1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/tools/llvm-profgen/PerfReader.cpp
wlei be4f05ba0b [CSSPGO][llvm-profgen] Filter out the instructions without location info for symbolizer
It appears some instructions doesn't have the debug location info and the symbolizer will return an empty call stack for them which will cause some crash later in profile unwinding. Actually we do not record the sample info for them, so this change just filter out those instruction.

As those instruction would appears at the begin and end of the instruction list, without them we need to add the boundary check for IP `advance` and `backward`.

Also for pseudo probe based profile, we actually don't need the symbolized location info, so here just change to use an empty stack for it. This could save half of the binary loading time.

Differential Revision: https://reviews.llvm.org/D96434
2021-02-12 16:47:49 -08:00

669 lines
24 KiB
C++

//===-- PerfReader.cpp - perfscript reader ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PerfReader.h"
#include "ProfileGenerator.h"
static cl::opt<bool> ShowMmapEvents("show-mmap-events", cl::ReallyHidden,
cl::init(false), cl::ZeroOrMore,
cl::desc("Print binary load events."));
static cl::opt<bool> ShowUnwinderOutput("show-unwinder-output",
cl::ReallyHidden, cl::init(false),
cl::ZeroOrMore,
cl::desc("Print unwinder output"));
extern cl::opt<bool> ShowDisassemblyOnly;
extern cl::opt<bool> ShowSourceLocations;
namespace llvm {
namespace sampleprof {
void VirtualUnwinder::unwindCall(UnwindState &State) {
// The 2nd frame after leaf could be missing if stack sample is
// taken when IP is within prolog/epilog, as frame chain isn't
// setup yet. Fill in the missing frame in that case.
// TODO: Currently we just assume all the addr that can't match the
// 2nd frame is in prolog/epilog. In the future, we will switch to
// pro/epi tracker(Dwarf CFI) for the precise check.
uint64_t Source = State.getCurrentLBRSource();
auto *ParentFrame = State.getParentFrame();
if (ParentFrame == State.getDummyRootPtr() ||
ParentFrame->Address != Source) {
State.switchToFrame(Source);
} else {
State.popFrame();
}
State.InstPtr.update(Source);
}
void VirtualUnwinder::unwindLinear(UnwindState &State, uint64_t Repeat) {
InstructionPointer &IP = State.InstPtr;
uint64_t Target = State.getCurrentLBRTarget();
uint64_t End = IP.Address;
if (Binary->usePseudoProbes()) {
// We don't need to top frame probe since it should be extracted
// from the range.
// The outcome of the virtual unwinding with pseudo probes is a
// map from a context key to the address range being unwound.
// This means basically linear unwinding is not needed for pseudo
// probes. The range will be simply recorded here and will be
// converted to a list of pseudo probes to report in ProfileGenerator.
State.getParentFrame()->recordRangeCount(Target, End, Repeat);
} else {
// Unwind linear execution part
uint64_t LeafAddr = State.CurrentLeafFrame->Address;
while (IP.Address >= Target) {
uint64_t PrevIP = IP.Address;
IP.backward();
// Break into segments for implicit call/return due to inlining
bool SameInlinee = Binary->inlineContextEqual(PrevIP, IP.Address);
if (!SameInlinee || PrevIP == Target) {
State.switchToFrame(LeafAddr);
State.CurrentLeafFrame->recordRangeCount(PrevIP, End, Repeat);
End = IP.Address;
}
LeafAddr = IP.Address;
}
}
}
void VirtualUnwinder::unwindReturn(UnwindState &State) {
// Add extra frame as we unwind through the return
const LBREntry &LBR = State.getCurrentLBR();
uint64_t CallAddr = Binary->getCallAddrFromFrameAddr(LBR.Target);
State.switchToFrame(CallAddr);
State.pushFrame(LBR.Source);
State.InstPtr.update(LBR.Source);
}
void VirtualUnwinder::unwindBranchWithinFrame(UnwindState &State) {
// TODO: Tolerate tail call for now, as we may see tail call from libraries.
