mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
f23effe39b
This finishes getting rid of all the avoidable Dominator Tree recalculations in X86 optimized codegen pipeline.
920 lines
36 KiB
C++
920 lines
36 KiB
C++
//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass tries to expand memcmp() calls into optimally-sized loads and
|
|
// compares for the target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "expandmemcmp"
|
|
|
|
STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
|
|
STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
|
|
STATISTIC(NumMemCmpGreaterThanMax,
|
|
"Number of memcmp calls with size greater than max size");
|
|
STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
|
|
|
|
static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
|
|
"memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
|
|
cl::desc("The number of loads per basic block for inline expansion of "
|
|
"memcmp that is only being compared against zero."));
|
|
|
|
static cl::opt<unsigned> MaxLoadsPerMemcmp(
|
|
"max-loads-per-memcmp", cl::Hidden,
|
|
cl::desc("Set maximum number of loads used in expanded memcmp"));
|
|
|
|
static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
|
|
"max-loads-per-memcmp-opt-size", cl::Hidden,
|
|
cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
|
|
|
|
namespace {
|
|
|
|
|
|
// This class provides helper functions to expand a memcmp library call into an
|
|
// inline expansion.
|
|
class MemCmpExpansion {
|
|
struct ResultBlock {
|
|
BasicBlock *BB = nullptr;
|
|
PHINode *PhiSrc1 = nullptr;
|
|
PHINode *PhiSrc2 = nullptr;
|
|
|
|
ResultBlock() = default;
|
|
};
|
|
|
|
CallInst *const CI;
|
|
ResultBlock ResBlock;
|
|
const uint64_t Size;
|
|
unsigned MaxLoadSize;
|
|
uint64_t NumLoadsNonOneByte;
|
|
const uint64_t NumLoadsPerBlockForZeroCmp;
|
|
std::vector<BasicBlock *> LoadCmpBlocks;
|
|
BasicBlock *EndBlock;
|
|
PHINode *PhiRes;
|
|
const bool IsUsedForZeroCmp;
|
|
const DataLayout &DL;
|
|
DomTreeUpdater *DTU;
|
|
IRBuilder<> Builder;
|
|
// Represents the decomposition in blocks of the expansion. For example,
|
|
// comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
|
|
// 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
|
|
struct LoadEntry {
|
|
LoadEntry(unsigned LoadSize, uint64_t Offset)
|
|
: LoadSize(LoadSize), Offset(Offset) {
|
|
}
|
|
|
|
// The size of the load for this block, in bytes.
|
|
unsigned LoadSize;
|
|
// The offset of this load from the base pointer, in bytes.
|
|
uint64_t Offset;
|
|
};
|
|
using LoadEntryVector = SmallVector<LoadEntry, 8>;
|
|
LoadEntryVector LoadSequence;
|
|
|
|
void createLoadCmpBlocks();
|
|
void createResultBlock();
|
|
void setupResultBlockPHINodes();
|
|
void setupEndBlockPHINodes();
|
|
Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
|
|
void emitLoadCompareBlock(unsigned BlockIndex);
|
|
void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
|
|
unsigned &LoadIndex);
|
|
void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
|
|
void emitMemCmpResultBlock();
|
|
Value *getMemCmpExpansionZeroCase();
|
|
Value *getMemCmpEqZeroOneBlock();
|
|
Value *getMemCmpOneBlock();
|
|
struct LoadPair {
|
|
Value *Lhs = nullptr;
|
|
Value *Rhs = nullptr;
|
|
};
|
|
LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
|
|
unsigned OffsetBytes);
|
|
|
|
static LoadEntryVector
|
|
computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
|
|
unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
|
|
static LoadEntryVector
|
|
computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
|
|
unsigned MaxNumLoads,
|
|
unsigned &NumLoadsNonOneByte);
|
|
|
|
public:
|
|
MemCmpExpansion(CallInst *CI, uint64_t Size,
|
|
const TargetTransformInfo::MemCmpExpansionOptions &Options,
|
|
const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
|
|
DomTreeUpdater *DTU);
|
|
|
|
unsigned getNumBlocks();
|
|
uint64_t getNumLoads() const { return LoadSequence.size(); }
|
|
|
|
Value *getMemCmpExpansion();
|
|
};
|
|
|
|
MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
|
|
uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
|
|
const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
|
|
NumLoadsNonOneByte = 0;
|
|
LoadEntryVector LoadSequence;
|
|
uint64_t Offset = 0;
|
|
while (Size && !LoadSizes.empty()) {
|
|
const unsigned LoadSize = LoadSizes.front();
|
|
const uint64_t NumLoadsForThisSize = Size / LoadSize;
|
|
if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
|
|
// Do not expand if the total number of loads is larger than what the
|
|
// target allows. Note that it's important that we exit before completing
|
|
// the expansion to avoid using a ton of memory to store the expansion for
|
|
// large sizes.
