1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/TableGen/Record.cpp
Stanislav Mekhanoshin 1a6d6ebda9 Fix ubsan error in tblgen with signed left shift
UBSAN complains when tblgen performs SHL of a negative
value.

Differential Revision: https://reviews.llvm.org/D81952
2020-06-16 11:15:09 -07:00

2478 lines
73 KiB
C++

//===- Record.cpp - Record implementation ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement the tablegen record classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "tblgen-records"
static BumpPtrAllocator Allocator;
STATISTIC(CodeInitsConstructed,
"The total number of unique CodeInits constructed");
//===----------------------------------------------------------------------===//
// Type implementations
//===----------------------------------------------------------------------===//
BitRecTy BitRecTy::Shared;
CodeRecTy CodeRecTy::Shared;
IntRecTy IntRecTy::Shared;
StringRecTy StringRecTy::Shared;
DagRecTy DagRecTy::Shared;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecTy::dump() const { print(errs()); }
#endif
ListRecTy *RecTy::getListTy() {
if (!ListTy)
ListTy = new(Allocator) ListRecTy(this);
return ListTy;
}
bool RecTy::typeIsConvertibleTo(const RecTy *RHS) const {
assert(RHS && "NULL pointer");
return Kind == RHS->getRecTyKind();
}
bool RecTy::typeIsA(const RecTy *RHS) const { return this == RHS; }
bool BitRecTy::typeIsConvertibleTo(const RecTy *RHS) const{
if (RecTy::typeIsConvertibleTo(RHS) || RHS->getRecTyKind() == IntRecTyKind)
return true;
if (const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS))
return BitsTy->getNumBits() == 1;
return false;
}
BitsRecTy *BitsRecTy::get(unsigned Sz) {
static std::vector<BitsRecTy*> Shared;
if (Sz >= Shared.size())
Shared.resize(Sz + 1);
BitsRecTy *&Ty = Shared[Sz];
if (!Ty)
Ty = new(Allocator) BitsRecTy(Sz);
return Ty;
}
std::string BitsRecTy::getAsString() const {
return "bits<" + utostr(Size) + ">";
}
bool BitsRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (RecTy::typeIsConvertibleTo(RHS)) //argument and the sender are same type
return cast<BitsRecTy>(RHS)->Size == Size;
RecTyKind kind = RHS->getRecTyKind();
return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind);
}
bool BitsRecTy::typeIsA(const RecTy *RHS) const {
if (const BitsRecTy *RHSb = dyn_cast<BitsRecTy>(RHS))
return RHSb->Size == Size;
return false;
}
bool IntRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind kind = RHS->getRecTyKind();
return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind;
}
bool CodeRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind Kind = RHS->getRecTyKind();
return Kind == CodeRecTyKind || Kind == StringRecTyKind;
}
std::string StringRecTy::getAsString() const {
return "string";
}
bool StringRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind Kind = RHS->getRecTyKind();
return Kind == StringRecTyKind || Kind == CodeRecTyKind;
}
std::string ListRecTy::getAsString() const {
return "list<" + Ty->getAsString() + ">";
}
bool ListRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (const auto *ListTy = dyn_cast<ListRecTy>(RHS))
return Ty->typeIsConvertibleTo(ListTy->getElementType());
return false;
}
bool ListRecTy::typeIsA(const RecTy *RHS) const {
if (const ListRecTy *RHSl = dyn_cast<ListRecTy>(RHS))
return getElementType()->typeIsA(RHSl->getElementType());
return false;
}
std::string DagRecTy::getAsString() const {
return "dag";
}
static void ProfileRecordRecTy(FoldingSetNodeID &ID,
ArrayRef<Record *> Classes) {
ID.AddInteger(Classes.size());
for (Record *R : Classes)
ID.AddPointer(R);
}
RecordRecTy *RecordRecTy::get(ArrayRef<Record *> UnsortedClasses) {
if (UnsortedClasses.empty()) {
static RecordRecTy AnyRecord(0);
return &AnyRecord;
}
FoldingSet<RecordRecTy> &ThePool =
UnsortedClasses[0]->getRecords().RecordTypePool;
SmallVector<Record *, 4> Classes(UnsortedClasses.begin(),
UnsortedClasses.end());
llvm::sort(Classes, [](Record *LHS, Record *RHS) {
return LHS->getNameInitAsString() < RHS->getNameInitAsString();
});
FoldingSetNodeID ID;
ProfileRecordRecTy(ID, Classes);
void *IP = nullptr;
if (RecordRecTy *Ty = ThePool.FindNodeOrInsertPos(ID, IP))
return Ty;
#ifndef NDEBUG
// Check for redundancy.
for (unsigned i = 0; i < Classes.size(); ++i) {
for (unsigned j = 0; j < Classes.size(); ++j) {
assert(i == j || !Classes[i]->isSubClassOf(Classes[j]));
}
assert(&Classes[0]->getRecords() == &Classes[i]->getRecords());
}
#endif
void *Mem = Allocator.Allocate(totalSizeToAlloc<Record *>(Classes.size()),
alignof(RecordRecTy));
RecordRecTy *Ty = new(Mem) RecordRecTy(Classes.size());
std::uninitialized_copy(Classes.begin(), Classes.end(),
Ty->getTrailingObjects<Record *>());
ThePool.InsertNode(Ty, IP);
return Ty;
}
void RecordRecTy::Profile(FoldingSetNodeID &ID) const {
ProfileRecordRecTy(ID, getClasses());
}
std::string RecordRecTy::getAsString() const {
if (NumClasses == 1)
return getClasses()[0]->getNameInitAsString();
std::string Str = "{";
bool First = true;
for (Record *R : getClasses()) {
if (!First)
Str += ", ";
First = false;
Str += R->getNameInitAsString();
}
Str += "}";
return Str;
}
bool RecordRecTy::isSubClassOf(Record *Class) const {
return llvm::any_of(getClasses(), [Class](Record *MySuperClass) {
return MySuperClass == Class ||
MySuperClass->isSubClassOf(Class);
});
}
bool RecordRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (this == RHS)
return true;
const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS);
if (!RTy)
return false;
return llvm::all_of(RTy->getClasses(), [this](Record *TargetClass) {
return isSubClassOf(TargetClass);
});
}
bool RecordRecTy::typeIsA(const RecTy *RHS) const {
return typeIsConvertibleTo(RHS);
}
static RecordRecTy *resolveRecordTypes(RecordRecTy *T1, RecordRecTy *T2) {
SmallVector<Record *, 4> CommonSuperClasses;
SmallVector<Record *, 4> Stack;
Stack.insert(Stack.end(), T1->classes_begin(), T1->classes_end());
while (!Stack.empty()) {
Record *R = Stack.back();
Stack.pop_back();
if (T2->isSubClassOf(R)) {
CommonSuperClasses.push_back(R);
} else {
R->getDirectSuperClasses(Stack);
}
}
return RecordRecTy::get(CommonSuperClasses);
}
RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) {
if (T1 == T2)
return T1;
if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) {
if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2))
return resolveRecordTypes(RecTy1, RecTy2);
}
if (T1->typeIsConvertibleTo(T2))
return T2;
if (T2->typeIsConvertibleTo(T1))
return T1;
if (ListRecTy *ListTy1 = dyn_cast<ListRecTy>(T1)) {
if (ListRecTy *ListTy2 = dyn_cast<ListRecTy>(T2)) {
RecTy* NewType = resolveTypes(ListTy1->getElementType(),
ListTy2->getElementType());
if (NewType)
return NewType->getListTy();
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Initializer implementations
//===----------------------------------------------------------------------===//
void Init::anchor() {}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Init::dump() const { return print(errs()); }
#endif
UnsetInit *UnsetInit::get() {
static UnsetInit TheInit;
return &TheInit;
}
Init *UnsetInit::getCastTo(RecTy *Ty) const {
return const_cast<UnsetInit *>(this);
}
Init *UnsetInit::convertInitializerTo(RecTy *Ty) const {
return const_cast<UnsetInit *>(this);
}
BitInit *BitInit::get(bool V) {
static BitInit True(true);
static BitInit False(false);
return V ? &True : &False;
}
Init *BitInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty))
return const_cast<BitInit *>(this);
if (isa<IntRecTy>(Ty))
return IntInit::get(getValue());
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// Can only convert single bit.