// This is only for intra function branches, excluding tail calls.
uint64_t Source = State.getCurrentLBRSource();
State.switchToFrame(Source);
State.InstPtr.update(Source);
}
std::shared_ptr<StringBasedCtxKey> FrameStack::getContextKey() {
std::shared_ptr<StringBasedCtxKey> KeyStr =
std::make_shared<StringBasedCtxKey>();
KeyStr->Context = Binary->getExpandedContextStr(Stack);
if (KeyStr->Context.empty())
return nullptr;
KeyStr->genHashCode();
return KeyStr;
}
std::shared_ptr<ProbeBasedCtxKey> ProbeStack::getContextKey() {
std::shared_ptr<ProbeBasedCtxKey> ProbeBasedKey =
std::make_shared<ProbeBasedCtxKey>();
for (auto CallProbe : Stack) {
ProbeBasedKey->Probes.emplace_back(CallProbe);
}
CSProfileGenerator::compressRecursionContext<const PseudoProbe *>(
ProbeBasedKey->Probes);
ProbeBasedKey->genHashCode();
return ProbeBasedKey;
}
template <typename T>
void VirtualUnwinder::collectSamplesFromFrame(UnwindState::ProfiledFrame *Cur,
T &Stack) {
if (Cur->RangeSamples.empty() && Cur->BranchSamples.empty())
return;
std::shared_ptr<ContextKey> Key = Stack.getContextKey();
if (Key == nullptr)
return;
auto Ret = CtxCounterMap->emplace(Hashable<ContextKey>(Key), SampleCounter());
SampleCounter &SCounter = Ret.first->second;
for (auto &Item : Cur->RangeSamples) {
uint64_t StartOffset = Binary->virtualAddrToOffset(std::get<0>(Item));
uint64_t EndOffset = Binary->virtualAddrToOffset(std::get<1>(Item));
SCounter.recordRangeCount(StartOffset, EndOffset, std::get<2>(Item));
}
for (auto &Item : Cur->BranchSamples) {
uint64_t SourceOffset = Binary->virtualAddrToOffset(std::get<0>(Item));
uint64_t TargetOffset = Binary->virtualAddrToOffset(std::get<1>(Item));
SCounter.recordBranchCount(SourceOffset, TargetOffset, std::get<2>(Item));
}
}
template <typename T>
void VirtualUnwinder::collectSamplesFromFrameTrie(
UnwindState::ProfiledFrame *Cur, T &Stack) {
if (!Cur->isDummyRoot()) {
if (!Stack.pushFrame(Cur)) {
// Process truncated context
for (const auto &Item : Cur->Children) {
// Start a new traversal ignoring its bottom context
collectSamplesFromFrameTrie(Item.second.get());
}
return;
}
}
collectSamplesFromFrame(Cur, Stack);
// Process children frame
for (const auto &Item : Cur->Children) {
collectSamplesFromFrameTrie(Item.second.get(), Stack);
}
// Recover the call stack
Stack.popFrame();
}
void VirtualUnwinder::collectSamplesFromFrameTrie(
UnwindState::ProfiledFrame *Cur) {
if (Binary->usePseudoProbes()) {
ProbeStack Stack(Binary);
collectSamplesFromFrameTrie<ProbeStack>(Cur, Stack);
} else {
FrameStack Stack(Binary);
collectSamplesFromFrameTrie<FrameStack>(Cur, Stack);
}
}
void VirtualUnwinder::recordBranchCount(const LBREntry &Branch,
UnwindState &State, uint64_t Repeat) {
if (Branch.IsArtificial)
return;
if (Binary->usePseudoProbes()) {
// Same as recordRangeCount, We don't need to top frame probe since we will
// extract it from branch's source address
State.getParentFrame()->recordBranchCount(Branch.Source, Branch.Target,
Repeat);
} else {
State.CurrentLeafFrame->recordBranchCount(Branch.Source, Branch.Target,
Repeat);
}
}
bool VirtualUnwinder::unwind(const HybridSample *Sample, uint64_t Repeat) {
// Capture initial state as starting point for unwinding.