|
|
return {};
|
|
}
|
|
if (NumLoadsForThisSize > 0) {
|
|
for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
|
|
LoadSequence.push_back({LoadSize, Offset});
|
|
Offset += LoadSize;
|
|
}
|
|
if (LoadSize > 1)
|
|
++NumLoadsNonOneByte;
|
|
Size = Size % LoadSize;
|
|
}
|
|
LoadSizes = LoadSizes.drop_front();
|
|
}
|
|
return LoadSequence;
|
|
}
|
|
|
|
MemCmpExpansion::LoadEntryVector
|
|
MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
|
|
const unsigned MaxLoadSize,
|
|
const unsigned MaxNumLoads,
|
|
unsigned &NumLoadsNonOneByte) {
|
|
// These are already handled by the greedy approach.
|
|
if (Size < 2 || MaxLoadSize < 2)
|
|
return {};
|
|
|
|
// We try to do as many non-overlapping loads as possible starting from the
|
|
// beginning.
|
|
const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
|
|
assert(NumNonOverlappingLoads && "there must be at least one load");
|
|
// There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
|
|
// an overlapping load.
|
|
Size = Size - NumNonOverlappingLoads * MaxLoadSize;
|
|
// Bail if we do not need an overloapping store, this is already handled by
|
|
// the greedy approach.
|
|
if (Size == 0)
|
|
return {};
|
|
// Bail if the number of loads (non-overlapping + potential overlapping one)
|
|
// is larger than the max allowed.
|
|
if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
|
|
return {};
|
|
|
|
// Add non-overlapping loads.
|
|
LoadEntryVector LoadSequence;
|
|
uint64_t Offset = 0;
|
|
for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
|
|
LoadSequence.push_back({MaxLoadSize, Offset});
|
|
Offset += MaxLoadSize;
|
|
}
|
|
|
|
// Add the last overlapping load.
|
|
assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
|
|
LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
|
|
NumLoadsNonOneByte = 1;
|
|
return LoadSequence;
|
|
}
|
|
|
|
// Initialize the basic block structure required for expansion of memcmp call
|
|
// with given maximum load size and memcmp size parameter.
|
|
// This structure includes:
|
|
// 1. A list of load compare blocks - LoadCmpBlocks.
|
|
// 2. An EndBlock, split from original instruction point, which is the block to
|
|
// return from.
|
|
// 3. ResultBlock, block to branch to for early exit when a
|
|
// LoadCmpBlock finds a difference.
|
|
MemCmpExpansion::MemCmpExpansion(
|
|
CallInst *const CI, uint64_t Size,
|
|
const TargetTransformInfo::MemCmpExpansionOptions &Options,
|
|
const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
|
|
DomTreeUpdater *DTU)
|
|
: CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
|
|
NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
|
|
IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
|
|
Builder(CI) {
|
|
assert(Size > 0 && "zero blocks");
|
|
// Scale the max size down if the target can load more bytes than we need.
|
|
llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
|
|
while (!LoadSizes.empty() && LoadSizes.front() > Size) {
|
|
LoadSizes = LoadSizes.drop_front();
|
|
}
|
|
assert(!LoadSizes.empty() && "cannot load Size bytes");
|
|
MaxLoadSize = LoadSizes.front();
|
|
// Compute the decomposition.
