visitedIndex;
// Insert 100 numbers into the map
for (int i = 0; i < 100; ++i) {
visited[i] = false;
visitedIndex[this->getKey(i)] = i;
this->Map[this->getKey(i)] = this->getValue(i);
}
// Iterate over all numbers and mark each one found.
for (typename TypeParam::iterator it = this->Map.begin();
it != this->Map.end(); ++it)
visited[visitedIndex[it->first]] = true;
// Ensure every number was visited.
for (int i = 0; i < 100; ++i)
ASSERT_TRUE(visited[i]) << "Entry #" << i << " was never visited";
}
// const_iterator test
TYPED_TEST(DenseMapTest, ConstIteratorTest) {
// Check conversion from iterator to const_iterator.
typename TypeParam::iterator it = this->Map.begin();
typename TypeParam::const_iterator cit(it);
EXPECT_TRUE(it == cit);
// Check copying of const_iterators.
typename TypeParam::const_iterator cit2(cit);
EXPECT_TRUE(cit == cit2);
}
namespace {
// Simple class that counts how many moves and copy happens when growing a map
struct CountCopyAndMove {
static int Move;
static int Copy;
CountCopyAndMove() {}
CountCopyAndMove(const CountCopyAndMove &) { Copy++; }
CountCopyAndMove &operator=(const CountCopyAndMove &) {
Copy++;
return *this;
}
CountCopyAndMove(CountCopyAndMove &&) { Move++; }
CountCopyAndMove &operator=(const CountCopyAndMove &&) {
Move++;
return *this;
}
};
int CountCopyAndMove::Copy = 0;
int CountCopyAndMove::Move = 0;
} // anonymous namespace
// Test initializer list construction.
TEST(DenseMapCustomTest, InitializerList) {
DenseMap<int, int> M({{0, 0}, {0, 1}, {1, 2}});
EXPECT_EQ(2u, M.size());
EXPECT_EQ(1u, M.count(0));
EXPECT_EQ(0, M[0]);
EXPECT_EQ(1u, M.count(1));
EXPECT_EQ(2, M[1]);
}
// Test initializer list construction.
TEST(DenseMapCustomTest, EqualityComparison) {
DenseMap<int, int> M1({{0, 0}, {1, 2}});
DenseMap<int, int> M2({{0, 0}, {1, 2}});
DenseMap<int, int> M3({{0, 0}, {1, 3}});
EXPECT_EQ(M1, M2);
EXPECT_NE(M1, M3);
}
// Test for the default minimum size of a DenseMap
TEST(DenseMapCustomTest, DefaultMinReservedSizeTest) {
// IF THIS VALUE CHANGE, please update InitialSizeTest, InitFromIterator, and
// ReserveTest as well!
const int ExpectedInitialBucketCount = 64;
// Formula from DenseMap::getMinBucketToReserveForEntries()
const int ExpectedMaxInitialEntries = ExpectedInitialBucketCount * 3 / 4 - 1;
DenseMap<int, CountCopyAndMove> Map;
// Will allocate 64 buckets
Map.reserve(1);
unsigned MemorySize = Map.getMemorySize();
CountCopyAndMove::Copy = 0;
CountCopyAndMove::Move = 0;
for (int i = 0; i < ExpectedMaxInitialEntries; ++i)
Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
std::forward_as_tuple(i),
std::forward_as_tuple()));
// Check that we didn't grow
EXPECT_EQ(MemorySize, Map.getMemorySize());
// Check that move was called the expected number of times
EXPECT_EQ(ExpectedMaxInitialEntries, CountCopyAndMove::Move);
// Check that no copy occurred
EXPECT_EQ(0, CountCopyAndMove::Copy);
// Adding one extra element should grow the map
Map.insert(std::pair<int, CountCopyAndMove>(
std::piecewise_construct,
std::forward_as_tuple(ExpectedMaxInitialEntries),
std::forward_as_tuple()));
// Check that we grew
EXPECT_NE(MemorySize, Map.getMemorySize());
// Check that move was called the expected number of times
// This relies on move-construction elision, and cannot be reliably tested.
// EXPECT_EQ(ExpectedMaxInitialEntries + 2, CountCopyAndMove::Move);
// Check that no copy occurred
EXPECT_EQ(0, CountCopyAndMove::Copy);
}
// Make sure creating the map with an initial size of N actually gives us enough
// buckets to insert N items without increasing allocation size.