UnwindState State(Sample);
// Sanity check - making sure leaf of LBR aligns with leaf of stack sample
// Stack sample sometimes can be unreliable, so filter out bogus ones.
if (!State.validateInitialState())
return false;
// Also do not attempt linear unwind for the leaf range as it's incomplete.
bool IsLeaf = true;
// Now process the LBR samples in parrallel with stack sample
// Note that we do not reverse the LBR entry order so we can
// unwind the sample stack as we walk through LBR entries.
while (State.hasNextLBR()) {
State.checkStateConsistency();
// Unwind implicit calls/returns from inlining, along the linear path,
// break into smaller sub section each with its own calling context.
if (!IsLeaf) {
unwindLinear(State, Repeat);
}
IsLeaf = false;
// Save the LBR branch before it gets unwound.
const LBREntry &Branch = State.getCurrentLBR();
if (isCallState(State)) {
// Unwind calls - we know we encountered call if LBR overlaps with
// transition between leaf the 2nd frame. Note that for calls that
// were not in the original stack sample, we should have added the
// extra frame when processing the return paired with this call.
unwindCall(State);
} else if (isReturnState(State)) {
// Unwind returns - check whether the IP is indeed at a return instruction
unwindReturn(State);
} else {
// Unwind branches - for regular intra function branches, we only
// need to record branch with context.
unwindBranchWithinFrame(State);
}
State.advanceLBR();
// Record `branch` with calling context after unwinding.
recordBranchCount(Branch, State, Repeat);
}
// As samples are aggregated on trie, record them into counter map
collectSamplesFromFrameTrie(State.getDummyRootPtr());
return true;
}
void PerfReader::validateCommandLine(
cl::list<std::string> &BinaryFilenames,
cl::list<std::string> &PerfTraceFilenames) {
// Allow the invalid perfscript if we only use to show binary disassembly
if (!ShowDisassemblyOnly) {
for (auto &File : PerfTraceFilenames) {
if (!llvm::sys::fs::exists(File)) {
std::string Msg = "Input perf script(" + File + ") doesn't exist!";
exitWithError(Msg);
}
}
}
if (BinaryFilenames.size() > 1) {
// TODO: remove this if everything is ready to support multiple binaries.
exitWithError(
"Currently only support one input binary, multiple binaries' "
"profile will be merged in one profile and make profile "
"summary info inaccurate. Please use `llvm-perfdata` to merge "
"profiles from multiple binaries.");
}
for (auto &Binary : BinaryFilenames) {
if (!llvm::sys::fs::exists(Binary)) {
std::string Msg = "Input binary(" + Binary + ") doesn't exist!";
exitWithError(Msg);
}
}
if (CSProfileGenerator::MaxCompressionSize < -1) {
exitWithError("Value of --compress-recursion should >= -1");
}
if (ShowSourceLocations && !ShowDisassemblyOnly) {
exitWithError("--show-source-locations should work together with "
"--show-disassembly-only!");
}
}
PerfReader::PerfReader(cl::list<std::string> &BinaryFilenames,
cl::list<std::string> &PerfTraceFilenames) {
validateCommandLine(BinaryFilenames, PerfTraceFilenames);
// Load the binaries.
for (auto Filename : BinaryFilenames)
loadBinary(Filename, /*AllowNameConflict*/ false);
}
ProfiledBinary &PerfReader::loadBinary(const StringRef BinaryPath,
bool AllowNameConflict) {
// The binary table is currently indexed by the binary name not the full
// binary path. This is because the user-given path may not match the one
// that was actually executed.
StringRef BinaryName = llvm::sys::path::filename(BinaryPath);
// Call to load the binary in the ctor of ProfiledBinary.
auto Ret = BinaryTable.insert({BinaryName, ProfiledBinary(BinaryPath)});
if (!Ret.second && !AllowNameConflict) {
std::string ErrorMsg = "Binary name conflict: " + BinaryPath.str() +
" and " + Ret.first->second.getPath().str() + " \n";
exitWithError(ErrorMsg);
}
return Ret.first->second;
}
void PerfReader::updateBinaryAddress(const MMapEvent &Event) {
// Load the binary.
StringRef BinaryPath = Event.BinaryPath;
StringRef BinaryName = llvm::sys::path::filename(BinaryPath);
auto I = BinaryTable.find(BinaryName);
// Drop the event which doesn't belong to user-provided binaries
// or if its image is loaded at the same address
if (I == BinaryTable.end() || Event.BaseAddress == I->second.getBaseAddress())
return;
ProfiledBinary &Binary = I->second;
// A binary image could be uploaded and then reloaded at different
// place, so update the address map here
AddrToBinaryMap.erase(Binary.getBaseAddress());
AddrToBinaryMap[Event.BaseAddress] = &Binary;
// Update binary load address.