|
|
unsigned GreedyNumLoadsNonOneByte = 0;
|
|
LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
|
|
GreedyNumLoadsNonOneByte);
|
|
NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
|
|
assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
|
|
// If we allow overlapping loads and the load sequence is not already optimal,
|
|
// use overlapping loads.
|
|
if (Options.AllowOverlappingLoads &&
|
|
(LoadSequence.empty() || LoadSequence.size() > 2)) {
|
|
unsigned OverlappingNumLoadsNonOneByte = 0;
|
|
auto OverlappingLoads = computeOverlappingLoadSequence(
|
|
Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
|
|
if (!OverlappingLoads.empty() &&
|
|
(LoadSequence.empty() ||
|
|
OverlappingLoads.size() < LoadSequence.size())) {
|
|
LoadSequence = OverlappingLoads;
|
|
NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
|
|
}
|
|
}
|
|
assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
|
|
}
|
|
|
|
unsigned MemCmpExpansion::getNumBlocks() {
|
|
if (IsUsedForZeroCmp)
|
|
return getNumLoads() / NumLoadsPerBlockForZeroCmp +
|
|
(getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
|
|
return getNumLoads();
|
|
}
|
|
|
|
void MemCmpExpansion::createLoadCmpBlocks() {
|
|
for (unsigned i = 0; i < getNumBlocks(); i++) {
|
|
BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
|
|
EndBlock->getParent(), EndBlock);
|
|
LoadCmpBlocks.push_back(BB);
|
|
}
|
|
}
|
|
|
|
void MemCmpExpansion::createResultBlock() {
|
|
ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
|
|
EndBlock->getParent(), EndBlock);
|
|
}
|
|
|
|
MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
|
|
bool NeedsBSwap,
|
|
Type *CmpSizeType,
|
|
unsigned OffsetBytes) {
|
|
// Get the memory source at offset `OffsetBytes`.
|
|
Value *LhsSource = CI->getArgOperand(0);
|
|
Value *RhsSource = CI->getArgOperand(1);
|
|
Align LhsAlign = LhsSource->getPointerAlignment(DL);
|
|
Align RhsAlign = RhsSource->getPointerAlignment(DL);
|
|
if (OffsetBytes > 0) {
|
|
auto *ByteType = Type::getInt8Ty(CI->getContext());
|
|
LhsSource = Builder.CreateConstGEP1_64(
|
|
ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
|
|
OffsetBytes);
|
|
RhsSource = Builder.CreateConstGEP1_64(
|
|
ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
|
|
OffsetBytes);
|
|
LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
|
|
RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
|
|
}
|
|
LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
|
|
RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
|
|
|
|
// Create a constant or a load from the source.
|
|
Value *Lhs = nullptr;
|
|
if (auto *C = dyn_cast<Constant>(LhsSource))
|
|
Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
|
|
if (!Lhs)
|
|
Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
|
|
|
|
Value *Rhs = nullptr;
|
|
if (auto *C = dyn_cast<Constant>(RhsSource))
|
|
Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
|
|
if (!Rhs)
|
|
Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
|
|
|
|
// Swap bytes if required.
|
|
if (NeedsBSwap) {
|
|
Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
|
|
Intrinsic::bswap, LoadSizeType);
|
|
Lhs = Builder.CreateCall(Bswap, Lhs);
|
|
Rhs = Builder.CreateCall(Bswap, Rhs);
|
|
}
|
|
|
|
// Zero extend if required.
|
|
if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
|
|
Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
|
|
Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
|
|
}
|
|
return {Lhs, Rhs};
|
|
}
|
|
|
|
// This function creates the IR instructions for loading and comparing 1 byte.
|
|
// It loads 1 byte from each source of the memcmp parameters with the given
|
|
// GEPIndex. It then subtracts the two loaded values and adds this result to the
|
|
// final phi node for selecting the memcmp result.
