1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 20:43:44 +02:00
llvm-mirror/lib/Transforms/IPO/GlobalOpt.cpp
Chris Lattner 6b0cd15f9c Eliminate global pointers that are only stored a single value and null if
we know that all uses of the global will trap if the pointer contained is
null.  In this case, we forward substitute the stored value to any uses.

This has the effect of devirtualizing trivial globals in trivial cases.  For
example, 164.gzip contains this:

gzip.h:extern   int (*read_buf) OF((char *buf, unsigned size));
bits.c: read_buf  = file_read;
deflate.c:    lookahead = read_buf((char*)window,
deflate.c:        n = read_buf((char*)window+strstart+lookahead, more);

Since read_buf has to point to file_read at every use, we just replace
the calls through read_buf with a direct call to file_read.

This occurs in several benchmarks, including 176.gcc and 164.gzip.  Direct
calls are good and stuff.

llvm-svn: 16871
2004-10-09 21:48:45 +00:00

559 lines
22 KiB
C++

//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms simple global variables that never have their address
// taken. If obviously true, it marks read/write globals as constant, deletes
// variables only stored to, etc.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "globalopt"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
#include <algorithm>
using namespace llvm;
namespace {
Statistic<> NumMarked ("globalopt", "Number of globals marked constant");
Statistic<> NumSRA ("globalopt", "Number of aggregate globals broken "
"into scalars");
Statistic<> NumDeleted ("globalopt", "Number of globals deleted");
Statistic<> NumFnDeleted("globalopt", "Number of functions deleted");
struct GlobalOpt : public ModulePass {
bool runOnModule(Module &M);
};
RegisterOpt<GlobalOpt> X("globalopt", "Global Variable Optimizer");
}
ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
/// GlobalStatus - As we analyze each global, keep track of some information
/// about it. If we find out that the address of the global is taken, none of
/// this info will be accurate.
struct GlobalStatus {
/// isLoaded - True if the global is ever loaded. If the global isn't ever
/// loaded it can be deleted.
bool isLoaded;
/// StoredType - Keep track of what stores to the global look like.
///
enum StoredType {
/// NotStored - There is no store to this global. It can thus be marked
/// constant.
NotStored,
/// isInitializerStored - This global is stored to, but the only thing
/// stored is the constant it was initialized with. This is only tracked
/// for scalar globals.
isInitializerStored,
/// isStoredOnce - This global is stored to, but only its initializer and
/// one other value is ever stored to it. If this global isStoredOnce, we
/// track the value stored to it in StoredOnceValue below. This is only
/// tracked for scalar globals.
isStoredOnce,
/// isStored - This global is stored to by multiple values or something else
/// that we cannot track.
isStored
} StoredType;
/// StoredOnceValue - If only one value (besides the initializer constant) is
/// ever stored to this global, keep track of what value it is.
Value *StoredOnceValue;
/// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
/// the global exist. Such users include GEP instruction with variable
/// indexes, and non-gep/load/store users like constant expr casts.
bool isNotSuitableForSRA;
GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
isNotSuitableForSRA(false) {}
};
/// ConstantIsDead - Return true if the specified constant is (transitively)
/// dead. The constant may be used by other constants (e.g. constant arrays and
/// constant exprs) as long as they are dead, but it cannot be used by anything
/// else.
static bool ConstantIsDead(Constant *C) {
if (isa<GlobalValue>(C)) return false;
for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
if (Constant *CU = dyn_cast<Constant>(*UI)) {
if (!ConstantIsDead(CU)) return false;
} else
return false;
return true;
}
/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
/// structure. If the global has its address taken, return true to indicate we
/// can't do anything with it.
///
static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
std::set<PHINode*> &PHIUsers) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
if (CE->getOpcode() != Instruction::GetElementPtr)
GS.isNotSuitableForSRA = true;
else if (!GS.isNotSuitableForSRA) {
// Check to see if this ConstantExpr GEP is SRA'able. In particular, we
// don't like < 3 operand CE's, and we don't like non-constant integer
// indices.
if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
GS.isNotSuitableForSRA = true;
else {
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i))) {
GS.isNotSuitableForSRA = true;
break;
}
}
}
} else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
if (isa<LoadInst>(I)) {
GS.isLoaded = true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Don't allow a store OF the address, only stores TO the address.
if (SI->getOperand(0) == V) return true;
// If this is a direct store to the global (i.e., the global is a scalar
// value, not an aggregate), keep more specific information about
// stores.
if (GS.StoredType != GlobalStatus::isStored)
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
if (SI->getOperand(0) == GV->getInitializer()) {
if (GS.StoredType < GlobalStatus::isInitializerStored)
GS.StoredType = GlobalStatus::isInitializerStored;
} else if (GS.StoredType < GlobalStatus::isStoredOnce) {
GS.StoredType = GlobalStatus::isStoredOnce;
GS.StoredOnceValue = SI->getOperand(0);
} else if (GS.StoredType == GlobalStatus::isStoredOnce &&
