mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
701b7a130a
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at the end (since r281168 and r281170), implement MachineBasicBlock::reverse_iterator directly on top of an ilist::reverse_iterator by adding an IsReverse template parameter to MachineInstrBundleIterator. This replaces another hard-to-reason-about use of std::reverse_iterator on list iterators, matching the changes for ilist::reverse_iterator from r280032 (see the "out of scope" section at the end of that commit message). MachineBasicBlock::reverse_iterator now has a handle to the current node and has obvious invalidation semantics. r280032 has a more detailed explanation of how list-style reverse iterators (invalidated when the pointed-at node is deleted) are different from vector-style reverse iterators like std::reverse_iterator (invalidated on every operation). A great motivating example is this commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp. Note: If your out-of-tree backend deletes instructions while iterating on a MachineBasicBlock::reverse_iterator or converts between MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator, you'll need to update your code in similar ways to r280032. The following table might help: [Old] ==> [New] delete &*RI, RE = end() delete &*RI++ RI->erase(), RE = end() RI++->erase() reverse_iterator(I) std::prev(I).getReverse() reverse_iterator(I) ++I.getReverse() --reverse_iterator(I) I.getReverse() reverse_iterator(std::next(I)) I.getReverse() RI.base() std::prev(RI).getReverse() RI.base() ++RI.getReverse() --RI.base() RI.getReverse() std::next(RI).base() RI.getReverse() (For more details, have a look at r280032.) llvm-svn: 281172
256 lines
10 KiB
C++
256 lines
10 KiB
C++
//===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DbgValueHistoryCalculator.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
// \brief If @MI is a DBG_VALUE with debug value described by a
|
|
// defined register, returns the number of this register.
|
|
// In the other case, returns 0.
|
|
static unsigned isDescribedByReg(const MachineInstr &MI) {
|
|
assert(MI.isDebugValue());
|
|
assert(MI.getNumOperands() == 4);
|
|
// If location of variable is described using a register (directly or
|
|
// indirectly), this register is always a first operand.
|
|
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
|
|
}
|
|
|
|
void DbgValueHistoryMap::startInstrRange(InlinedVariable Var,
|
|
const MachineInstr &MI) {
|
|
// Instruction range should start with a DBG_VALUE instruction for the
|
|
// variable.
|
|
assert(MI.isDebugValue() && "not a DBG_VALUE");
|
|
auto &Ranges = VarInstrRanges[Var];
|
|
if (!Ranges.empty() && Ranges.back().second == nullptr &&
|
|
Ranges.back().first->isIdenticalTo(MI)) {
|
|
DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
|
|
<< "\t" << Ranges.back().first << "\t" << MI << "\n");
|
|
return;
|
|
}
|
|
Ranges.push_back(std::make_pair(&MI, nullptr));
|
|
}
|
|
|
|
void DbgValueHistoryMap::endInstrRange(InlinedVariable Var,
|
|
const MachineInstr &MI) {
|
|
auto &Ranges = VarInstrRanges[Var];
|
|
// Verify that the current instruction range is not yet closed.
|
|
assert(!Ranges.empty() && Ranges.back().second == nullptr);
|
|
// For now, instruction ranges are not allowed to cross basic block
|
|
// boundaries.
|
|
assert(Ranges.back().first->getParent() == MI.getParent());
|
|
Ranges.back().second = &MI;
|
|
}
|
|
|
|
unsigned DbgValueHistoryMap::getRegisterForVar(InlinedVariable Var) const {
|
|
const auto &I = VarInstrRanges.find(Var);
|
|
if (I == VarInstrRanges.end())
|
|
return 0;
|
|
const auto &Ranges = I->second;
|
|
if (Ranges.empty() || Ranges.back().second != nullptr)
|
|
return 0;
|
|
return isDescribedByReg(*Ranges.back().first);
|
|
}
|
|
|
|
namespace {
|
|
// Maps physreg numbers to the variables they describe.
|
|
typedef DbgValueHistoryMap::InlinedVariable InlinedVariable;
|
|
typedef std::map<unsigned, SmallVector<InlinedVariable, 1>> RegDescribedVarsMap;
|
|
}
|
|
|
|
// \brief Claim that @Var is not described by @RegNo anymore.
|
|
static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
|
|
InlinedVariable Var) {
|
|
const auto &I = RegVars.find(RegNo);
|
|
assert(RegNo != 0U && I != RegVars.end());
|
|
auto &VarSet = I->second;
|
|
const auto &VarPos = find(VarSet, Var);
|
|
assert(VarPos != VarSet.end());
|
|
VarSet.erase(VarPos);
|
|
// Don't keep empty sets in a map to keep it as small as possible.
|
|
if (VarSet.empty())
|
|
RegVars.erase(I);
|
|
}
|
|
|
|
// \brief Claim that @Var is now described by @RegNo.
|
|
static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
|
|
InlinedVariable Var) {
|
|
assert(RegNo != 0U);
|
|
auto &VarSet = RegVars[RegNo];
|
|
assert(!is_contained(VarSet, Var));
|
|
VarSet.push_back(Var);
|
|
}
|
|
|
|
// \brief Terminate the location range for variables described by register at
|
|
// @I by inserting @ClobberingInstr to their history.
|
|
static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
|
|
RegDescribedVarsMap::iterator I,
|
|
DbgValueHistoryMap &HistMap,
|
|
const MachineInstr &ClobberingInstr) {
|
|
// Iterate over all variables described by this register and add this
|
|
// instruction to their history, clobbering it.