if (BRT->getNumBits() == 1)
return BitsInit::get(const_cast<BitInit *>(this));
}
return nullptr;
}
static void
ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) {
ID.AddInteger(Range.size());
for (Init *I : Range)
ID.AddPointer(I);
}
BitsInit *BitsInit::get(ArrayRef<Init *> Range) {
static FoldingSet<BitsInit> ThePool;
FoldingSetNodeID ID;
ProfileBitsInit(ID, Range);
void *IP = nullptr;
if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Range.size()),
alignof(BitsInit));
BitsInit *I = new(Mem) BitsInit(Range.size());
std::uninitialized_copy(Range.begin(), Range.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void BitsInit::Profile(FoldingSetNodeID &ID) const {
ProfileBitsInit(ID, makeArrayRef(getTrailingObjects<Init *>(), NumBits));
}
Init *BitsInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty)) {
if (getNumBits() != 1) return nullptr; // Only accept if just one bit!
return getBit(0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// If the number of bits is right, return it. Otherwise we need to expand
// or truncate.
if (getNumBits() != BRT->getNumBits()) return nullptr;
return const_cast<BitsInit *>(this);
}
if (isa<IntRecTy>(Ty)) {
int64_t Result = 0;
for (unsigned i = 0, e = getNumBits(); i != e; ++i)
if (auto *Bit = dyn_cast<BitInit>(getBit(i)))
Result |= static_cast<int64_t>(Bit->getValue()) << i;
else
return nullptr;
return IntInit::get(Result);
}
return nullptr;
}
Init *
BitsInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= getNumBits())
return nullptr;
NewBits[i] = getBit(Bits[i]);
}
return BitsInit::get(NewBits);
}
bool BitsInit::isConcrete() const {
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (!getBit(i)->isConcrete())
return false;
}
return true;
}
std::string BitsInit::getAsString() const {
std::string Result = "{ ";
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (i) Result += ", ";
if (Init *Bit = getBit(e-i-1))
Result += Bit->getAsString();
else
Result += "*";
}
return Result + " }";
}
// resolveReferences - If there are any field references that refer to fields
// that have been filled in, we can propagate the values now.
Init *BitsInit::resolveReferences(Resolver &R) const {
bool Changed = false;
SmallVector<Init *, 16> NewBits(getNumBits());
Init *CachedBitVarRef = nullptr;
Init *CachedBitVarResolved = nullptr;
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
Init *CurBit = getBit(i);
Init *NewBit = CurBit;
if (VarBitInit *CurBitVar = dyn_cast<VarBitInit>(CurBit)) {
if (CurBitVar->getBitVar() != CachedBitVarRef) {
CachedBitVarRef = CurBitVar->getBitVar();
CachedBitVarResolved = CachedBitVarRef->resolveReferences(R);
}
assert(CachedBitVarResolved && "Unresolved bitvar reference");
NewBit = CachedBitVarResolved->getBit(CurBitVar->getBitNum());
} else {
// getBit(0) implicitly converts int and bits<1> values to bit.
NewBit = CurBit->resolveReferences(R)->getBit(0);
}
if (isa<UnsetInit>(NewBit) && R.keepUnsetBits())
NewBit = CurBit;
NewBits[i] = NewBit;
Changed |= CurBit != NewBit;
}
if (Changed)
return BitsInit::get(NewBits);
return const_cast<BitsInit *>(this);
}
IntInit *IntInit::get(int64_t V) {
static std::map<int64_t, IntInit*> ThePool;
IntInit *&I = ThePool[V];
if (!I) I = new(Allocator) IntInit(V);
return I;
}
std::string IntInit::getAsString() const {
return itostr(Value);
}
static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
// For example, with NumBits == 4, we permit Values from [-7 .. 15].
return (NumBits >= sizeof(Value) * 8) ||
(Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
}
Init *IntInit::convertInitializerTo(RecTy *Ty) const {
if (isa<IntRecTy>(Ty))
return const_cast<IntInit *>(this);
if (isa<BitRecTy>(Ty)) {
int64_t Val = getValue();
if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit!
return BitInit::get(Val != 0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
int64_t Value = getValue();
// Make sure this bitfield is large enough to hold the integer value.
if (!canFitInBitfield(Value, BRT->getNumBits()))
return nullptr;
SmallVector<Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] = BitInit::get(Value & ((i < 64) ? (1LL << i) : 0));
return BitsInit::get(NewBits);
}
return nullptr;
}
Init *
IntInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= 64)
return nullptr;
NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i]));
}
return BitsInit::get(NewBits);
}
CodeInit *CodeInit::get(StringRef V, const SMLoc &Loc) {
static StringSet<BumpPtrAllocator &> ThePool(Allocator);
CodeInitsConstructed++;
// Unlike StringMap, StringSet doesn't accept empty keys.
if (V.empty())
return new (Allocator) CodeInit("", Loc);
// Location tracking prevents us from de-duping CodeInits as we're never
// called with the same string and same location twice. However, we can at
// least de-dupe the strings for a modest saving.
auto &Entry = *ThePool.insert(V).first;
return new(Allocator) CodeInit(Entry.getKey(), Loc);
}
StringInit *StringInit::get(StringRef V) {
static StringMap<StringInit*, BumpPtrAllocator &> ThePool(Allocator);
auto &Entry = *ThePool.insert(std::make_pair(V, nullptr)).first;
if (!Entry.second)
Entry.second = new(Allocator) StringInit(Entry.getKey());
return Entry.second;
}
Init *StringInit::convertInitializerTo(RecTy *Ty) const {
if (isa<StringRecTy>(Ty))
return const_cast<StringInit *>(this);
if (isa<CodeRecTy>(Ty))
return CodeInit::get(getValue(), SMLoc());
return nullptr;
}
Init *CodeInit::convertInitializerTo(RecTy *Ty) const {
if (isa<CodeRecTy>(Ty))
return const_cast<CodeInit *>(this);
if (isa<StringRecTy>(Ty))
return StringInit::get(getValue());
return nullptr;
}
static void ProfileListInit(FoldingSetNodeID &ID,
ArrayRef<Init *> Range,
RecTy *EltTy) {
ID.AddInteger(Range.size());
ID.AddPointer(EltTy);
for (Init *I : Range)
ID.AddPointer(I);
}
ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) {
static FoldingSet<ListInit> ThePool;
FoldingSetNodeID ID;
ProfileListInit(ID, Range, EltTy);
void *IP = nullptr;
if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
assert(Range.empty() || !isa<TypedInit>(Range[0]) ||
cast<TypedInit>(Range[0])->getType()->typeIsConvertibleTo(EltTy));
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Range.size()),
alignof(ListInit));
ListInit *I = new(Mem) ListInit(Range.size(), EltTy);
std::uninitialized_copy(Range.begin(), Range.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void ListInit::Profile(FoldingSetNodeID &ID) const {
RecTy *EltTy = cast<ListRecTy>(getType())->getElementType();
ProfileListInit(ID, getValues(), EltTy);
}
Init *ListInit::convertInitializerTo(RecTy *Ty) const {
if (getType() == Ty)
return const_cast<ListInit*>(this);
if (auto *LRT = dyn_cast<ListRecTy>(Ty)) {
SmallVector<Init*, 8> Elements;
Elements.reserve(getValues().size());
// Verify that all of the elements of the list are subclasses of the
// appropriate class!