GS.StoredOnceValue == SI->getOperand(0)) {
// noop.
} else {
GS.StoredType = GlobalStatus::isStored;
}
} else {
GS.StoredType = GlobalStatus::isStored;
}
} else if (I->getOpcode() == Instruction::GetElementPtr) {
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
// Theoretically we could SRA globals with GEP insts if all indexes are
// constants. In practice, these GEPs would already be constant exprs
// if that was the case though.
GS.isNotSuitableForSRA = true;
} else if (I->getOpcode() == Instruction::Select) {
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
GS.isNotSuitableForSRA = true;
} else if (PHINode *PN = dyn_cast<PHINode>(I)) {
// PHI nodes we can check just like select or GEP instructions, but we
// have to be careful about infinite recursion.
if (PHIUsers.insert(PN).second) // Not already visited.
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
GS.isNotSuitableForSRA = true;
} else if (isa<SetCondInst>(I)) {
GS.isNotSuitableForSRA = true;
} else {
return true; // Any other non-load instruction might take address!
}
} else if (Constant *C = dyn_cast<Constant>(*UI)) {
// We might have a dead and dangling constant hanging off of here.
if (!ConstantIsDead(C))
return true;
} else {
// Otherwise must be a global or some other user.
return true;
}
return false;
}
static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
if (!CI) return 0;
uint64_t IdxV = CI->getRawValue();
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
} else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
} else if (ConstantPacked *CP = dyn_cast<ConstantPacked>(Agg)) {
if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
} else if (ConstantAggregateZero *CAZ =
dyn_cast<ConstantAggregateZero>(Agg)) {
if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
if (IdxV < STy->getNumElements())
return Constant::getNullValue(STy->getElementType(IdxV));
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(Agg->getType())) {
return Constant::getNullValue(STy->getElementType());
}
}
return 0;
}
static Constant *TraverseGEPInitializer(User *GEP, Constant *Init) {
if (GEP->getNumOperands() == 1 ||
!isa<Constant>(GEP->getOperand(1)) ||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
return 0;
for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!Idx) return 0;
Init = getAggregateConstantElement(Init, Idx);
if (Init == 0) return 0;
}
return Init;
}
/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
/// users of the global, cleaning up the obvious ones. This is largely just a
/// quick scan over the use list to clean up the easy and obvious cruft.
static void CleanupConstantGlobalUsers(Value *V, Constant *Init) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
User *U = *UI++;
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// Replace the load with the initializer.
LI->replaceAllUsesWith(Init);
LI->getParent()->getInstList().erase(LI);
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
// Store must be unreachable or storing Init into the global.
SI->getParent()->getInstList().erase(SI);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (Constant *SubInit = TraverseGEPInitializer(CE, Init))
CleanupConstantGlobalUsers(CE, SubInit);
if (CE->use_empty()) CE->destroyConstant();
}
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
if (Constant *SubInit = TraverseGEPInitializer(GEP, Init))
CleanupConstantGlobalUsers(GEP, SubInit);
if (GEP->use_empty())
GEP->getParent()->getInstList().erase(GEP);
} else if (Constant *C = dyn_cast<Constant>(U)) {
// If we have a chain of dead constantexprs or other things dangling from
// us, and if they are all dead, nuke them without remorse.
if (ConstantIsDead(C)) {
C->destroyConstant();
// This could have incalidated UI, start over from scratch.x
CleanupConstantGlobalUsers(V, Init);
return;
}
}
}
}
/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
/// variable. This opens the door for other optimizations by exposing the
/// behavior of the program in a more fine-grained way. We have determined that
/// this transformation is safe already. We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
assert(GV->hasInternalLinkage() && !GV->isConstant());
Constant *Init = GV->getInitializer();
const Type *Ty = Init->getType();
std::vector<GlobalVariable*> NewGlobals;
Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
NewGlobals.reserve(STy->getNumElements());
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
ConstantUInt::get(Type::UIntTy, i));
assert(In && "Couldn't get element of initializer?");
GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
GlobalVariable::InternalLinkage,
In, GV->getName()+"."+utostr(i));
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
}
} else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
unsigned NumElements = 0;
if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
NumElements = ATy->getNumElements();
else if (const PackedType *PTy = dyn_cast<PackedType>(STy))
NumElements = PTy->getNumElements();
else
assert(0 && "Unknown aggregate sequential type!");
if (NumElements > 16) return 0; // It's not worth it.
NewGlobals.reserve(NumElements);
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
ConstantUInt::get(Type::UIntTy, i));
assert(In && "Couldn't get element of initializer?");
GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
GlobalVariable::InternalLinkage,
In, GV->getName()+"."+utostr(i));
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
}
}
if (NewGlobals.empty())
return 0;
Constant *NullInt = Constant::getNullValue(Type::IntTy);
// Loop over all of the uses of the global, replacing the constantexpr geps,