|
|
void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
|
|
unsigned OffsetBytes) {
|
|
BasicBlock *BB = LoadCmpBlocks[BlockIndex];
|
|
Builder.SetInsertPoint(BB);
|
|
const LoadPair Loads =
|
|
getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
|
|
Type::getInt32Ty(CI->getContext()), OffsetBytes);
|
|
Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
|
|
|
|
PhiRes->addIncoming(Diff, BB);
|
|
|
|
if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
|
|
// Early exit branch if difference found to EndBlock. Otherwise, continue to
|
|
// next LoadCmpBlock,
|
|
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
|
|
ConstantInt::get(Diff->getType(), 0));
|
|
BranchInst *CmpBr =
|
|
BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
|
|
if (DTU)
|
|
DTU->applyUpdates(
|
|
{{DominatorTree::Insert, BB, EndBlock},
|
|
{DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
|
|
Builder.Insert(CmpBr);
|
|
} else {
|
|
// The last block has an unconditional branch to EndBlock.
|
|
BranchInst *CmpBr = BranchInst::Create(EndBlock);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
|
|
Builder.Insert(CmpBr);
|
|
}
|
|
}
|
|
|
|
/// Generate an equality comparison for one or more pairs of loaded values.
|
|
/// This is used in the case where the memcmp() call is compared equal or not
|
|
/// equal to zero.
|
|
Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
|
|
unsigned &LoadIndex) {
|
|
assert(LoadIndex < getNumLoads() &&
|
|
"getCompareLoadPairs() called with no remaining loads");
|
|
std::vector<Value *> XorList, OrList;
|
|
Value *Diff = nullptr;
|
|
|
|
const unsigned NumLoads =
|
|
std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
|
|
|
|
// For a single-block expansion, start inserting before the memcmp call.
|
|
if (LoadCmpBlocks.empty())
|
|
Builder.SetInsertPoint(CI);
|
|
else
|
|
Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
|
|
|
|
Value *Cmp = nullptr;
|
|
// If we have multiple loads per block, we need to generate a composite
|
|
// comparison using xor+or. The type for the combinations is the largest load
|
|
// type.
|
|
IntegerType *const MaxLoadType =
|
|
NumLoads == 1 ? nullptr
|
|
: IntegerType::get(CI->getContext(), MaxLoadSize * 8);
|
|
for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
|
|
const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
|
|
const LoadPair Loads = getLoadPair(
|
|
IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
|
|
/*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
|
|
|
|
if (NumLoads != 1) {
|
|
// If we have multiple loads per block, we need to generate a composite
|
|
// comparison using xor+or.
|
|
Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
|
|
Diff = Builder.CreateZExt(Diff, MaxLoadType);
|
|
XorList.push_back(Diff);
|
|
} else {
|
|
// If there's only one load per block, we just compare the loaded values.
|
|
Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
|
|
}
|
|
}
|
|
|
|
auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
|
|
std::vector<Value *> OutList;
|
|
for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
|
|
Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
|
|
OutList.push_back(Or);
|
|
}
|
|
if (InList.size() % 2 != 0)
|
|
OutList.push_back(InList.back());
|
|
return OutList;
|
|
};
|
|
|
|
if (!Cmp) {
|
|
// Pairwise OR the XOR results.
|
|
OrList = pairWiseOr(XorList);
|
|
|
|
// Pairwise OR the OR results until one result left.
|
|
while (OrList.size() != 1) {
|
|
OrList = pairWiseOr(OrList);
|
|
}
|
|
|
|
assert(Diff && "Failed to find comparison diff");
|
|
Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
|
|
}
|
|
|
|
return Cmp;
|
|
}
|
|
|
|
void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
|
|
unsigned &LoadIndex) {
|
|
Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
|
|
|
|
BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
|
|
? EndBlock
|
|
: LoadCmpBlocks[BlockIndex + 1];
|
|
// Early exit branch if difference found to ResultBlock. Otherwise,
|
|
// continue to next LoadCmpBlock or EndBlock.
|
|
BasicBlock *BB = Builder.GetInsertBlock();
|
|
BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
|
|
Builder.Insert(CmpBr);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
|
|
{DominatorTree::Insert, BB, NextBB}});
|
|
|
|
// Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
|
|
// since early exit to ResultBlock was not taken (no difference was found in
|
|
// any of the bytes).