bool Changed = false;
RecTy *ElementType = LRT->getElementType();
for (Init *I : getValues())
if (Init *CI = I->convertInitializerTo(ElementType)) {
Elements.push_back(CI);
if (CI != I)
Changed = true;
} else
return nullptr;
if (!Changed)
return const_cast<ListInit*>(this);
return ListInit::get(Elements, ElementType);
}
return nullptr;
}
Init *ListInit::convertInitListSlice(ArrayRef<unsigned> Elements) const {
SmallVector<Init*, 8> Vals;
Vals.reserve(Elements.size());
for (unsigned Element : Elements) {
if (Element >= size())
return nullptr;
Vals.push_back(getElement(Element));
}
return ListInit::get(Vals, getElementType());
}
Record *ListInit::getElementAsRecord(unsigned i) const {
assert(i < NumValues && "List element index out of range!");
DefInit *DI = dyn_cast<DefInit>(getElement(i));
if (!DI)
PrintFatalError("Expected record in list!");
return DI->getDef();
}
Init *ListInit::resolveReferences(Resolver &R) const {
SmallVector<Init*, 8> Resolved;
Resolved.reserve(size());
bool Changed = false;
for (Init *CurElt : getValues()) {
Init *E = CurElt->resolveReferences(R);
Changed |= E != CurElt;
Resolved.push_back(E);
}
if (Changed)
return ListInit::get(Resolved, getElementType());
return const_cast<ListInit *>(this);
}
bool ListInit::isConcrete() const {
for (Init *Element : *this) {
if (!Element->isConcrete())
return false;
}
return true;
}
std::string ListInit::getAsString() const {
std::string Result = "[";
const char *sep = "";
for (Init *Element : *this) {
Result += sep;
sep = ", ";
Result += Element->getAsString();
}
return Result + "]";
}
Init *OpInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<OpInit*>(this);
return VarBitInit::get(const_cast<OpInit*>(this), Bit);
}
static void
ProfileUnOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *Op, RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(Op);
ID.AddPointer(Type);
}
UnOpInit *UnOpInit::get(UnaryOp Opc, Init *LHS, RecTy *Type) {
static FoldingSet<UnOpInit> ThePool;
FoldingSetNodeID ID;
ProfileUnOpInit(ID, Opc, LHS, Type);
void *IP = nullptr;
if (UnOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
UnOpInit *I = new(Allocator) UnOpInit(Opc, LHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void UnOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileUnOpInit(ID, getOpcode(), getOperand(), getType());
}
Init *UnOpInit::Fold(Record *CurRec, bool IsFinal) const {
switch (getOpcode()) {
case CAST:
if (isa<StringRecTy>(getType())) {
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return LHSs;
if (DefInit *LHSd = dyn_cast<DefInit>(LHS))
return StringInit::get(LHSd->getAsString());
if (IntInit *LHSi = dyn_cast<IntInit>(LHS))
return StringInit::get(LHSi->getAsString());
} else if (isa<RecordRecTy>(getType())) {
if (StringInit *Name = dyn_cast<StringInit>(LHS)) {
if (!CurRec && !IsFinal)
break;
assert(CurRec && "NULL pointer");
Record *D;
// Self-references are allowed, but their resolution is delayed until
// the final resolve to ensure that we get the correct type for them.
if (Name == CurRec->getNameInit()) {
if (!IsFinal)
break;
D = CurRec;
} else {
D = CurRec->getRecords().getDef(Name->getValue());
if (!D) {
if (IsFinal)
PrintFatalError(CurRec->getLoc(),
Twine("Undefined reference to record: '") +
Name->getValue() + "'\n");
break;
}
}
DefInit *DI = DefInit::get(D);
if (!DI->getType()->typeIsA(getType())) {
PrintFatalError(CurRec->getLoc(),
Twine("Expected type '") +
getType()->getAsString() + "', got '" +
DI->getType()->getAsString() + "' in: " +
getAsString() + "\n");
}
return DI;
}
}
if (Init *NewInit = LHS->convertInitializerTo(getType()))
return NewInit;
break;
case HEAD:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in head");
return LHSl->getElement(0);
}
break;
case TAIL:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in tail");
// Note the +1. We can't just pass the result of getValues()
// directly.
return ListInit::get(LHSl->getValues().slice(1), LHSl->getElementType());
}
break;
case SIZE:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(LHSl->size());
break;
case EMPTY:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(LHSl->empty());
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return IntInit::get(LHSs->getValue().empty());
break;
case GETOP:
if (DagInit *Dag = dyn_cast<DagInit>(LHS)) {
DefInit *DI = DefInit::get(Dag->getOperatorAsDef({}));
if (!DI->getType()->typeIsA(getType())) {
PrintFatalError(CurRec->getLoc(),
Twine("Expected type '") +
getType()->getAsString() + "', got '" +
DI->getType()->getAsString() + "' in: " +
getAsString() + "\n");
} else {
return DI;
}
}
break;
}
return const_cast<UnOpInit *>(this);
}
Init *UnOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
if (LHS != lhs || (R.isFinal() && getOpcode() == CAST))
return (UnOpInit::get(getOpcode(), lhs, getType()))
->Fold(R.getCurrentRecord(), R.isFinal());
return const_cast<UnOpInit *>(this);
}
std::string UnOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
case HEAD: Result = "!head"; break;
case TAIL: Result = "!tail"; break;
case SIZE: Result = "!size"; break;
case EMPTY: Result = "!empty"; break;
case GETOP: Result = "!getop"; break;
}
return Result + "(" + LHS->getAsString() + ")";
}
static void
ProfileBinOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *LHS, Init *RHS,
RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
BinOpInit *BinOpInit::get(BinaryOp Opc, Init *LHS,
Init *RHS, RecTy *Type) {
static FoldingSet<BinOpInit> ThePool;
FoldingSetNodeID ID;
ProfileBinOpInit(ID, Opc, LHS, RHS, Type);
void *IP = nullptr;
if (BinOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
BinOpInit *I = new(Allocator) BinOpInit(Opc, LHS, RHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void BinOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileBinOpInit(ID, getOpcode(), getLHS(), getRHS(), getType());
}
static StringInit *ConcatStringInits(const StringInit *I0,
const StringInit *I1) {
SmallString<80> Concat(I0->getValue());
Concat.append(I1->getValue());
return StringInit::get(Concat);
}
Init *BinOpInit::getStrConcat(Init *I0, Init *I1) {
// Shortcut for the common case of concatenating two strings.
if (const StringInit *I0s = dyn_cast<StringInit>(I0))
if (const StringInit *I1s = dyn_cast<StringInit>(I1))
return ConcatStringInits(I0s, I1s);
return BinOpInit::get(BinOpInit::STRCONCAT, I0, I1, StringRecTy::get());
}
static ListInit *ConcatListInits(const ListInit *LHS,
const ListInit *RHS) {
SmallVector<Init *, 8> Args;
Args.insert(Args.end(), LHS->begin(), LHS->end());
Args.insert(Args.end(), RHS->begin(), RHS->end());
return ListInit::get(Args, LHS->getElementType());
}
Init *BinOpInit::getListConcat(TypedInit *LHS, Init *RHS) {
assert(isa<ListRecTy>(LHS->getType()) && "First arg must be a list");
// Shortcut for the common case of concatenating two lists.
if (const ListInit *LHSList = dyn_cast<ListInit>(LHS))
if (const ListInit *RHSList = dyn_cast<ListInit>(RHS))
return ConcatListInits(LHSList, RHSList);
return BinOpInit::get(BinOpInit::LISTCONCAT, LHS, RHS, LHS->getType());
}
Init *BinOpInit::getListSplat(TypedInit *LHS, Init *RHS) {
return BinOpInit::get(BinOpInit::LISTSPLAT, LHS, RHS, LHS->getType());
}
Init *BinOpInit::Fold(Record *CurRec) const {
switch (getOpcode()) {
case CONCAT: {
DagInit *LHSs = dyn_cast<DagInit>(LHS);
DagInit *RHSs = dyn_cast<DagInit>(RHS);
if (LHSs && RHSs) {
DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator());
DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator());
if ((!LOp && !isa<UnsetInit>(LHSs->getOperator())) ||
(!ROp && !isa<UnsetInit>(RHSs->getOperator())))
break;
if (LOp && ROp && LOp->getDef() != ROp->getDef()) {
PrintFatalError(Twine("Concatenated Dag operators do not match: '") +
LHSs->getAsString() + "' vs. '" + RHSs->getAsString() +
"'");
}
Init *Op = LOp ? LOp : ROp;
if (!Op)
Op = UnsetInit::get();
SmallVector<Init*, 8> Args;
SmallVector<StringInit*, 8> ArgNames;
for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) {
Args.push_back(LHSs->getArg(i));
ArgNames.push_back(LHSs->getArgName(i));
}
for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) {
Args.push_back(RHSs->getArg(i));
ArgNames.push_back(RHSs->getArgName(i));
}
return DagInit::get(Op, nullptr, Args, ArgNames);
}
break;
}
case LISTCONCAT: {
ListInit *LHSs = dyn_cast<ListInit>(LHS);
ListInit *RHSs = dyn_cast<ListInit>(RHS);
if (LHSs && RHSs) {
SmallVector<Init *, 8> Args;
Args.insert(Args.end(), LHSs->begin(), LHSs->end());
Args.insert(Args.end(), RHSs->begin(), RHSs->end());
return ListInit::get(Args, LHSs->getElementType());
}
break;
}
case LISTSPLAT: {
TypedInit *Value = dyn_cast<TypedInit>(LHS);
IntInit *Size = dyn_cast<IntInit>(RHS);
if (Value && Size) {
SmallVector<Init *, 8> Args(Size->getValue(), Value);
return ListInit::get(Args, Value->getType());
}
break;
}
case STRCONCAT: {
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSs && RHSs)
return ConcatStringInits(LHSs, RHSs);
break;
}
case EQ:
case NE:
case LE:
case LT:
case GE:
case GT: {
// try to fold eq comparison for 'bit' and 'int', otherwise fallback
// to string objects.