|
|
for (const auto &Var : I->second)
|
|
HistMap.endInstrRange(Var, ClobberingInstr);
|
|
RegVars.erase(I);
|
|
}
|
|
|
|
// \brief Terminate the location range for variables described by register
|
|
// @RegNo by inserting @ClobberingInstr to their history.
|
|
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
|
|
DbgValueHistoryMap &HistMap,
|
|
const MachineInstr &ClobberingInstr) {
|
|
const auto &I = RegVars.find(RegNo);
|
|
if (I == RegVars.end())
|
|
return;
|
|
clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
|
|
}
|
|
|
|
// \brief Returns the first instruction in @MBB which corresponds to
|
|
// the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
|
|
static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
|
|
auto LastMI = MBB.getLastNonDebugInstr();
|
|
if (LastMI == MBB.end() || !LastMI->isReturn())
|
|
return nullptr;
|
|
// Assume that epilogue starts with instruction having the same debug location
|
|
// as the return instruction.
|
|
DebugLoc LastLoc = LastMI->getDebugLoc();
|
|
auto Res = LastMI;
|
|
for (MachineBasicBlock::const_reverse_iterator I = LastMI.getReverse(),
|
|
E = MBB.rend();
|
|
I != E; ++I) {
|
|
if (I->getDebugLoc() != LastLoc)
|
|
return &*Res;
|
|
Res = &*I;
|
|
}
|
|
// If all instructions have the same debug location, assume whole MBB is
|
|
// an epilogue.
|
|
return &*MBB.begin();
|
|
}
|
|
|
|
// \brief Collect registers that are modified in the function body (their
|
|
// contents is changed outside of the prologue and epilogue).
|
|
static void collectChangingRegs(const MachineFunction *MF,
|
|
const TargetRegisterInfo *TRI,
|
|
BitVector &Regs) {
|
|
for (const auto &MBB : *MF) {
|
|
auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
|
|
|
|
for (const auto &MI : MBB) {
|
|
// Avoid looking at prologue or epilogue instructions.
|
|
if (&MI == FirstEpilogueInst)
|
|
break;
|
|
if (MI.getFlag(MachineInstr::FrameSetup))
|
|
continue;
|
|
|
|
// Look for register defs and register masks. Register masks are
|
|
// typically on calls and they clobber everything not in the mask.
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
// Skip virtual registers since they are handled by the parent.
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() &&
|
|
!TRI->isVirtualRegister(MO.getReg())) {
|
|
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
|
|
++AI)
|
|
Regs.set(*AI);
|
|
} else if (MO.isRegMask()) {
|
|
Regs.setBitsNotInMask(MO.getRegMask());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void llvm::calculateDbgValueHistory(const MachineFunction *MF,
|
|
const TargetRegisterInfo *TRI,
|
|
DbgValueHistoryMap &Result) {
|
|
BitVector ChangingRegs(TRI->getNumRegs());
|
|
collectChangingRegs(MF, TRI, ChangingRegs);
|
|
|
|
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
|
|
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
|
|
RegDescribedVarsMap RegVars;
|
|
for (const auto &MBB : *MF) {
|
|
for (const auto &MI : MBB) {
|
|
if (!MI.isDebugValue()) {
|
|
// Not a DBG_VALUE instruction. It may clobber registers which describe
|
|
// some variables.
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (MO.isReg() && MO.isDef() && MO.getReg()) {
|
|
// If this is a virtual register, only clobber it since it doesn't
|
|
// have aliases.
|
|
if (TRI->isVirtualRegister(MO.getReg()))
|
|
clobberRegisterUses(RegVars, MO.getReg(), Result, MI);
|
|
// If this is a register def operand, it may end a debug value
|
|
// range.
|
|
else {
|
|
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
|
|
++AI)
|
|
if (ChangingRegs.test(*AI))
|
|
clobberRegisterUses(RegVars, *AI, Result, MI);
|
|
}
|
|
} else if (MO.isRegMask()) {
|
|
// If this is a register mask operand, clobber all debug values in
|
|
// non-CSRs.
|
|
for (int I = ChangingRegs.find_first(); I != -1;
|
|
I = ChangingRegs.find_next(I)) {
|
|
// Don't consider SP to be clobbered by register masks.
|
|
if (unsigned(I) != SP && TRI->isPhysicalRegister(I) &&
|
|
MO.clobbersPhysReg(I)) {
|
|
clobberRegisterUses(RegVars, I, Result, MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
|
|
// Use the base variable (without any DW_OP_piece expressions)
|
|
// as index into History. The full variables including the
|
|
// piece expressions are attached to the MI.
|
|
const DILocalVariable *RawVar = MI.getDebugVariable();
|
|
assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
|
|
"Expected inlined-at fields to agree");
|
|
InlinedVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt());
|
|
|
|
if (unsigned PrevReg = Result.getRegisterForVar(Var))
|
|
dropRegDescribedVar(RegVars, PrevReg, Var);
|
|
|
|
Result.startInstrRange(Var, MI);
|
|
|
|
if (unsigned NewReg = isDescribedByReg(MI))
|
|
addRegDescribedVar(RegVars, NewReg, Var);
|
|
}
|
|
|
|
// Make sure locations for register-described variables are valid only
|
|
// until the end of the basic block (unless it's the last basic block, in
|
|
// which case let their liveness run off to the end of the function).
|
|
if (!MBB.empty() && &MBB != &MF->back()) {
|
|
for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
|
|
auto CurElem = I++; // CurElem can be erased below.
|
|
if (TRI->isVirtualRegister(CurElem->first) ||
|
|
ChangingRegs.test(CurElem->first))
|
|
clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
|
|
}
|
|
}
|
|
}
|
|
}
|