|
|
if (BlockIndex == LoadCmpBlocks.size() - 1) {
|
|
Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
|
|
PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
|
|
}
|
|
}
|
|
|
|
// This function creates the IR intructions for loading and comparing using the
|
|
// given LoadSize. It loads the number of bytes specified by LoadSize from each
|
|
// source of the memcmp parameters. It then does a subtract to see if there was
|
|
// a difference in the loaded values. If a difference is found, it branches
|
|
// with an early exit to the ResultBlock for calculating which source was
|
|
// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
|
|
// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
|
|
// a special case through emitLoadCompareByteBlock. The special handling can
|
|
// simply subtract the loaded values and add it to the result phi node.
|
|
void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
|
|
// There is one load per block in this case, BlockIndex == LoadIndex.
|
|
const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
|
|
|
|
if (CurLoadEntry.LoadSize == 1) {
|
|
MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
|
|
return;
|
|
}
|
|
|
|
Type *LoadSizeType =
|
|
IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
|
|
Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
|
|
assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
|
|
|
|
Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
|
|
|
|
const LoadPair Loads =
|
|
getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
|
|
CurLoadEntry.Offset);
|
|
|
|
// Add the loaded values to the phi nodes for calculating memcmp result only
|
|
// if result is not used in a zero equality.
|
|
if (!IsUsedForZeroCmp) {
|
|
ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
|
|
ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
|
|
}
|
|
|
|
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
|
|
BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
|
|
? EndBlock
|
|
: LoadCmpBlocks[BlockIndex + 1];
|
|
// Early exit branch if difference found to ResultBlock. Otherwise, continue
|
|
// to next LoadCmpBlock or EndBlock.
|
|
BasicBlock *BB = Builder.GetInsertBlock();
|
|
BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
|
|
Builder.Insert(CmpBr);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
|
|
{DominatorTree::Insert, BB, ResBlock.BB}});
|
|
|
|
// Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
|
|
// since early exit to ResultBlock was not taken (no difference was found in
|
|
// any of the bytes).
|
|
if (BlockIndex == LoadCmpBlocks.size() - 1) {
|
|
Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
|
|
PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
|
|
}
|
|
}
|
|
|
|
// This function populates the ResultBlock with a sequence to calculate the
|
|
// memcmp result. It compares the two loaded source values and returns -1 if
|
|
// src1 < src2 and 1 if src1 > src2.
|
|
void MemCmpExpansion::emitMemCmpResultBlock() {
|
|
// Special case: if memcmp result is used in a zero equality, result does not
|
|
// need to be calculated and can simply return 1.
|
|
if (IsUsedForZeroCmp) {
|
|
BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
|
|
Builder.SetInsertPoint(ResBlock.BB, InsertPt);
|
|
Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
|
|
PhiRes->addIncoming(Res, ResBlock.BB);
|
|
BranchInst *NewBr = BranchInst::Create(EndBlock);
|
|
Builder.Insert(NewBr);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
|
|
return;
|
|
}
|
|
BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
|
|
Builder.SetInsertPoint(ResBlock.BB, InsertPt);
|
|
|
|
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
|
|
ResBlock.PhiSrc2);
|
|
|
|
Value *Res =
|
|
Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
|
|
ConstantInt::get(Builder.getInt32Ty(), 1));
|
|
|
|
PhiRes->addIncoming(Res, ResBlock.BB);
|
|
BranchInst *NewBr = BranchInst::Create(EndBlock);
|
|
Builder.Insert(NewBr);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
|
|
}
|
|
|
|
void MemCmpExpansion::setupResultBlockPHINodes() {
|
|
Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
|
|
Builder.SetInsertPoint(ResBlock.BB);
|
|
// Note: this assumes one load per block.
|
|
ResBlock.PhiSrc1 =
|
|
Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
|
|
ResBlock.PhiSrc2 =
|
|
Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
|
|
}
|
|
|
|
void MemCmpExpansion::setupEndBlockPHINodes() {
|
|
Builder.SetInsertPoint(&EndBlock->front());
|
|
PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
|
|
}
|
|
|
|
Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
|
|
unsigned LoadIndex = 0;
|
|
// This loop populates each of the LoadCmpBlocks with the IR sequence to
|
|
// handle multiple loads per block.