IntInit *L =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *R =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (L && R) {
bool Result;
switch (getOpcode()) {
case EQ: Result = L->getValue() == R->getValue(); break;
case NE: Result = L->getValue() != R->getValue(); break;
case LE: Result = L->getValue() <= R->getValue(); break;
case LT: Result = L->getValue() < R->getValue(); break;
case GE: Result = L->getValue() >= R->getValue(); break;
case GT: Result = L->getValue() > R->getValue(); break;
default: llvm_unreachable("unhandled comparison");
}
return BitInit::get(Result);
}
if (getOpcode() == EQ || getOpcode() == NE) {
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
// Make sure we've resolved
if (LHSs && RHSs) {
bool Equal = LHSs->getValue() == RHSs->getValue();
return BitInit::get(getOpcode() == EQ ? Equal : !Equal);
}
}
break;
}
case SETOP: {
DagInit *Dag = dyn_cast<DagInit>(LHS);
DefInit *Op = dyn_cast<DefInit>(RHS);
if (Dag && Op) {
SmallVector<Init*, 8> Args;
SmallVector<StringInit*, 8> ArgNames;
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
Args.push_back(Dag->getArg(i));
ArgNames.push_back(Dag->getArgName(i));
}
return DagInit::get(Op, nullptr, Args, ArgNames);
}
break;
}
case ADD:
case MUL:
case AND:
case OR:
case SHL:
case SRA:
case SRL: {
IntInit *LHSi =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *RHSi =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (LHSi && RHSi) {
int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
int64_t Result;
switch (getOpcode()) {
default: llvm_unreachable("Bad opcode!");
case ADD: Result = LHSv + RHSv; break;
case MUL: Result = LHSv * RHSv; break;
case AND: Result = LHSv & RHSv; break;
case OR: Result = LHSv | RHSv; break;
case SHL: Result = (uint64_t)LHSv << (uint64_t)RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
}
return IntInit::get(Result);
}
break;
}
}
return const_cast<BinOpInit *>(this);
}
Init *BinOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
Init *rhs = RHS->resolveReferences(R);
if (LHS != lhs || RHS != rhs)
return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))
->Fold(R.getCurrentRecord());
return const_cast<BinOpInit *>(this);
}
std::string BinOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case CONCAT: Result = "!con"; break;
case ADD: Result = "!add"; break;
case MUL: Result = "!mul"; break;
case AND: Result = "!and"; break;
case OR: Result = "!or"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
case EQ: Result = "!eq"; break;
case NE: Result = "!ne"; break;
case LE: Result = "!le"; break;
case LT: Result = "!lt"; break;
case GE: Result = "!ge"; break;
case GT: Result = "!gt"; break;
case LISTCONCAT: Result = "!listconcat"; break;
case LISTSPLAT: Result = "!listsplat"; break;
case STRCONCAT: Result = "!strconcat"; break;
case SETOP: Result = "!setop"; break;
}
return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
}
static void
ProfileTernOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *LHS, Init *MHS,
Init *RHS, RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(MHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
TernOpInit *TernOpInit::get(TernaryOp Opc, Init *LHS, Init *MHS, Init *RHS,
RecTy *Type) {
static FoldingSet<TernOpInit> ThePool;
FoldingSetNodeID ID;
ProfileTernOpInit(ID, Opc, LHS, MHS, RHS, Type);
void *IP = nullptr;
if (TernOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
TernOpInit *I = new(Allocator) TernOpInit(Opc, LHS, MHS, RHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void TernOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileTernOpInit(ID, getOpcode(), getLHS(), getMHS(), getRHS(), getType());
}
static Init *ForeachApply(Init *LHS, Init *MHSe, Init *RHS, Record *CurRec) {
MapResolver R(CurRec);
R.set(LHS, MHSe);
return RHS->resolveReferences(R);
}
static Init *ForeachDagApply(Init *LHS, DagInit *MHSd, Init *RHS,
Record *CurRec) {
bool Change = false;
Init *Val = ForeachApply(LHS, MHSd->getOperator(), RHS, CurRec);
if (Val != MHSd->getOperator())
Change = true;
SmallVector<std::pair<Init *, StringInit *>, 8> NewArgs;
for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) {
Init *Arg = MHSd->getArg(i);
Init *NewArg;
StringInit *ArgName = MHSd->getArgName(i);
if (DagInit *Argd = dyn_cast<DagInit>(Arg))
NewArg = ForeachDagApply(LHS, Argd, RHS, CurRec);
else
NewArg = ForeachApply(LHS, Arg, RHS, CurRec);
NewArgs.push_back(std::make_pair(NewArg, ArgName));
if (Arg != NewArg)
Change = true;
}
if (Change)
return DagInit::get(Val, nullptr, NewArgs);
return MHSd;
}
// Applies RHS to all elements of MHS, using LHS as a temp variable.
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec) {
if (DagInit *MHSd = dyn_cast<DagInit>(MHS))
return ForeachDagApply(LHS, MHSd, RHS, CurRec);
if (ListInit *MHSl = dyn_cast<ListInit>(MHS)) {
SmallVector<Init *, 8> NewList(MHSl->begin(), MHSl->end());
for (Init *&Item : NewList) {
Init *NewItem = ForeachApply(LHS, Item, RHS, CurRec);
if (NewItem != Item)
Item = NewItem;
}
return ListInit::get(NewList, cast<ListRecTy>(Type)->getElementType());
}
return nullptr;
}
Init *TernOpInit::Fold(Record *CurRec) const {
switch (getOpcode()) {
case SUBST: {
DefInit *LHSd = dyn_cast<DefInit>(LHS);
VarInit *LHSv = dyn_cast<VarInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
DefInit *MHSd = dyn_cast<DefInit>(MHS);
VarInit *MHSv = dyn_cast<VarInit>(MHS);
StringInit *MHSs = dyn_cast<StringInit>(MHS);
DefInit *RHSd = dyn_cast<DefInit>(RHS);
VarInit *RHSv = dyn_cast<VarInit>(RHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSd && MHSd && RHSd) {
Record *Val = RHSd->getDef();
if (LHSd->getAsString() == RHSd->getAsString())
Val = MHSd->getDef();
return DefInit::get(Val);
}
if (LHSv && MHSv && RHSv) {
std::string Val = std::string(RHSv->getName());
if (LHSv->getAsString() == RHSv->getAsString())
Val = std::string(MHSv->getName());
return VarInit::get(Val, getType());
}
if (LHSs && MHSs && RHSs) {
std::string Val = std::string(RHSs->getValue());
std::string::size_type found;
std::string::size_type idx = 0;
while (true) {
found = Val.find(std::string(LHSs->getValue()), idx);
if (found == std::string::npos)
break;
Val.replace(found, LHSs->getValue().size(),
std::string(MHSs->getValue()));
idx = found + MHSs->getValue().size();
}
return StringInit::get(Val);
}
break;
}
case FOREACH: {
if (Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), CurRec))
return Result;
break;
}
case IF: {
if (IntInit *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get()))) {
if (LHSi->getValue())
return MHS;
return RHS;
}
break;
}
case DAG: {
ListInit *MHSl = dyn_cast<ListInit>(MHS);
ListInit *RHSl = dyn_cast<ListInit>(RHS);
bool MHSok = MHSl || isa<UnsetInit>(MHS);
bool RHSok = RHSl || isa<UnsetInit>(RHS);
if (isa<UnsetInit>(MHS) && isa<UnsetInit>(RHS))
break; // Typically prevented by the parser, but might happen with template args
