mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
6b427f77ee
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid producing private address spaces accesses that will need to be split up later. This was doing the wrong thing in the case where the queried chain was an even number of elements. A possible <4 x i32> store was being split into store <2 x i32> store i32 store i32 rather than store <2 x i32> store <2 x i32> when legal. llvm-svn: 295933
379 lines
13 KiB
C++
379 lines
13 KiB
C++
//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements a TargetTransformInfo analysis pass specific to the
|
|
// AMDGPU target machine. It uses the target's detailed information to provide
|
|
// more precise answers to certain TTI queries, while letting the target
|
|
// independent and default TTI implementations handle the rest.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "AMDGPUtti"
|
|
|
|
static cl::opt<unsigned> UnrollThresholdPrivate(
|
|
"amdgpu-unroll-threshold-private",
|
|
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
|
|
cl::init(2000), cl::Hidden);
|
|
|
|
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
|
|
TTI::UnrollingPreferences &UP) {
|
|
UP.Threshold = 300; // Twice the default.
|
|
UP.MaxCount = UINT_MAX;
|
|
UP.Partial = true;
|
|
|
|
// TODO: Do we want runtime unrolling?
|
|
|
|
// Maximum alloca size than can fit registers. Reserve 16 registers.
|
|
const unsigned MaxAlloca = (256 - 16) * 4;
|
|
for (const BasicBlock *BB : L->getBlocks()) {
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
for (const Instruction &I : *BB) {
|
|
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
|
|
if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
|
|
continue;
|
|
|
|
const Value *Ptr = GEP->getPointerOperand();
|
|
const AllocaInst *Alloca =
|
|
dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
|
|
if (Alloca && Alloca->isStaticAlloca()) {
|
|
Type *Ty = Alloca->getAllocatedType();
|
|
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
|
|
if (AllocaSize > MaxAlloca)
|
|
continue;
|
|
|
|
// Check if GEP depends on a value defined by this loop itself.
|
|
bool HasLoopDef = false;
|
|
for (const Value *Op : GEP->operands()) {
|
|
const Instruction *Inst = dyn_cast<Instruction>(Op);
|
|
if (!Inst || L->isLoopInvariant(Op))
|
|
continue;
|
|
if (any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
|
|
return SubLoop->contains(Inst); }))
|
|
continue;
|
|
HasLoopDef = true;
|
|
break;
|
|
}
|
|
if (!HasLoopDef)
|
|
continue;
|
|
|
|
// We want to do whatever we can to limit the number of alloca
|
|
// instructions that make it through to the code generator. allocas
|
|
// require us to use indirect addressing, which is slow and prone to
|
|
// compiler bugs. If this loop does an address calculation on an
|
|
// alloca ptr, then we want to use a higher than normal loop unroll
|
|
// threshold. This will give SROA a better chance to eliminate these
|
|
// allocas.
|
|
//
|
|
// Don't use the maximum allowed value here as it will make some
|
|
// programs way too big.
|
|
UP.Threshold = UnrollThresholdPrivate;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
|
|
if (Vec)
|
|
return 0;
|
|
|
|
// Number of VGPRs on SI.
|
|
if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
|
|
return 256;
|
|
|
|
return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) {
|
|
return Vector ? 0 : 32;
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
|
|
switch (AddrSpace) {
|
|
case AMDGPUAS::GLOBAL_ADDRESS:
|
|
case AMDGPUAS::CONSTANT_ADDRESS:
|
|
case AMDGPUAS::FLAT_ADDRESS:
|
|
return 128;
|
|
case AMDGPUAS::LOCAL_ADDRESS:
|
|
case AMDGPUAS::REGION_ADDRESS:
|
|
return 64;
|
|
case AMDGPUAS::PRIVATE_ADDRESS:
|
|
return 8 * ST->getMaxPrivateElementSize();
|
|
default:
|
|
if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS &&
|
|
(AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
|
|
(AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
|
|
AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
|
|
return 128;
|
|
llvm_unreachable("unhandled address space");
|
|
}
|
|
}
|
|
|
|
bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const {
|
|
// We allow vectorization of flat stores, even though we may need to decompose
|
|
// them later if they may access private memory. We don't have enough context
|
|
// here, and legalization can handle it.
|
|
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
|
|
return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
|
|
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
// Semi-arbitrary large amount.
|
|
return 64;
|
|
}
|
|
|
|
int AMDGPUTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
|
|
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
|
|
|
|
EVT OrigTy = TLI->getValueType(DL, Ty);
|
|
if (!OrigTy.isSimple()) {
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
// Because we don't have any legal vector operations, but the legal types, we
|
|
// need to account for split vectors.
|
|
unsigned NElts = LT.second.isVector() ?
|
|
LT.second.getVectorNumElements() : 1;
|
|
|
|
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
|
|
|
|
switch (ISD) {
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA: {
|
|
if (SLT == MVT::i64)
|
|
return get64BitInstrCost() * LT.first * NElts;
|
|
|
|
// i32
|
|
return getFullRateInstrCost() * LT.first * NElts;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
if (SLT == MVT::i64){
|
|
// and, or and xor are typically split into 2 VALU instructions.