TEST(DenseMapCustomTest, InitialSizeTest) {
// Test a few different sizes, 48 is *not* a random choice: we need a value
// that is 2/3 of a power of two to stress the grow() condition, and the power
// of two has to be at least 64 because of minimum size allocation in the
// DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the
// 64 default init.
for (auto Size : {1, 2, 48, 66}) {
DenseMap<int, CountCopyAndMove> Map(Size);
unsigned MemorySize = Map.getMemorySize();
CountCopyAndMove::Copy = 0;
CountCopyAndMove::Move = 0;
for (int i = 0; i < Size; ++i)
Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
std::forward_as_tuple(i),
std::forward_as_tuple()));
// Check that we didn't grow
EXPECT_EQ(MemorySize, Map.getMemorySize());
// Check that move was called the expected number of times
EXPECT_EQ(Size, CountCopyAndMove::Move);
// Check that no copy occurred
EXPECT_EQ(0, CountCopyAndMove::Copy);
}
}
// Make sure creating the map with a iterator range does not trigger grow()
TEST(DenseMapCustomTest, InitFromIterator) {
std::vector<std::pair<int, CountCopyAndMove>> Values;
// The size is a random value greater than 64 (hardcoded DenseMap min init)
const int Count = 65;
for (int i = 0; i < Count; i++)
Values.emplace_back(i, CountCopyAndMove());
CountCopyAndMove::Move = 0;
CountCopyAndMove::Copy = 0;
DenseMap<int, CountCopyAndMove> Map(Values.begin(), Values.end());
// Check that no move occurred
EXPECT_EQ(0, CountCopyAndMove::Move);
// Check that copy was called the expected number of times
EXPECT_EQ(Count, CountCopyAndMove::Copy);
}
// Make sure reserve actually gives us enough buckets to insert N items
// without increasing allocation size.
TEST(DenseMapCustomTest, ReserveTest) {
// Test a few different size, 48 is *not* a random choice: we need a value
// that is 2/3 of a power of two to stress the grow() condition, and the power
// of two has to be at least 64 because of minimum size allocation in the
// DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the
// 64 default init.
for (auto Size : {1, 2, 48, 66}) {
DenseMap<int, CountCopyAndMove> Map;
Map.reserve(Size);
unsigned MemorySize = Map.getMemorySize();
CountCopyAndMove::Copy = 0;
CountCopyAndMove::Move = 0;
for (int i = 0; i < Size; ++i)
Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
std::forward_as_tuple(i),
std::forward_as_tuple()));
// Check that we didn't grow
EXPECT_EQ(MemorySize, Map.getMemorySize());
// Check that move was called the expected number of times
EXPECT_EQ(Size, CountCopyAndMove::Move);
// Check that no copy occurred
EXPECT_EQ(0, CountCopyAndMove::Copy);
}
}
// Make sure DenseMap works with StringRef keys.
TEST(DenseMapCustomTest, StringRefTest) {
DenseMap<StringRef, int> M;
M["a"] = 1;
M["b"] = 2;
M["c"] = 3;
EXPECT_EQ(3u, M.size());
EXPECT_EQ(1, M.lookup("a"));
EXPECT_EQ(2, M.lookup("b"));
EXPECT_EQ(3, M.lookup("c"));
EXPECT_EQ(0, M.lookup("q"));
// Test the empty string, spelled various ways.
EXPECT_EQ(0, M.lookup(""));
EXPECT_EQ(0, M.lookup(StringRef()));
EXPECT_EQ(0, M.lookup(StringRef("a", 0)));
M[""] = 42;
EXPECT_EQ(42, M.lookup(""));
EXPECT_EQ(42, M.lookup(StringRef()));
EXPECT_EQ(42, M.lookup(StringRef("a", 0)));
}
// Key traits that allows lookup with either an unsigned or char* key;
// In the latter case, "a" == 0, "b" == 1 and so on.
struct TestDenseMapInfo {
static inline unsigned getEmptyKey() { return ~0; }
static inline unsigned getTombstoneKey() { return ~0U - 1; }
static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
static unsigned getHashValue(const char* Val) {
return (unsigned)(Val[0] - 'a') * 37U;
}
static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
return LHS == RHS;
}
static bool isEqual(const char* LHS, const unsigned& RHS) {
return (unsigned)(LHS[0] - 'a') == RHS;
}
};
// find_as() tests
TEST(DenseMapCustomTest, FindAsTest) {
DenseMap<unsigned, unsigned, TestDenseMapInfo> map;
map[0] = 1;
map[1] = 2;
map[2] = 3;
// Size tests
EXPECT_EQ(3u, map.size());
// Normal lookup tests
EXPECT_EQ(1u, map.count(1));
EXPECT_EQ(1u, map.find(0)->second);
EXPECT_EQ(2u, map.find(1)->second);
EXPECT_EQ(3u, map.find(2)->second);
EXPECT_TRUE(map.find(3) == map.end());
// find_as() tests
EXPECT_EQ(1u, map.find_as("a")->second);
EXPECT_EQ(2u, map.find_as("b")->second);
EXPECT_EQ(3u, map.find_as("c")->second);
EXPECT_TRUE(map.find_as("d") == map.end());
}
struct ContiguousDenseMapInfo {
static inline unsigned getEmptyKey() { return ~0; }
static inline unsigned getTombstoneKey() { return ~0U - 1; }
static unsigned getHashValue(const unsigned& Val) { return Val; }
static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
return LHS == RHS;
}
};
// Test that filling a small dense map with exactly the number of elements in
// the map grows to have enough space for an empty bucket.