Binary.setBaseAddress(Event.BaseAddress);
}
ProfiledBinary *PerfReader::getBinary(uint64_t Address) {
auto Iter = AddrToBinaryMap.lower_bound(Address);
if (Iter == AddrToBinaryMap.end() || Iter->first != Address) {
if (Iter == AddrToBinaryMap.begin())
return nullptr;
Iter--;
}
return Iter->second;
}
// Use ordered map to make the output deterministic
using OrderedCounterForPrint = std::map<std::string, RangeSample>;
static void printSampleCounter(OrderedCounterForPrint &OrderedCounter) {
for (auto Range : OrderedCounter) {
outs() << Range.first << "\n";
for (auto I : Range.second) {
outs() << " (" << format("%" PRIx64, I.first.first) << ", "
<< format("%" PRIx64, I.first.second) << "): " << I.second << "\n";
}
}
}
static std::string getContextKeyStr(ContextKey *K,
const ProfiledBinary *Binary) {
std::string ContextStr;
if (const auto *CtxKey = dyn_cast<StringBasedCtxKey>(K)) {
return CtxKey->Context;
} else if (const auto *CtxKey = dyn_cast<ProbeBasedCtxKey>(K)) {
SmallVector<std::string, 16> ContextStack;
for (const auto *Probe : CtxKey->Probes) {
Binary->getInlineContextForProbe(Probe, ContextStack, true);
}
for (const auto &Context : ContextStack) {
if (ContextStr.size())
ContextStr += " @ ";
ContextStr += Context;
}
}
return ContextStr;
}
static void printRangeCounter(ContextSampleCounterMap &Counter,
const ProfiledBinary *Binary) {
OrderedCounterForPrint OrderedCounter;
for (auto &CI : Counter) {
OrderedCounter[getContextKeyStr(CI.first.getPtr(), Binary)] =
CI.second.RangeCounter;
}
printSampleCounter(OrderedCounter);
}
static void printBranchCounter(ContextSampleCounterMap &Counter,
const ProfiledBinary *Binary) {
OrderedCounterForPrint OrderedCounter;
for (auto &CI : Counter) {
OrderedCounter[getContextKeyStr(CI.first.getPtr(), Binary)] =
CI.second.BranchCounter;
}
printSampleCounter(OrderedCounter);
}
void PerfReader::printUnwinderOutput() {
for (auto I : BinarySampleCounters) {
const ProfiledBinary *Binary = I.first;
outs() << "Binary(" << Binary->getName().str() << ")'s Range Counter:\n";
printRangeCounter(I.second, Binary);
outs() << "\nBinary(" << Binary->getName().str() << ")'s Branch Counter:\n";
printBranchCounter(I.second, Binary);
}
}
void PerfReader::unwindSamples() {
for (const auto &Item : AggregatedSamples) {
const HybridSample *Sample = dyn_cast<HybridSample>(Item.first.getPtr());
VirtualUnwinder Unwinder(&BinarySampleCounters[Sample->Binary],
Sample->Binary);
Unwinder.unwind(Sample, Item.second);
}
if (ShowUnwinderOutput)
printUnwinderOutput();
}
bool PerfReader::extractLBRStack(TraceStream &TraceIt,
SmallVectorImpl<LBREntry> &LBRStack,
ProfiledBinary *Binary) {
// The raw format of LBR stack is like:
// 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ...
// ... 0x4005c8/0x4005dc/P/-/-/0
// It's in FIFO order and seperated by whitespace.
SmallVector<StringRef, 32> Records;
TraceIt.getCurrentLine().split(Records, " ");
// Extract leading instruction pointer if present, use single
// list to pass out as reference.
size_t Index = 0;
if (!Records.empty() && Records[0].find('/') == StringRef::npos) {
Index = 1;
}
// Now extract LBR samples - note that we do not reverse the
// LBR entry order so we can unwind the sample stack as we walk
// through LBR entries.
uint64_t PrevTrDst = 0;
while (Index < Records.size()) {
auto &Token = Records[Index++];
if (Token.size() == 0)
continue;
SmallVector<StringRef, 8> Addresses;
Token.split(Addresses, "/");
uint64_t Src;
uint64_t Dst;
Addresses[0].substr(2).getAsInteger(16, Src);
Addresses[1].substr(2).getAsInteger(16, Dst);
bool SrcIsInternal = Binary->addressIsCode(Src);
bool DstIsInternal = Binary->addressIsCode(Dst);
bool IsArtificial = false;
// Ignore branches outside the current binary.
if (!SrcIsInternal && !DstIsInternal)
continue;
if (!SrcIsInternal && DstIsInternal) {
// For transition from external code (such as dynamic libraries) to
// the current binary, keep track of the branch target which will be
// grouped with the Source of the last transition from the current
// binary.