if (MHSok && RHSok && (!MHSl || !RHSl || MHSl->size() == RHSl->size())) {
SmallVector<std::pair<Init *, StringInit *>, 8> Children;
unsigned Size = MHSl ? MHSl->size() : RHSl->size();
for (unsigned i = 0; i != Size; ++i) {
Init *Node = MHSl ? MHSl->getElement(i) : UnsetInit::get();
Init *Name = RHSl ? RHSl->getElement(i) : UnsetInit::get();
if (!isa<StringInit>(Name) && !isa<UnsetInit>(Name))
return const_cast<TernOpInit *>(this);
Children.emplace_back(Node, dyn_cast<StringInit>(Name));
}
return DagInit::get(LHS, nullptr, Children);
}
break;
}
}
return const_cast<TernOpInit *>(this);
}
Init *TernOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
if (getOpcode() == IF && lhs != LHS) {
if (IntInit *Value = dyn_cast_or_null<IntInit>(
lhs->convertInitializerTo(IntRecTy::get()))) {
// Short-circuit
if (Value->getValue())
return MHS->resolveReferences(R);
return RHS->resolveReferences(R);
}
}
Init *mhs = MHS->resolveReferences(R);
Init *rhs;
if (getOpcode() == FOREACH) {
ShadowResolver SR(R);
SR.addShadow(lhs);
rhs = RHS->resolveReferences(SR);
} else {
rhs = RHS->resolveReferences(R);
}
if (LHS != lhs || MHS != mhs || RHS != rhs)
return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, getType()))
->Fold(R.getCurrentRecord());
return const_cast<TernOpInit *>(this);
}
std::string TernOpInit::getAsString() const {
std::string Result;
bool UnquotedLHS = false;
switch (getOpcode()) {
case SUBST: Result = "!subst"; break;
case FOREACH: Result = "!foreach"; UnquotedLHS = true; break;
case IF: Result = "!if"; break;
case DAG: Result = "!dag"; break;
}
return (Result + "(" +
(UnquotedLHS ? LHS->getAsUnquotedString() : LHS->getAsString()) +
", " + MHS->getAsString() + ", " + RHS->getAsString() + ")");
}
static void ProfileFoldOpInit(FoldingSetNodeID &ID, Init *A, Init *B,
Init *Start, Init *List, Init *Expr,
RecTy *Type) {
ID.AddPointer(Start);
ID.AddPointer(List);
ID.AddPointer(A);
ID.AddPointer(B);
ID.AddPointer(Expr);
ID.AddPointer(Type);
}
FoldOpInit *FoldOpInit::get(Init *Start, Init *List, Init *A, Init *B,
Init *Expr, RecTy *Type) {
static FoldingSet<FoldOpInit> ThePool;
FoldingSetNodeID ID;
ProfileFoldOpInit(ID, Start, List, A, B, Expr, Type);
void *IP = nullptr;
if (FoldOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
FoldOpInit *I = new (Allocator) FoldOpInit(Start, List, A, B, Expr, Type);
ThePool.InsertNode(I, IP);
return I;
}
void FoldOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileFoldOpInit(ID, Start, List, A, B, Expr, getType());
}
Init *FoldOpInit::Fold(Record *CurRec) const {
if (ListInit *LI = dyn_cast<ListInit>(List)) {
Init *Accum = Start;
for (Init *Elt : *LI) {
MapResolver R(CurRec);
R.set(A, Accum);
R.set(B, Elt);
Accum = Expr->resolveReferences(R);
}
return Accum;
}
return const_cast<FoldOpInit *>(this);
}
Init *FoldOpInit::resolveReferences(Resolver &R) const {
Init *NewStart = Start->resolveReferences(R);
Init *NewList = List->resolveReferences(R);
ShadowResolver SR(R);
SR.addShadow(A);
SR.addShadow(B);
Init *NewExpr = Expr->resolveReferences(SR);
if (Start == NewStart && List == NewList && Expr == NewExpr)
return const_cast<FoldOpInit *>(this);
return get(NewStart, NewList, A, B, NewExpr, getType())
->Fold(R.getCurrentRecord());
}
Init *FoldOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(const_cast<FoldOpInit *>(this), Bit);
}
std::string FoldOpInit::getAsString() const {
return (Twine("!foldl(") + Start->getAsString() + ", " + List->getAsString() +
", " + A->getAsUnquotedString() + ", " + B->getAsUnquotedString() +
", " + Expr->getAsString() + ")")
.str();
}
static void ProfileIsAOpInit(FoldingSetNodeID &ID, RecTy *CheckType,
Init *Expr) {
ID.AddPointer(CheckType);
ID.AddPointer(Expr);
}
IsAOpInit *IsAOpInit::get(RecTy *CheckType, Init *Expr) {
static FoldingSet<IsAOpInit> ThePool;
FoldingSetNodeID ID;
ProfileIsAOpInit(ID, CheckType, Expr);
void *IP = nullptr;
if (IsAOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
IsAOpInit *I = new (Allocator) IsAOpInit(CheckType, Expr);
ThePool.InsertNode(I, IP);
return I;
}
void IsAOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileIsAOpInit(ID, CheckType, Expr);
}
Init *IsAOpInit::Fold() const {
if (TypedInit *TI = dyn_cast<TypedInit>(Expr)) {
// Is the expression type known to be (a subclass of) the desired type?
if (TI->getType()->typeIsConvertibleTo(CheckType))
return IntInit::get(1);
if (isa<RecordRecTy>(CheckType)) {
// If the target type is not a subclass of the expression type, or if
// the expression has fully resolved to a record, we know that it can't
// be of the required type.
if (!CheckType->typeIsConvertibleTo(TI->getType()) || isa<DefInit>(Expr))
return IntInit::get(0);
} else {
// We treat non-record types as not castable.
return IntInit::get(0);
}
}
return const_cast<IsAOpInit *>(this);
}
Init *IsAOpInit::resolveReferences(Resolver &R) const {
Init *NewExpr = Expr->resolveReferences(R);
if (Expr != NewExpr)
return get(CheckType, NewExpr)->Fold();
return const_cast<IsAOpInit *>(this);
}
Init *IsAOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(const_cast<IsAOpInit *>(this), Bit);
}
std::string IsAOpInit::getAsString() const {
return (Twine("!isa<") + CheckType->getAsString() + ">(" +
Expr->getAsString() + ")")
.str();
}
RecTy *TypedInit::getFieldType(StringInit *FieldName) const {
if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType())) {
for (Record *Rec : RecordType->getClasses()) {
if (RecordVal *Field = Rec->getValue(FieldName))
return Field->getType();
}
}
return nullptr;
}
Init *
TypedInit::convertInitializerTo(RecTy *Ty) const {
if (getType() == Ty || getType()->typeIsA(Ty))
return const_cast<TypedInit *>(this);
if (isa<BitRecTy>(getType()) && isa<BitsRecTy>(Ty) &&
cast<BitsRecTy>(Ty)->getNumBits() == 1)
return BitsInit::get({const_cast<TypedInit *>(this)});
return nullptr;
}
Init *TypedInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
BitsRecTy *T = dyn_cast<BitsRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-bits variable.
unsigned NumBits = T->getNumBits();
SmallVector<Init *, 16> NewBits;
NewBits.reserve(Bits.size());
for (unsigned Bit : Bits) {
if (Bit >= NumBits)
return nullptr;
NewBits.push_back(VarBitInit::get(const_cast<TypedInit *>(this), Bit));
}
return BitsInit::get(NewBits);
}
Init *TypedInit::getCastTo(RecTy *Ty) const {
// Handle the common case quickly
if (getType() == Ty || getType()->typeIsA(Ty))
return const_cast<TypedInit *>(this);
if (Init *Converted = convertInitializerTo(Ty)) {
assert(!isa<TypedInit>(Converted) ||
cast<TypedInit>(Converted)->getType()->typeIsA(Ty));
return Converted;
}
if (!getType()->typeIsConvertibleTo(Ty))
return nullptr;
return UnOpInit::get(UnOpInit::CAST, const_cast<TypedInit *>(this), Ty)
->Fold(nullptr);
}
Init *TypedInit::convertInitListSlice(ArrayRef<unsigned> Elements) const {
ListRecTy *T = dyn_cast<ListRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-list variable.