|
|
for (unsigned I = 0; I < getNumBlocks(); ++I) {
|
|
emitLoadCompareBlockMultipleLoads(I, LoadIndex);
|
|
}
|
|
|
|
emitMemCmpResultBlock();
|
|
return PhiRes;
|
|
}
|
|
|
|
/// A memcmp expansion that compares equality with 0 and only has one block of
|
|
/// load and compare can bypass the compare, branch, and phi IR that is required
|
|
/// in the general case.
|
|
Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
|
|
unsigned LoadIndex = 0;
|
|
Value *Cmp = getCompareLoadPairs(0, LoadIndex);
|
|
assert(LoadIndex == getNumLoads() && "some entries were not consumed");
|
|
return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
|
|
}
|
|
|
|
/// A memcmp expansion that only has one block of load and compare can bypass
|
|
/// the compare, branch, and phi IR that is required in the general case.
|
|
Value *MemCmpExpansion::getMemCmpOneBlock() {
|
|
Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
|
|
bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
|
|
|
|
// The i8 and i16 cases don't need compares. We zext the loaded values and
|
|
// subtract them to get the suitable negative, zero, or positive i32 result.
|
|
if (Size < 4) {
|
|
const LoadPair Loads =
|
|
getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
|
|
/*Offset*/ 0);
|
|
return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
|
|
}
|
|
|
|
const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
|
|
/*Offset*/ 0);
|
|
// The result of memcmp is negative, zero, or positive, so produce that by
|
|
// subtracting 2 extended compare bits: sub (ugt, ult).
|
|
// If a target prefers to use selects to get -1/0/1, they should be able
|
|
// to transform this later. The inverse transform (going from selects to math)
|
|
// may not be possible in the DAG because the selects got converted into
|
|
// branches before we got there.
|
|
Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
|
|
Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
|
|
Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
|
|
Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
|
|
return Builder.CreateSub(ZextUGT, ZextULT);
|
|
}
|
|
|
|
// This function expands the memcmp call into an inline expansion and returns
|
|
// the memcmp result.
|
|
Value *MemCmpExpansion::getMemCmpExpansion() {
|
|
// Create the basic block framework for a multi-block expansion.
|
|
if (getNumBlocks() != 1) {
|
|
BasicBlock *StartBlock = CI->getParent();
|
|
EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
|
|
/*MSSAU=*/nullptr, "endblock");
|
|
setupEndBlockPHINodes();
|
|
createResultBlock();
|
|
|
|
// If return value of memcmp is not used in a zero equality, we need to
|
|
// calculate which source was larger. The calculation requires the
|
|
// two loaded source values of each load compare block.
|
|
// These will be saved in the phi nodes created by setupResultBlockPHINodes.
|
|
if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
|
|
|
|
// Create the number of required load compare basic blocks.
|
|
createLoadCmpBlocks();
|
|
|
|
// Update the terminator added by SplitBlock to branch to the first
|
|
// LoadCmpBlock.
|
|
StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
|
|
{DominatorTree::Delete, StartBlock, EndBlock}});
|
|
}
|
|
|
|
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
|
|
|
|
if (IsUsedForZeroCmp)
|
|
return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
|
|
: getMemCmpExpansionZeroCase();
|
|
|
|
if (getNumBlocks() == 1)
|
|
return getMemCmpOneBlock();
|
|
|
|
for (unsigned I = 0; I < getNumBlocks(); ++I) {
|
|
emitLoadCompareBlock(I);
|
|
}
|
|
|
|
emitMemCmpResultBlock();
|
|
return PhiRes;
|
|
}
|
|
|
|
// This function checks to see if an expansion of memcmp can be generated.
|
|
// It checks for constant compare size that is less than the max inline size.
|
|
// If an expansion cannot occur, returns false to leave as a library call.
|
|
// Otherwise, the library call is replaced with a new IR instruction sequence.