PrevTrDst = Dst;
continue;
}
if (SrcIsInternal && !DstIsInternal) {
// For transition to external code, group the Source with the next
// availabe transition target.
if (!PrevTrDst)
continue;
Dst = PrevTrDst;
PrevTrDst = 0;
IsArtificial = true;
}
// TODO: filter out buggy duplicate branches on Skylake
LBRStack.emplace_back(LBREntry(Src, Dst, IsArtificial));
}
TraceIt.advance();
return !LBRStack.empty();
}
bool PerfReader::extractCallstack(TraceStream &TraceIt,
SmallVectorImpl<uint64_t> &CallStack) {
// The raw format of call stack is like:
// 4005dc # leaf frame
// 400634
// 400684 # root frame
// It's in bottom-up order with each frame in one line.
// Extract stack frames from sample
ProfiledBinary *Binary = nullptr;
while (!TraceIt.isAtEoF() && !TraceIt.getCurrentLine().startswith(" 0x")) {
StringRef FrameStr = TraceIt.getCurrentLine().ltrim();
uint64_t FrameAddr = 0;
if (FrameStr.getAsInteger(16, FrameAddr)) {
// We might parse a non-perf sample line like empty line and comments,
// skip it
TraceIt.advance();
return false;
}
TraceIt.advance();
if (!Binary) {
Binary = getBinary(FrameAddr);
// we might have addr not match the MMAP, skip it
if (!Binary) {
if (AddrToBinaryMap.size() == 0)
WithColor::warning() << "No MMAP event in the perfscript, create it "
"with '--show-mmap-events'\n";
break;
}
}
// Currently intermixed frame from different binaries is not supported.
// Ignore bottom frames not from binary of interest.
if (!Binary->addressIsCode(FrameAddr))
break;
// We need to translate return address to call address
// for non-leaf frames
if (!CallStack.empty()) {
FrameAddr = Binary->getCallAddrFromFrameAddr(FrameAddr);
}
CallStack.emplace_back(FrameAddr);
}
// Skip other unrelated line, find the next valid LBR line
// Note that even for empty call stack, we should skip the address at the
// bottom, otherwise the following pass may generate a truncated callstack
while (!TraceIt.isAtEoF() && !TraceIt.getCurrentLine().startswith(" 0x")) {
TraceIt.advance();
}
// Filter out broken stack sample. We may not have complete frame info
// if sample end up in prolog/epilog, the result is dangling context not
// connected to entry point. This should be relatively rare thus not much
// impact on overall profile quality. However we do want to filter them
// out to reduce the number of different calling contexts. One instance
// of such case - when sample landed in prolog/epilog, somehow stack
// walking will be broken in an unexpected way that higher frames will be
// missing.
return !CallStack.empty() &&
!Binary->addressInPrologEpilog(CallStack.front());
}
void PerfReader::parseHybridSample(TraceStream &TraceIt) {
// The raw hybird sample started with call stack in FILO order and followed
// intermediately by LBR sample
// e.g.
// 4005dc # call stack leaf
// 400634
// 400684 # call stack root
// 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ...