if (Elements.size() == 1)
return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]);
SmallVector<Init*, 8> ListInits;
ListInits.reserve(Elements.size());
for (unsigned Element : Elements)
ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this),
Element));
return ListInit::get(ListInits, T->getElementType());
}
VarInit *VarInit::get(StringRef VN, RecTy *T) {
Init *Value = StringInit::get(VN);
return VarInit::get(Value, T);
}
VarInit *VarInit::get(Init *VN, RecTy *T) {
using Key = std::pair<RecTy *, Init *>;
static DenseMap<Key, VarInit*> ThePool;
Key TheKey(std::make_pair(T, VN));
VarInit *&I = ThePool[TheKey];
if (!I)
I = new(Allocator) VarInit(VN, T);
return I;
}
StringRef VarInit::getName() const {
StringInit *NameString = cast<StringInit>(getNameInit());
return NameString->getValue();
}
Init *VarInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarInit*>(this);
return VarBitInit::get(const_cast<VarInit*>(this), Bit);
}
Init *VarInit::resolveReferences(Resolver &R) const {
if (Init *Val = R.resolve(VarName))
return Val;
return const_cast<VarInit *>(this);
}
VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) {
using Key = std::pair<TypedInit *, unsigned>;
static DenseMap<Key, VarBitInit*> ThePool;
Key TheKey(std::make_pair(T, B));
VarBitInit *&I = ThePool[TheKey];
if (!I)
I = new(Allocator) VarBitInit(T, B);
return I;
}
std::string VarBitInit::getAsString() const {
return TI->getAsString() + "{" + utostr(Bit) + "}";
}
Init *VarBitInit::resolveReferences(Resolver &R) const {
Init *I = TI->resolveReferences(R);
if (TI != I)
return I->getBit(getBitNum());
return const_cast<VarBitInit*>(this);
}
VarListElementInit *VarListElementInit::get(TypedInit *T,
unsigned E) {
using Key = std::pair<TypedInit *, unsigned>;
static DenseMap<Key, VarListElementInit*> ThePool;
Key TheKey(std::make_pair(T, E));
VarListElementInit *&I = ThePool[TheKey];
if (!I) I = new(Allocator) VarListElementInit(T, E);
return I;
}
std::string VarListElementInit::getAsString() const {
return TI->getAsString() + "[" + utostr(Element) + "]";
}
Init *VarListElementInit::resolveReferences(Resolver &R) const {
Init *NewTI = TI->resolveReferences(R);
if (ListInit *List = dyn_cast<ListInit>(NewTI)) {
// Leave out-of-bounds array references as-is. This can happen without
// being an error, e.g. in the untaken "branch" of an !if expression.
if (getElementNum() < List->size())
return List->getElement(getElementNum());
}
if (NewTI != TI && isa<TypedInit>(NewTI))
return VarListElementInit::get(cast<TypedInit>(NewTI), getElementNum());
return const_cast<VarListElementInit *>(this);
}
Init *VarListElementInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarListElementInit*>(this);
return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit);
}
DefInit::DefInit(Record *D)
: TypedInit(IK_DefInit, D->getType()), Def(D) {}
DefInit *DefInit::get(Record *R) {
return R->getDefInit();
}
Init *DefInit::convertInitializerTo(RecTy *Ty) const {
if (auto *RRT = dyn_cast<RecordRecTy>(Ty))
if (getType()->typeIsConvertibleTo(RRT))
return const_cast<DefInit *>(this);
return nullptr;
}
RecTy *DefInit::getFieldType(StringInit *FieldName) const {
if (const RecordVal *RV = Def->getValue(FieldName))
return RV->getType();
return nullptr;
}
std::string DefInit::getAsString() const { return std::string(Def->getName()); }
static void ProfileVarDefInit(FoldingSetNodeID &ID,
Record *Class,
ArrayRef<Init *> Args) {
ID.AddInteger(Args.size());
ID.AddPointer(Class);
for (Init *I : Args)
ID.AddPointer(I);
}
VarDefInit *VarDefInit::get(Record *Class, ArrayRef<Init *> Args) {
static FoldingSet<VarDefInit> ThePool;
FoldingSetNodeID ID;
ProfileVarDefInit(ID, Class, Args);
void *IP = nullptr;
if (VarDefInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Args.size()),
alignof(VarDefInit));
VarDefInit *I = new(Mem) VarDefInit(Class, Args.size());
std::uninitialized_copy(Args.begin(), Args.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void VarDefInit::Profile(FoldingSetNodeID &ID) const {
ProfileVarDefInit(ID, Class, args());
}
DefInit *VarDefInit::instantiate() {
if (!Def) {
RecordKeeper &Records = Class->getRecords();
auto NewRecOwner = std::make_unique<Record>(Records.getNewAnonymousName(),
Class->getLoc(), Records,
/*IsAnonymous=*/true);
Record *NewRec = NewRecOwner.get();
// Copy values from class to instance
for (const RecordVal &Val : Class->getValues())
NewRec->addValue(Val);
// Substitute and resolve template arguments
ArrayRef<Init *> TArgs = Class->getTemplateArgs();
MapResolver R(NewRec);
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < args_size())
R.set(TArgs[i], getArg(i));
else
R.set(TArgs[i], NewRec->getValue(TArgs[i])->getValue());
NewRec->removeValue(TArgs[i]);
}
NewRec->resolveReferences(R);
// Add superclasses.
ArrayRef<std::pair<Record *, SMRange>> SCs = Class->getSuperClasses();
for (const auto &SCPair : SCs)
NewRec->addSuperClass(SCPair.first, SCPair.second);
NewRec->addSuperClass(Class,
SMRange(Class->getLoc().back(),
Class->getLoc().back()));
// Resolve internal references and store in record keeper
NewRec->resolveReferences();
Records.addDef(std::move(NewRecOwner));
Def = DefInit::get(NewRec);
}
return Def;
}
Init *VarDefInit::resolveReferences(Resolver &R) const {
TrackUnresolvedResolver UR(&R);
bool Changed = false;
SmallVector<Init *, 8> NewArgs;
NewArgs.reserve(args_size());
for (Init *Arg : args()) {
Init *NewArg = Arg->resolveReferences(UR);
NewArgs.push_back(NewArg);
Changed |= NewArg != Arg;
}
if (Changed) {
auto New = VarDefInit::get(Class, NewArgs);
if (!UR.foundUnresolved())
return New->instantiate();
return New;
}
return const_cast<VarDefInit *>(this);
}
Init *VarDefInit::Fold() const {
if (Def)
return Def;
TrackUnresolvedResolver R;
for (Init *Arg : args())
Arg->resolveReferences(R);
if (!R.foundUnresolved())
return const_cast<VarDefInit *>(this)->instantiate();
return const_cast<VarDefInit *>(this);
}
std::string VarDefInit::getAsString() const {
std::string Result = Class->getNameInitAsString() + "<";
const char *sep = "";
for (Init *Arg : args()) {
Result += sep;
sep = ", ";
Result += Arg->getAsString();
}
return Result + ">";
}
FieldInit *FieldInit::get(Init *R, StringInit *FN) {
using Key = std::pair<Init *, StringInit *>;
static DenseMap<Key, FieldInit*> ThePool;
Key TheKey(std::make_pair(R, FN));
FieldInit *&I = ThePool[TheKey];
if (!I) I = new(Allocator) FieldInit(R, FN);
return I;
}
Init *FieldInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<FieldInit*>(this);
return VarBitInit::get(const_cast<FieldInit*>(this), Bit);
}
Init *FieldInit::resolveReferences(Resolver &R) const {
Init *NewRec = Rec->resolveReferences(R);
if (NewRec != Rec)
return FieldInit::get(NewRec, FieldName)->Fold(R.getCurrentRecord());
return const_cast<FieldInit *>(this);
}
Init *FieldInit::Fold(Record *CurRec) const {
if (DefInit *DI = dyn_cast<DefInit>(Rec)) {
Record *Def = DI->getDef();
if (Def == CurRec)
PrintFatalError(CurRec->getLoc(),
Twine("Attempting to access field '") +
FieldName->getAsUnquotedString() + "' of '" +
Rec->getAsString() + "' is a forbidden self-reference");
Init *FieldVal = Def->getValue(FieldName)->getValue();
if (FieldVal->isComplete())
return FieldVal;
}
return const_cast<FieldInit *>(this);
}
bool FieldInit::isConcrete() const {
if (DefInit *DI = dyn_cast<DefInit>(Rec)) {
Init *FieldVal = DI->getDef()->getValue(FieldName)->getValue();
return FieldVal->isConcrete();
}
return false;
}
static void ProfileCondOpInit(FoldingSetNodeID &ID,
ArrayRef<Init *> CondRange,
ArrayRef<Init *> ValRange,
const RecTy *ValType) {
assert(CondRange.size() == ValRange.size() &&
"Number of conditions and values must match!");
ID.AddPointer(ValType);
ArrayRef<Init *>::iterator Case = CondRange.begin();
ArrayRef<Init *>::iterator Val = ValRange.begin();
while (Case != CondRange.end()) {
ID.AddPointer(*Case++);
ID.AddPointer(*Val++);
}
}
void CondOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileCondOpInit(ID,
makeArrayRef(getTrailingObjects<Init *>(), NumConds),
makeArrayRef(getTrailingObjects<Init *>() + NumConds, NumConds),
ValType);
}
CondOpInit *
CondOpInit::get(ArrayRef<Init *> CondRange,
ArrayRef<Init *> ValRange, RecTy *Ty) {
assert(CondRange.size() == ValRange.size() &&
"Number of conditions and values must match!");
static FoldingSet<CondOpInit> ThePool;
FoldingSetNodeID ID;
ProfileCondOpInit(ID, CondRange, ValRange, Ty);
void *IP = nullptr;
if (CondOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(2*CondRange.size()),
alignof(BitsInit));
CondOpInit *I = new(Mem) CondOpInit(CondRange.size(), Ty);
std::uninitialized_copy(CondRange.begin(), CondRange.end(),
I->getTrailingObjects<Init *>());
std::uninitialized_copy(ValRange.begin(), ValRange.end(),
I->getTrailingObjects<Init *>()+CondRange.size());
ThePool.InsertNode(I, IP);
return I;
}
Init *CondOpInit::resolveReferences(Resolver &R) const {
SmallVector<Init*, 4> NewConds;
bool Changed = false;
for (const Init *Case : getConds()) {
Init *NewCase = Case->resolveReferences(R);
NewConds.push_back(NewCase);
Changed |= NewCase != Case;
}
SmallVector<Init*, 4> NewVals;
for (const Init *Val : getVals()) {
Init *NewVal = Val->resolveReferences(R);
NewVals.push_back(NewVal);
Changed |= NewVal != Val;
}
if (Changed)
return (CondOpInit::get(NewConds, NewVals,
getValType()))->Fold(R.getCurrentRecord());
return const_cast<CondOpInit *>(this);
}
Init *CondOpInit::Fold(Record *CurRec) const {
for ( unsigned i = 0; i < NumConds; ++i) {
Init *Cond = getCond(i);
Init *Val = getVal(i);
if (IntInit *CondI = dyn_cast_or_null<IntInit>(
Cond->convertInitializerTo(IntRecTy::get()))) {
if (CondI->getValue())
return Val->convertInitializerTo(getValType());
} else
return const_cast<CondOpInit *>(this);
}
PrintFatalError(CurRec->getLoc(),
CurRec->getName() +
" does not have any true condition in:" +
this->getAsString());
return nullptr;
}
bool CondOpInit::isConcrete() const {
for (const Init *Case : getConds())
if (!Case->isConcrete())
return false;
for (const Init *Val : getVals())
if (!Val->isConcrete())
return false;
return true;
}
bool CondOpInit::isComplete() const {
for (const Init *Case : getConds())
if (!Case->isComplete())
return false;
for (const Init *Val : getVals())
if (!Val->isConcrete())
return false;
return true;
}
std::string CondOpInit::getAsString() const {
std::string Result = "!cond(";
for (unsigned i = 0; i < getNumConds(); i++) {
Result += getCond(i)->getAsString() + ": ";
Result += getVal(i)->getAsString();
if (i != getNumConds()-1)
Result += ", ";
}
return Result + ")";
}
Init *CondOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(const_cast<CondOpInit *>(this), Bit);
}
static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, StringInit *VN,
ArrayRef<Init *> ArgRange,
ArrayRef<StringInit *> NameRange) {
ID.AddPointer(V);
ID.AddPointer(VN);
ArrayRef<Init *>::iterator Arg = ArgRange.begin();
ArrayRef<StringInit *>::iterator Name = NameRange.begin();
while (Arg != ArgRange.end()) {
assert(Name != NameRange.end() && "Arg name underflow!");
ID.AddPointer(*Arg++);
ID.AddPointer(*Name++);
}
assert(Name == NameRange.end() && "Arg name overflow!");
}
DagInit *
DagInit::get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
ArrayRef<StringInit *> NameRange) {
static FoldingSet<DagInit> ThePool;
FoldingSetNodeID ID;
ProfileDagInit(ID, V, VN, ArgRange, NameRange);
void *IP = nullptr;
if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *, StringInit *>(ArgRange.size(), NameRange.size()), alignof(BitsInit));
DagInit *I = new(Mem) DagInit(V, VN, ArgRange.size(), NameRange.size());
std::uninitialized_copy(ArgRange.begin(), ArgRange.end(),
I->getTrailingObjects<Init *>());
std::uninitialized_copy(NameRange.begin(), NameRange.end(),
I->getTrailingObjects<StringInit *>());
ThePool.InsertNode(I, IP);
return I;
}
DagInit *
DagInit::get(Init *V, StringInit *VN,
ArrayRef<std::pair<Init*, StringInit*>> args) {
SmallVector<Init *, 8> Args;
SmallVector<StringInit *, 8> Names;
for (const auto &Arg : args) {
Args.push_back(Arg.first);
Names.push_back(Arg.second);
}
return DagInit::get(V, VN, Args, Names);
}
void DagInit::Profile(FoldingSetNodeID &ID) const {
ProfileDagInit(ID, Val, ValName, makeArrayRef(getTrailingObjects<Init *>(), NumArgs), makeArrayRef(getTrailingObjects<StringInit *>(), NumArgNames));
}
Record *DagInit::getOperatorAsDef(ArrayRef<SMLoc> Loc) const {
if (DefInit *DefI = dyn_cast<DefInit>(Val))
return DefI->getDef();
PrintFatalError(Loc, "Expected record as operator");
return nullptr;
}
Init *DagInit::resolveReferences(Resolver &R) const {
SmallVector<Init*, 8> NewArgs;
NewArgs.reserve(arg_size());
bool ArgsChanged = false;
for (const Init *Arg : getArgs()) {
Init *NewArg = Arg->resolveReferences(R);
NewArgs.push_back(NewArg);
ArgsChanged |= NewArg != Arg;
}
Init *Op = Val->resolveReferences(R);
if (Op != Val || ArgsChanged)
return DagInit::get(Op, ValName, NewArgs, getArgNames());
return const_cast<DagInit *>(this);
}
bool DagInit::isConcrete() const {
if (!Val->isConcrete())
return false;
for (const Init *Elt : getArgs()) {
if (!Elt->isConcrete())
return false;
}
return true;
}
std::string DagInit::getAsString() const {
std::string Result = "(" + Val->getAsString();
if (ValName)
Result += ":" + ValName->getAsUnquotedString();
if (!arg_empty()) {
Result += " " + getArg(0)->getAsString();
if (getArgName(0)) Result += ":$" + getArgName(0)->getAsUnquotedString();
for (unsigned i = 1, e = getNumArgs(); i != e; ++i) {
Result += ", " + getArg(i)->getAsString();
if (getArgName(i)) Result += ":$" + getArgName(i)->getAsUnquotedString();
}
}
return Result + ")";
}
//===----------------------------------------------------------------------===//
// Other implementations
//===----------------------------------------------------------------------===//
RecordVal::RecordVal(Init *N, RecTy *T, bool P)
: Name(N), TyAndPrefix(T, P) {
setValue(UnsetInit::get());
assert(Value && "Cannot create unset value for current type!");
}
StringRef RecordVal::getName() const {
return cast<StringInit>(getNameInit())->getValue();
}
bool RecordVal::setValue(Init *V) {
if (V) {
Value = V->getCastTo(getType());
if (Value) {
assert(!isa<TypedInit>(Value) ||
cast<TypedInit>(Value)->getType()->typeIsA(getType()));
if (BitsRecTy *BTy = dyn_cast<BitsRecTy>(getType())) {
if (!isa<BitsInit>(Value)) {
SmallVector<Init *, 64> Bits;
Bits.reserve(BTy->getNumBits());
for (unsigned i = 0, e = BTy->getNumBits(); i < e; ++i)
Bits.push_back(Value->getBit(i));
Value = BitsInit::get(Bits);
}
}
}
return Value == nullptr;
}
Value = nullptr;
return false;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordVal::dump() const { errs() << *this; }
#endif
void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
if (getPrefix()) OS << "field ";
OS << *getType() << " " << getNameInitAsString();
if (getValue())
OS << " = " << *getValue();
if (PrintSem) OS << ";\n";
}
unsigned Record::LastID = 0;
void Record::checkName() {
// Ensure the record name has string type.
const TypedInit *TypedName = cast<const TypedInit>(Name);
if (!isa<StringRecTy>(TypedName->getType()))
PrintFatalError(getLoc(), Twine("Record name '") + Name->getAsString() +
"' is not a string!");
}
RecordRecTy *Record::getType() {
SmallVector<Record *, 4> DirectSCs;
getDirectSuperClasses(DirectSCs);
return RecordRecTy::get(DirectSCs);
}
DefInit *Record::getDefInit() {
if (!TheInit)
TheInit = new(Allocator) DefInit(this);
return TheInit;
}
void Record::setName(Init *NewName) {
Name = NewName;
checkName();
// DO NOT resolve record values to the name at this point because
// there might be default values for arguments of this def. Those
// arguments might not have been resolved yet so we don't want to
// prematurely assume values for those arguments were not passed to
// this def.
