1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/Target/SystemZ/SystemZInstrDFP.td
Ulrich Weigand 711582147b [SystemZ] Model floating-point control register
This adds the FPC (floating-point control register) as a reserved
physical register and models its use by SystemZ instructions.

Note that only the current rounding modes and the IEEE exception
masks are modeled.  *Changes* of the FPC due to exceptions (in
particular the IEEE exception flags and the DXC) are not modeled.

At this point, this patch is mostly NFC, but it will prevent
scheduling of floating-point instructions across SPFC/LFPC etc.

llvm-svn: 360570
2019-05-13 09:47:26 +00:00

247 lines
9.3 KiB
TableGen

//==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The instructions in this file implement SystemZ decimal floating-point
// arithmetic. These instructions are inot currently used for code generation,
// are provided for use with the assembler and disassembler only. If LLVM
// ever supports decimal floating-point types (_Decimal64 etc.), they can
// also be used for code generation for those types.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Load and test.
let Uses = [FPC], Defs = [CC] in {
def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>;
def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
}
//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//
// Convert floating-point values to narrower representations. The destination
// of LDXTR is a 128-bit value, but only the first register of the pair is used.
let Uses = [FPC] in {
def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>;
def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
}
// Extend floating-point values to wider representations.
let Uses = [FPC] in {
def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>;
def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
}
// Convert a signed integer value to a floating-point one.
let Uses = [FPC] in {
def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>;
def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
let Predicates = [FeatureFPExtension] in {
def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>;
def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>;
def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
}
}
// Convert an unsigned integer value to a floating-point one.
let Uses = [FPC], Predicates = [FeatureFPExtension] in {
def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>;
def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>;
def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
}
// Convert a floating-point value to a signed integer value.
let Uses = [FPC], Defs = [CC] in {
def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
let Predicates = [FeatureFPExtension] in {
def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
}
}
// Convert a floating-point value to an unsigned integer value.
let Uses = [FPC], Defs = [CC] in {
let Predicates = [FeatureFPExtension] in {
def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
}
}
// Convert a packed value to a floating-point one.
def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>;
def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>;
def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;
// Convert a floating-point value to a packed value.
def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>;
def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>;
def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;
// Convert from/to memory values in the zoned format.
let Predicates = [FeatureDFPZonedConversion] in {
def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
}
// Convert from/to memory values in the packed format.
let Predicates = [FeatureDFPPackedConversion] in {
def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
}
// Perform floating-point operation.
let Defs = [CC, R1L, F0Q], Uses = [FPC, R0L, F4Q] in
def PFPO : SideEffectInherentE<"pfpo", 0x010A>;
//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//
// Round to an integer, with the second operand (M3) specifying the rounding
// mode. M4 can be set to 4 to suppress detection of inexact conditions.
let Uses = [FPC] in {
def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>;
def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
}
// Extract biased exponent.
def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>;
def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;
// Extract significance.
def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>;
def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;
//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//
// Addition.
let Uses = [FPC], Defs = [CC] in {
let isCommutable = 1 in {
def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>;
def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
}
let Predicates = [FeatureFPExtension] in {
def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>;
def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
}
}
// Subtraction.
let Uses = [FPC], Defs = [CC] in {
def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>;
def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
let Predicates = [FeatureFPExtension] in {
def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>;
def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
}
}
// Multiplication.
let Uses = [FPC] in {
let isCommutable = 1 in {
def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>;
def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
}
let Predicates = [FeatureFPExtension] in {
def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>;
def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
}
}
// Division.
let Uses = [FPC] in {
def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>;
def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
let Predicates = [FeatureFPExtension] in {
def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>;
def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
}
}
// Quantize.
let Uses = [FPC] in {
def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>;
def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
}
// Reround.
let Uses = [FPC] in {
def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>;
def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
}
// Shift significand left/right.
def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>;
def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>;
def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;
// Insert biased exponent.
def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>;
def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;
//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//
// Compare.
let Uses = [FPC], Defs = [CC] in {
def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>;
def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
}
// Compare and signal.
let Uses = [FPC], Defs = [CC] in {
def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>;
def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
}
// Compare biased exponent.
let Defs = [CC] in {
def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>;
def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
}
// Test Data Class.
let Defs = [CC] in {
def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
}
// Test Data Group.
let Defs = [CC] in {
def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
}