// ... 0x4005c8/0x4005dc/P/-/-/0 # LBR Entries
//
std::shared_ptr<HybridSample> Sample = std::make_shared<HybridSample>();
// Parsing call stack and populate into HybridSample.CallStack
if (!extractCallstack(TraceIt, Sample->CallStack)) {
// Skip the next LBR line matched current call stack
if (!TraceIt.isAtEoF() && TraceIt.getCurrentLine().startswith(" 0x"))
TraceIt.advance();
return;
}
// Set the binary current sample belongs to
Sample->Binary = getBinary(Sample->CallStack.front());
if (!TraceIt.isAtEoF() && TraceIt.getCurrentLine().startswith(" 0x")) {
// Parsing LBR stack and populate into HybridSample.LBRStack
if (extractLBRStack(TraceIt, Sample->LBRStack, Sample->Binary)) {
// Canonicalize stack leaf to avoid 'random' IP from leaf frame skew LBR
// ranges
Sample->CallStack.front() = Sample->LBRStack[0].Target;
// Record samples by aggregation
Sample->genHashCode();
AggregatedSamples[Hashable<PerfSample>(Sample)]++;
}
} else {
// LBR sample is encoded in single line after stack sample
exitWithError("'Hybrid perf sample is corrupted, No LBR sample line");
}
}
void PerfReader::parseMMap2Event(TraceStream &TraceIt) {
// Parse a line like:
// PERF_RECORD_MMAP2 2113428/2113428: [0x7fd4efb57000(0x204000) @ 0
// 08:04 19532229 3585508847]: r-xp /usr/lib64/libdl-2.17.so
constexpr static const char *const Pattern =
"PERF_RECORD_MMAP2 ([0-9]+)/[0-9]+: "
"\\[(0x[a-f0-9]+)\\((0x[a-f0-9]+)\\) @ "
"(0x[a-f0-9]+|0) .*\\]: [-a-z]+ (.*)";
// Field 0 - whole line
// Field 1 - PID
// Field 2 - base address
// Field 3 - mmapped size
// Field 4 - page offset
// Field 5 - binary path
enum EventIndex {
WHOLE_LINE = 0,
PID = 1,
BASE_ADDRESS = 2,
MMAPPED_SIZE = 3,
PAGE_OFFSET = 4,
BINARY_PATH = 5
};
Regex RegMmap2(Pattern);
SmallVector<StringRef, 6> Fields;
bool R = RegMmap2.match(TraceIt.getCurrentLine(), &Fields);
if (!R) {
std::string ErrorMsg = "Cannot parse mmap event: Line" +
Twine(TraceIt.getLineNumber()).str() + ": " +
TraceIt.getCurrentLine().str() + " \n";
exitWithError(ErrorMsg);
}
MMapEvent Event;
Fields[PID].getAsInteger(10, Event.PID);
Fields[BASE_ADDRESS].getAsInteger(0, Event.BaseAddress);
Fields[MMAPPED_SIZE].getAsInteger(0, Event.Size);
Fields[PAGE_OFFSET].getAsInteger(0, Event.Offset);
Event.BinaryPath = Fields[BINARY_PATH];
updateBinaryAddress(Event);
if (ShowMmapEvents) {
outs() << "Mmap: Binary " << Event.BinaryPath << " loaded at "
<< format("0x%" PRIx64 ":", Event.BaseAddress) << " \n";
}
TraceIt.advance();
}
void PerfReader::parseEventOrSample(TraceStream &TraceIt) {
if (TraceIt.getCurrentLine().startswith("PERF_RECORD_MMAP2"))
parseMMap2Event(TraceIt);
else if (getPerfScriptType() == PERF_LBR_STACK)
parseHybridSample(TraceIt);
else {
// TODO: parse other type sample
TraceIt.advance();
}
}
void PerfReader::parseAndAggregateTrace(StringRef Filename) {
// Trace line iterator
TraceStream TraceIt(Filename);
while (!TraceIt.isAtEoF())
parseEventOrSample(TraceIt);
}
void PerfReader::checkAndSetPerfType(
cl::list<std::string> &PerfTraceFilenames) {
for (auto FileName : PerfTraceFilenames) {
PerfScriptType Type = checkPerfScriptType(FileName);
if (Type == PERF_INVALID)
exitWithError("Invalid perf script input!");
if (PerfType != PERF_UNKNOWN && PerfType != Type)
exitWithError("Inconsistent sample among different perf scripts");
PerfType = Type;
}
}
void PerfReader::generateRawProfile() {
if (getPerfScriptType() == PERF_LBR_STACK) {
// Unwind samples if it's hybird sample
unwindSamples();
} else if (getPerfScriptType() == PERF_LBR) {
// TODO: range overlap computation for regular AutoFDO
}
}
void PerfReader::parsePerfTraces(cl::list<std::string> &PerfTraceFilenames) {
// Check and set current perfscript type
checkAndSetPerfType(PerfTraceFilenames);
// Parse perf traces and do aggregation.
for (auto Filename : PerfTraceFilenames)
parseAndAggregateTrace(Filename);
generateRawProfile();
}
} // end namespace sampleprof
} // end namespace llvm