//
// Nonetheless, it may be that some of this Record's values
// reference the record name. Indeed, the reason for having the
// record name be an Init is to provide this flexibility. The extra
// resolve steps after completely instantiating defs takes care of
// this. See TGParser::ParseDef and TGParser::ParseDefm.
}
void Record::getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const {
ArrayRef<std::pair<Record *, SMRange>> SCs = getSuperClasses();
while (!SCs.empty()) {
// Superclasses are in reverse preorder, so 'back' is a direct superclass,
// and its transitive superclasses are directly preceding it.
Record *SC = SCs.back().first;
SCs = SCs.drop_back(1 + SC->getSuperClasses().size());
Classes.push_back(SC);
}
}
void Record::resolveReferences(Resolver &R, const RecordVal *SkipVal) {
for (RecordVal &Value : Values) {
if (SkipVal == &Value) // Skip resolve the same field as the given one
continue;
if (Init *V = Value.getValue()) {
Init *VR = V->resolveReferences(R);
if (Value.setValue(VR)) {
std::string Type;
if (TypedInit *VRT = dyn_cast<TypedInit>(VR))
Type =
(Twine("of type '") + VRT->getType()->getAsString() + "' ").str();
PrintFatalError(getLoc(), Twine("Invalid value ") + Type +
"is found when setting '" +
Value.getNameInitAsString() +
"' of type '" +
Value.getType()->getAsString() +
"' after resolving references: " +
VR->getAsUnquotedString() + "\n");
}
}
}
Init *OldName = getNameInit();
Init *NewName = Name->resolveReferences(R);
if (NewName != OldName) {
// Re-register with RecordKeeper.
setName(NewName);
}
}
void Record::resolveReferences() {
RecordResolver R(*this);
R.setFinal(true);
resolveReferences(R);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Record::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
OS << R.getNameInitAsString();
ArrayRef<Init *> TArgs = R.getTemplateArgs();
if (!TArgs.empty()) {
OS << "<";
bool NeedComma = false;
for (const Init *TA : TArgs) {
if (NeedComma) OS << ", ";
NeedComma = true;
const RecordVal *RV = R.getValue(TA);
assert(RV && "Template argument record not found??");
RV->print(OS, false);
}
OS << ">";
}
OS << " {";
ArrayRef<std::pair<Record *, SMRange>> SC = R.getSuperClasses();
if (!SC.empty()) {
OS << "\t//";
for (const auto &SuperPair : SC)
OS << " " << SuperPair.first->getNameInitAsString();
}
OS << "\n";
for (const RecordVal &Val : R.getValues())
if (Val.getPrefix() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
for (const RecordVal &Val : R.getValues())
if (!Val.getPrefix() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
return OS << "}\n";
}
Init *Record::getValueInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return R->getValue();
}
StringRef Record::getValueAsString(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (StringInit *SI = dyn_cast<StringInit>(R->getValue()))
return SI->getValue();
if (CodeInit *CI = dyn_cast<CodeInit>(R->getValue()))
return CI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a string initializer!");
}
BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue()))
return BI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a BitsInit initializer!");
}
ListInit *Record::getValueAsListInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (ListInit *LI = dyn_cast<ListInit>(R->getValue()))
return LI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a list initializer!");
}
std::vector<Record*>
Record::getValueAsListOfDefs(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<Record*> Defs;
for (Init *I : List->getValues()) {
if (DefInit *DI = dyn_cast<DefInit>(I))
Defs.push_back(DI->getDef());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' list is not entirely DefInit!");
}
return Defs;
}
int64_t Record::getValueAsInt(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (IntInit *II = dyn_cast<IntInit>(R->getValue()))
return II->getValue();
PrintFatalError(getLoc(), Twine("Record `") + getName() + "', field `" +
FieldName +
"' does not have an int initializer: " +
R->getValue()->getAsString());
}
std::vector<int64_t>
Record::getValueAsListOfInts(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<int64_t> Ints;
for (Init *I : List->getValues()) {
if (IntInit *II = dyn_cast<IntInit>(I))
Ints.push_back(II->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' does not have a list of ints initializer: " +
I->getAsString());
}
return Ints;
}
std::vector<StringRef>
Record::getValueAsListOfStrings(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<StringRef> Strings;
for (Init *I : List->getValues()) {
if (StringInit *SI = dyn_cast<StringInit>(I))
Strings.push_back(SI->getValue());
else if (CodeInit *CI = dyn_cast<CodeInit>(I))
Strings.push_back(CI->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' does not have a list of strings initializer: " +
I->getAsString());
}
return Strings;
}
Record *Record::getValueAsDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DefInit *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a def initializer!");
}
Record *Record::getValueAsOptionalDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DefInit *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
if (isa<UnsetInit>(R->getValue()))
return nullptr;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have either a def initializer or '?'!");
}
bool Record::getValueAsBit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName.str() + "'!\n");
if (isa<UnsetInit>(R->getValue())) {
Unset = true;
return false;
}
Unset = false;
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
DagInit *Record::getValueAsDag(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DagInit *DI = dyn_cast<DagInit>(R->getValue()))
return DI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a dag initializer!");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordKeeper::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
for (const auto &C : RK.getClasses())
OS << "class " << *C.second;
OS << "------------- Defs -----------------\n";
for (const auto &D : RK.getDefs())
OS << "def " << *D.second;
return OS;
}
/// GetNewAnonymousName - Generate a unique anonymous name that can be used as
/// an identifier.
Init *RecordKeeper::getNewAnonymousName() {
return StringInit::get("anonymous_" + utostr(AnonCounter++));
}
std::vector<Record *>
RecordKeeper::getAllDerivedDefinitions(StringRef ClassName) const {
Record *Class = getClass(ClassName);
if (!Class)
PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n");
std::vector<Record*> Defs;
for (const auto &D : getDefs())
if (D.second->isSubClassOf(Class))
Defs.push_back(D.second.get());
return Defs;
}
Init *MapResolver::resolve(Init *VarName) {
auto It = Map.find(VarName);
if (It == Map.end())
return nullptr;
Init *I = It->second.V;
if (!It->second.Resolved && Map.size() > 1) {
// Resolve mutual references among the mapped variables, but prevent
// infinite recursion.
Map.erase(It);
I = I->resolveReferences(*this);
Map[VarName] = {I, true};
}
return I;
}
Init *RecordResolver::resolve(Init *VarName) {
Init *Val = Cache.lookup(VarName);
if (Val)
return Val;
for (Init *S : Stack) {
if (S == VarName)
return nullptr; // prevent infinite recursion
}
if (RecordVal *RV = getCurrentRecord()->getValue(VarName)) {
if (!isa<UnsetInit>(RV->getValue())) {
Val = RV->getValue();
Stack.push_back(VarName);
Val = Val->resolveReferences(*this);
Stack.pop_back();
}
}
Cache[VarName] = Val;
return Val;
}
Init *TrackUnresolvedResolver::resolve(Init *VarName) {
Init *I = nullptr;
if (R) {
I = R->resolve(VarName);
if (I && !FoundUnresolved) {
// Do not recurse into the resolved initializer, as that would change
// the behavior of the resolver we're delegating, but do check to see
// if there are unresolved variables remaining.
TrackUnresolvedResolver Sub;
I->resolveReferences(Sub);
FoundUnresolved |= Sub.FoundUnresolved;
}
}
if (!I)
FoundUnresolved = true;
return I;
}
Init *HasReferenceResolver::resolve(Init *VarName)
{
if (VarName == VarNameToTrack)
Found = true;
return nullptr;
}