TEST(DenseMapCustomTest, SmallDenseMapGrowTest) {
SmallDenseMap<unsigned, unsigned, 32, ContiguousDenseMapInfo> map;
// Add some number of elements, then delete a few to leave us some tombstones.
// If we just filled the map with 32 elements we'd grow because of not enough
// tombstones which masks the issue here.
for (unsigned i = 0; i < 20; ++i)
map[i] = i + 1;
for (unsigned i = 0; i < 10; ++i)
map.erase(i);
for (unsigned i = 20; i < 32; ++i)
map[i] = i + 1;
// Size tests
EXPECT_EQ(22u, map.size());
// Try to find an element which doesn't exist. There was a bug in
// SmallDenseMap which led to a map with num elements == small capacity not
// having an empty bucket any more. Finding an element not in the map would
// therefore never terminate.
EXPECT_TRUE(map.find(32) == map.end());
}
TEST(DenseMapCustomTest, LargeSmallDenseMapCompaction) {
SmallDenseMap<unsigned, unsigned, 128, ContiguousDenseMapInfo> map;
// Fill to < 3/4 load.
for (unsigned i = 0; i < 95; ++i)
map[i] = i;
// And erase, leaving behind tombstones.
for (unsigned i = 0; i < 95; ++i)
map.erase(i);
// Fill further, so that less than 1/8 are empty, but still below 3/4 load.
for (unsigned i = 95; i < 128; ++i)
map[i] = i;
EXPECT_EQ(33u, map.size());
// Similar to the previous test, check for a non-existing element, as an
// indirect check that tombstones have been removed.
EXPECT_TRUE(map.find(0) == map.end());
}
TEST(DenseMapCustomTest, TryEmplaceTest) {
DenseMap<int, std::unique_ptr<int>> Map;
std::unique_ptr<int> P(new int(2));
auto Try1 = Map.try_emplace(0, new int(1));
EXPECT_TRUE(Try1.second);
auto Try2 = Map.try_emplace(0, std::move(P));
EXPECT_FALSE(Try2.second);
EXPECT_EQ(Try1.first, Try2.first);
EXPECT_NE(nullptr, P);
}
TEST(DenseMapCustomTest, ConstTest) {
// Test that const pointers work okay for count and find, even when the
// underlying map is a non-const pointer.
DenseMap<int *, int> Map;
int A;
int *B = &A;
const int *C = &A;
Map.insert({B, 0});
EXPECT_EQ(Map.count(B), 1u);
EXPECT_EQ(Map.count(C), 1u);
EXPECT_NE(Map.find(B), Map.end());
EXPECT_NE(Map.find(C), Map.end());
}
struct IncompleteStruct;
TEST(DenseMapCustomTest, OpaquePointerKey) {
// Test that we can use a pointer to an incomplete type as a DenseMap key.
// This is an important build time optimization, since many classes have
// DenseMap members.
DenseMap<IncompleteStruct *, int> Map;
int Keys[3] = {0, 0, 0};
IncompleteStruct *K1 = reinterpret_cast<IncompleteStruct *>(&Keys[0]);
IncompleteStruct *K2 = reinterpret_cast<IncompleteStruct *>(&Keys[1]);
IncompleteStruct *K3 = reinterpret_cast<IncompleteStruct *>(&Keys[2]);
Map.insert({K1, 1});
Map.insert({K2, 2});
Map.insert({K3, 3});
EXPECT_EQ(Map.count(K1), 1u);
EXPECT_EQ(Map[K1], 1);
EXPECT_EQ(Map[K2], 2);
EXPECT_EQ(Map[K3], 3);
Map.clear();
EXPECT_EQ(Map.find(K1), Map.end());
EXPECT_EQ(Map.find(K2), Map.end());
EXPECT_EQ(Map.find(K3), Map.end());
}
}