|
|
return 2 * getFullRateInstrCost() * LT.first * NElts;
|
|
}
|
|
|
|
return LT.first * NElts * getFullRateInstrCost();
|
|
}
|
|
case ISD::MUL: {
|
|
const int QuarterRateCost = getQuarterRateInstrCost();
|
|
if (SLT == MVT::i64) {
|
|
const int FullRateCost = getFullRateInstrCost();
|
|
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
|
|
}
|
|
|
|
// i32
|
|
return QuarterRateCost * NElts * LT.first;
|
|
}
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
if (SLT == MVT::f64)
|
|
return LT.first * NElts * get64BitInstrCost();
|
|
|
|
if (SLT == MVT::f32 || SLT == MVT::f16)
|
|
return LT.first * NElts * getFullRateInstrCost();
|
|
break;
|
|
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
// FIXME: frem should be handled separately. The fdiv in it is most of it,
|
|
// but the current lowering is also not entirely correct.
|
|
if (SLT == MVT::f64) {
|
|
int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
|
|
|
|
// Add cost of workaround.
|
|
if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
|
|
Cost += 3 * getFullRateInstrCost();
|
|
|
|
return LT.first * Cost * NElts;
|
|
}
|
|
|
|
// Assuming no fp32 denormals lowering.
|
|
if (SLT == MVT::f32 || SLT == MVT::f16) {
|
|
assert(!ST->hasFP32Denormals() && "will change when supported");
|
|
int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
|
|
return LT.first * NElts * Cost;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
|
|
// XXX - For some reason this isn't called for switch.
|
|
switch (Opcode) {
|
|
case Instruction::Br:
|
|
case Instruction::Ret:
|
|
return 10;
|
|
default:
|
|
return BaseT::getCFInstrCost(Opcode);
|
|
}
|
|
}
|
|
|
|
int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
// Extracts are just reads of a subregister, so are free. Inserts are
|
|
// considered free because we don't want to have any cost for scalarizing
|
|
// operations, and we don't have to copy into a different register class.
|
|
|
|
// Dynamic indexing isn't free and is best avoided.
|
|
return Index == ~0u ? 2 : 0;
|
|
default:
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
}
|
|
|
|
static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) {
|
|
switch (I->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
case Intrinsic::amdgcn_interp_mov:
|
|
case Intrinsic::amdgcn_interp_p1:
|
|
case Intrinsic::amdgcn_interp_p2:
|
|
case Intrinsic::amdgcn_mbcnt_hi:
|
|
case Intrinsic::amdgcn_mbcnt_lo:
|
|
case Intrinsic::r600_read_tidig_x:
|
|
case Intrinsic::r600_read_tidig_y:
|
|
case Intrinsic::r600_read_tidig_z:
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec:
|
|
case Intrinsic::amdgcn_image_atomic_swap:
|
|
case Intrinsic::amdgcn_image_atomic_add:
|
|
case Intrinsic::amdgcn_image_atomic_sub:
|
|
case Intrinsic::amdgcn_image_atomic_smin:
|
|
case Intrinsic::amdgcn_image_atomic_umin:
|
|
case Intrinsic::amdgcn_image_atomic_smax:
|
|
case Intrinsic::amdgcn_image_atomic_umax:
|
|
case Intrinsic::amdgcn_image_atomic_and:
|
|
case Intrinsic::amdgcn_image_atomic_or:
|
|
case Intrinsic::amdgcn_image_atomic_xor:
|
|
case Intrinsic::amdgcn_image_atomic_inc:
|
|
case Intrinsic::amdgcn_image_atomic_dec:
|
|
case Intrinsic::amdgcn_image_atomic_cmpswap:
|
|
case Intrinsic::amdgcn_buffer_atomic_swap:
|
|
case Intrinsic::amdgcn_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_buffer_atomic_cmpswap:
|
|
case Intrinsic::amdgcn_ps_live:
|
|
case Intrinsic::amdgcn_ds_swizzle:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isArgPassedInSGPR(const Argument *A) {
|
|
const Function *F = A->getParent();
|
|
|
|
// Arguments to compute shaders are never a source of divergence.
|
|
if (!AMDGPU::isShader(F->getCallingConv()))
|
|
return true;
|
|
|
|
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
|
|
if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
|
|
F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
|
|
return true;
|
|
|
|
// Everything else is in VGPRs.
|
|
return false;
|
|
}
|
|
|
|
///
|
|
/// \returns true if the result of the value could potentially be
|
|
/// different across workitems in a wavefront.
|
|
bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
|
|
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return !isArgPassedInSGPR(A);
|
|
|
|
// Loads from the private address space are divergent, because threads
|
|
// can execute the load instruction with the same inputs and get different
|
|
// results.
|
|
//
|
|
// All other loads are not divergent, because if threads issue loads with the
|
|
// same arguments, they will always get the same result.
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
|
|
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
|
|
|
|
// Atomics are divergent because they are executed sequentially: when an
|
|
// atomic operation refers to the same address in each thread, then each
|
|
// thread after the first sees the value written by the previous thread as
|
|
// original value.
|
|
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
|
|
return true;
|
|
|
|
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
|
|
return isIntrinsicSourceOfDivergence(Intrinsic);
|
|
|
|
// Assume all function calls are a source of divergence.
|
|
if (isa<CallInst>(V) || isa<InvokeInst>(V))
|
|
return true;
|
|
|
|
return false;
|
|
}
|