|
|
/// We want to transform:
|
|
/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
|
|
/// To:
|
|
/// loadbb:
|
|
/// %0 = bitcast i32* %buffer2 to i8*
|
|
/// %1 = bitcast i32* %buffer1 to i8*
|
|
/// %2 = bitcast i8* %1 to i64*
|
|
/// %3 = bitcast i8* %0 to i64*
|
|
/// %4 = load i64, i64* %2
|
|
/// %5 = load i64, i64* %3
|
|
/// %6 = call i64 @llvm.bswap.i64(i64 %4)
|
|
/// %7 = call i64 @llvm.bswap.i64(i64 %5)
|
|
/// %8 = sub i64 %6, %7
|
|
/// %9 = icmp ne i64 %8, 0
|
|
/// br i1 %9, label %res_block, label %loadbb1
|
|
/// res_block: ; preds = %loadbb2,
|
|
/// %loadbb1, %loadbb
|
|
/// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
|
|
/// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
|
|
/// %10 = icmp ult i64 %phi.src1, %phi.src2
|
|
/// %11 = select i1 %10, i32 -1, i32 1
|
|
/// br label %endblock
|
|
/// loadbb1: ; preds = %loadbb
|
|
/// %12 = bitcast i32* %buffer2 to i8*
|
|
/// %13 = bitcast i32* %buffer1 to i8*
|
|
/// %14 = bitcast i8* %13 to i32*
|
|
/// %15 = bitcast i8* %12 to i32*
|
|
/// %16 = getelementptr i32, i32* %14, i32 2
|
|
/// %17 = getelementptr i32, i32* %15, i32 2
|
|
/// %18 = load i32, i32* %16
|
|
/// %19 = load i32, i32* %17
|
|
/// %20 = call i32 @llvm.bswap.i32(i32 %18)
|
|
/// %21 = call i32 @llvm.bswap.i32(i32 %19)
|
|
/// %22 = zext i32 %20 to i64
|
|
/// %23 = zext i32 %21 to i64
|
|
/// %24 = sub i64 %22, %23
|
|
/// %25 = icmp ne i64 %24, 0
|
|
/// br i1 %25, label %res_block, label %loadbb2
|
|
/// loadbb2: ; preds = %loadbb1
|
|
/// %26 = bitcast i32* %buffer2 to i8*
|
|
/// %27 = bitcast i32* %buffer1 to i8*
|
|
/// %28 = bitcast i8* %27 to i16*
|
|
/// %29 = bitcast i8* %26 to i16*
|
|
/// %30 = getelementptr i16, i16* %28, i16 6
|
|
/// %31 = getelementptr i16, i16* %29, i16 6
|
|
/// %32 = load i16, i16* %30
|
|
/// %33 = load i16, i16* %31
|
|
/// %34 = call i16 @llvm.bswap.i16(i16 %32)
|
|
/// %35 = call i16 @llvm.bswap.i16(i16 %33)
|
|
/// %36 = zext i16 %34 to i64
|
|
/// %37 = zext i16 %35 to i64
|
|
/// %38 = sub i64 %36, %37
|
|
/// %39 = icmp ne i64 %38, 0
|
|
/// br i1 %39, label %res_block, label %loadbb3
|
|
/// loadbb3: ; preds = %loadbb2
|
|
/// %40 = bitcast i32* %buffer2 to i8*
|
|
/// %41 = bitcast i32* %buffer1 to i8*
|
|
/// %42 = getelementptr i8, i8* %41, i8 14
|
|
/// %43 = getelementptr i8, i8* %40, i8 14
|
|
/// %44 = load i8, i8* %42
|
|
/// %45 = load i8, i8* %43
|
|
/// %46 = zext i8 %44 to i32
|
|
/// %47 = zext i8 %45 to i32
|
|
/// %48 = sub i32 %46, %47
|
|
/// br label %endblock
|
|
/// endblock: ; preds = %res_block,
|
|
/// %loadbb3
|
|
/// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
|
|
/// ret i32 %phi.res
|
|
static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
|
|
const TargetLowering *TLI, const DataLayout *DL,
|
|
ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
|
|
DomTreeUpdater *DTU) {
|
|
NumMemCmpCalls++;
|
|
|
|
// Early exit from expansion if -Oz.
