1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/SystemZ/SystemZCallingConv.h
Neumann Hon 5bf2202796 [SystemZ] [z/OS] Add XPLINK64 Calling Convention to SystemZ
This patch adds the XPLINK64 calling convention to the SystemZ
backend. It specifies and implements the argument passing and
return value conventions.

Reviewed By: uweigand

Differential Revision: https://reviews.llvm.org/D101010
2021-05-18 16:52:47 -04:00

227 lines
8.2 KiB
C++

//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
#include "SystemZSubtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/MC/MCRegisterInfo.h"
namespace llvm {
namespace SystemZ {
const unsigned ELFNumArgGPRs = 5;
extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
const unsigned ELFNumArgFPRs = 4;
extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
const unsigned XPLINK64NumArgGPRs = 3;
extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
const unsigned XPLINK64NumArgFPRs = 4;
extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
} // end namespace SystemZ
class SystemZCCState : public CCState {
private:
/// Records whether the value was a fixed argument.
/// See ISD::OutputArg::IsFixed.
SmallVector<bool, 4> ArgIsFixed;
/// Records whether the value was widened from a short vector type.
SmallVector<bool, 4> ArgIsShortVector;
// Check whether ArgVT is a short vector type.
bool IsShortVectorType(EVT ArgVT) {
return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
}
public:
SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
: CCState(CC, isVarArg, MF, locs, C) {}
void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
CCAssignFn Fn) {
// Formal arguments are always fixed.
ArgIsFixed.clear();
for (unsigned i = 0; i < Ins.size(); ++i)
ArgIsFixed.push_back(true);
// Record whether the call operand was a short vector.
ArgIsShortVector.clear();
for (unsigned i = 0; i < Ins.size(); ++i)
ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
CCState::AnalyzeFormalArguments(Ins, Fn);
}
void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
CCAssignFn Fn) {
// Record whether the call operand was a fixed argument.
ArgIsFixed.clear();
for (unsigned i = 0; i < Outs.size(); ++i)
ArgIsFixed.push_back(Outs[i].IsFixed);
// Record whether the call operand was a short vector.
ArgIsShortVector.clear();
for (unsigned i = 0; i < Outs.size(); ++i)
ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
CCState::AnalyzeCallOperands(Outs, Fn);
}
// This version of AnalyzeCallOperands in the base class is not usable
// since we must provide a means of accessing ISD::OutputArg::IsFixed.
void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
CCAssignFn Fn) = delete;
bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
};
// Handle i128 argument types. These need to be passed by implicit
// reference. This could be as simple as the following .td line:
// CCIfType<[i128], CCPassIndirect<i64>>,
// except that i128 is not a legal type, and therefore gets split by
// common code into a pair of i64 arguments.
inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
// ArgFlags.isSplit() is true on the first part of a i128 argument;
// PendingMembers.empty() is false on all subsequent parts.
if (!ArgFlags.isSplit() && PendingMembers.empty())
return false;
// Push a pending Indirect value location for each part.
LocVT = MVT::i64;
LocInfo = CCValAssign::Indirect;
PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
LocVT, LocInfo));
if (!ArgFlags.isSplitEnd())
return true;
// OK, we've collected all parts in the pending list. Allocate
// the location (register or stack slot) for the indirect pointer.
// (This duplicates the usual i64 calling convention rules.)
unsigned Reg;
const SystemZSubtarget &Subtarget =
State.getMachineFunction().getSubtarget<SystemZSubtarget>();
if (Subtarget.isTargetELF())
Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
else if (Subtarget.isTargetXPLINK64())
Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
else
llvm_unreachable("Unknown Calling Convention!");
unsigned Offset = Reg ? 0 : State.AllocateStack(8, Align(8));
// Use that same location for all the pending parts.
for (auto &It : PendingMembers) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(Offset);
State.addLoc(It);
}
PendingMembers.clear();
return true;
}
inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
if (LocVT == MVT::f32 || LocVT == MVT::f64) {
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
}
if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
// Shadow next two GPRs, if available.
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
// Quad precision floating point needs to
// go inside pre-defined FPR pair.
if (LocVT == MVT::f128) {
for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
}
}
return false;
}
inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
if (LocVT.getSizeInBits() < 128)
return false;
if (static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))
return false;
// For any C or C++ program, this should always be
// false, since it is illegal to have a function
// where the first argument is variadic. Therefore
// the first fixed argument should already have
// allocated GPR1 either through shadowing it or
// using it for parameter passing.
State.AllocateReg(SystemZ::R1D);
bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
// If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
if (AllocGPR2 && AllocGPR3) {
State.addLoc(
CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
return true;
}
// If only GPR3 is available, we allocate on stack but need to
// set custom handling to copy hi bits into GPR3.
if (!AllocGPR2 && AllocGPR3) {
auto Offset = State.AllocateStack(16, Align(8));
State.addLoc(
CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
return false;
}
inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
CCState &) {
llvm_unreachable("Return value calling convention currently unsupported.");
}
inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
ISD::ArgFlagsTy &, CCState &) {
llvm_unreachable("Argument calling convention currently unsupported.");
}
inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
CCState &) {
report_fatal_error("No registers left in GHC calling convention");
return false;
}
} // end namespace llvm
#endif