|
|
if (CI->getFunction()->hasMinSize())
|
|
return false;
|
|
|
|
// Early exit from expansion if size is not a constant.
|
|
ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
|
|
if (!SizeCast) {
|
|
NumMemCmpNotConstant++;
|
|
return false;
|
|
}
|
|
const uint64_t SizeVal = SizeCast->getZExtValue();
|
|
|
|
if (SizeVal == 0) {
|
|
return false;
|
|
}
|
|
// TTI call to check if target would like to expand memcmp. Also, get the
|
|
// available load sizes.
|
|
const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
|
|
bool OptForSize = CI->getFunction()->hasOptSize() ||
|
|
llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
|
|
auto Options = TTI->enableMemCmpExpansion(OptForSize,
|
|
IsUsedForZeroCmp);
|
|
if (!Options) return false;
|
|
|
|
if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
|
|
Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
|
|
|
|
if (OptForSize &&
|
|
MaxLoadsPerMemcmpOptSize.getNumOccurrences())
|
|
Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
|
|
|
|
if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
|
|
Options.MaxNumLoads = MaxLoadsPerMemcmp;
|
|
|
|
MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
|
|
|
|
// Don't expand if this will require more loads than desired by the target.
|
|
if (Expansion.getNumLoads() == 0) {
|
|
NumMemCmpGreaterThanMax++;
|
|
return false;
|
|
}
|
|
|
|
NumMemCmpInlined++;
|
|
|
|
Value *Res = Expansion.getMemCmpExpansion();
|
|
|
|
// Replace call with result of expansion and erase call.
|
|
CI->replaceAllUsesWith(Res);
|
|
CI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
class ExpandMemCmpPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
ExpandMemCmpPass() : FunctionPass(ID) {
|
|
initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F)) return false;
|
|
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC) {
|
|
return false;
|
|
}
|
|
const TargetLowering* TL =
|
|
TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
|
|
|
|
const TargetLibraryInfo *TLI =
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
const TargetTransformInfo *TTI =
|
|
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
|
|
nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
|
|
DT = &DTWP->getDomTree();
|
|
auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
|
|
return !PA.areAllPreserved();
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
const TargetLowering *TL, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI, DominatorTree *DT);
|
|
// Returns true if a change was made.
|
|
bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, const TargetLowering *TL,
|
|
const DataLayout &DL, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
|
|
};
|
|
|
|
bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
const TargetLowering *TL,
|
|
const DataLayout &DL, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI,
|
|
DomTreeUpdater *DTU) {
|
|
for (Instruction& I : BB) {
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI) {
|
|
continue;
|
|
}
|
|
LibFunc Func;
|
|
if (TLI->getLibFunc(*CI, Func) &&
|
|
(Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
|
|
expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
const TargetLowering *TL, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI, DominatorTree *DT) {
|
|
Optional<DomTreeUpdater> DTU;
|
|
if (DT)
|
|
DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
|
|
const DataLayout& DL = F.getParent()->getDataLayout();
|
|
bool MadeChanges = false;
|
|
for (auto BBIt = F.begin(); BBIt != F.end();) {
|
|
if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI,
|
|
DTU.hasValue() ? DTU.getPointer() : nullptr)) {
|
|
MadeChanges = true;
|
|
// If changes were made, restart the function from the beginning, since
|
|
// the structure of the function was changed.
|
|
BBIt = F.begin();
|
|
} else {
|
|
++BBIt;
|
|
}
|
|
}
|
|
if (MadeChanges)
|
|
for (BasicBlock &BB : F)
|
|
SimplifyInstructionsInBlock(&BB);
|
|
if (!MadeChanges)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
char ExpandMemCmpPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
|
|
"Expand memcmp() to load/stores", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
|
|
"Expand memcmp() to load/stores", false, false)
|
|
|
|
FunctionPass *llvm::createExpandMemCmpPass() {
|
|
return new ExpandMemCmpPass();
|
|
}
|