// with smaller constantexpr geps or direct references.
while (!GV->use_empty()) {
ConstantExpr *CE = cast<ConstantExpr>(GV->use_back());
assert(CE->getOpcode() == Instruction::GetElementPtr &&
"NonGEP CE's are not SRAable!");
// Ignore the 1th operand, which has to be zero or else the program is quite
// broken (undefined). Get the 2nd operand, which is the structure or array
// index.
unsigned Val = cast<ConstantInt>(CE->getOperand(2))->getRawValue();
if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
Constant *NewPtr = NewGlobals[Val];
// Form a shorter GEP if needed.
if (CE->getNumOperands() > 3) {
std::vector<Constant*> Idxs;
Idxs.push_back(NullInt);
for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
Idxs.push_back(CE->getOperand(i));
NewPtr = ConstantExpr::getGetElementPtr(NewPtr, Idxs);
}
CE->replaceAllUsesWith(NewPtr);
CE->destroyConstant();
}
// Delete the old global, now that it is dead.
Globals.erase(GV);
++NumSRA;
return NewGlobals[0];
}
/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
/// value will trap if the value is dynamically null.
static bool AllUsesOfValueWillTrapIfNull(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
if (isa<LoadInst>(*UI)) {
// Will trap.
} else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == V) {
//std::cerr << "NONTRAPPING USE: " << **UI;
return false; // Storing the value.
}
} else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
if (CI->getOperand(0) != V) {
//std::cerr << "NONTRAPPING USE: " << **UI;
return false; // Not calling the ptr
}
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
if (II->getOperand(0) != V) {
//std::cerr << "NONTRAPPING USE: " << **UI;
return false; // Not calling the ptr
}
} else if (CastInst *CI = dyn_cast<CastInst>(*UI)) {
if (!AllUsesOfValueWillTrapIfNull(CI)) return false;
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
if (!AllUsesOfValueWillTrapIfNull(GEPI)) return false;
} else {
//std::cerr << "NONTRAPPING USE: " << **UI;
return false;
}
return true;
}
/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
/// from GV will trap if the loaded value is null.
static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
if (!AllUsesOfValueWillTrapIfNull(LI))
return false;
} else if (isa<StoreInst>(*UI)) {
// Ignore stores to the global.
} else {
// We don't know or understand this user, bail out.
//std::cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
return false;
}
return true;
}
// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
// that only one value (besides its initializer) is ever stored to the global.
static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal) {
if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
StoredOnceVal = CI->getOperand(0);
else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
bool IsJustACast = true;
for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEPI->getOperand(i)) ||
!cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
IsJustACast = false;
break;
}
if (IsJustACast)
StoredOnceVal = GEPI->getOperand(0);
}
// If we are dealing with a pointer global that is initialized to null, only
// has one (non-null) value stored into, and if we know that all users of the
// loaded value trap if null, then the load users must never get the
// initializer. Instead, replace all of the loads with the stored value.
if (isa<PointerType>(GV->getInitializer()->getType()) &&
GV->getInitializer()->isNullValue()) {
if (isa<Constant>(StoredOnceVal) &&
AllUsesOfLoadedValueWillTrapIfNull(GV)) {
DEBUG(std::cerr << "REPLACING STORED GLOBAL POINTER: " << *GV);
//std::cerr << " Stored Value: " << *StoredOnceVal << "\n";
// Replace all uses of loads with uses of uses of the stored value.
while (!GV->use_empty())
if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
LI->replaceAllUsesWith(StoredOnceVal);
LI->getParent()->getInstList().erase(LI); // Nuke the load.
} else if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
SI->getParent()->getInstList().erase(SI); // Nuke the store
} else {
assert(0 && "Unknown user of stored once global!");
}
// Nuke the now-dead global.
GV->getParent()->getGlobalList().erase(GV);
return true;
}
//if (isa<MallocInst>(StoredOnceValue))
}
return false;
}
/// ProcessInternalGlobal - Analyze the specified global variable and optimize
/// it if possible. If we make a change, return true.
static bool ProcessInternalGlobal(GlobalVariable *GV, Module::giterator &GVI) {
std::set<PHINode*> PHIUsers;
GlobalStatus GS;
PHIUsers.clear();
GV->removeDeadConstantUsers();
if (GV->use_empty()) {
DEBUG(std::cerr << "GLOBAL DEAD: " << *GV);
GV->getParent()->getGlobalList().erase(GV);
++NumDeleted;
return true;
}
if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
// If the global is never loaded (but may be stored to), it is dead.
// Delete it now.
if (!GS.isLoaded) {
DEBUG(std::cerr << "GLOBAL NEVER LOADED: " << *GV);
unsigned NumUsers = GV->use_size();
// Delete any stores we can find to the global. We may not be able to
// make it completely dead though.
CleanupConstantGlobalUsers(GV, GV->getInitializer());
// Did we delete any stores?
bool Changed = NumUsers != GV->use_size();
// If the global is dead now, delete it.
if (GV->use_empty()) {
GV->getParent()->getGlobalList().erase(GV);
++NumDeleted;
Changed = true;
}
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
DEBUG(std::cerr << "MARKING CONSTANT: " << *GV);
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
CleanupConstantGlobalUsers(GV, GV->getInitializer());
// If the global is dead now, just nuke it.
if (GV->use_empty()) {
DEBUG(std::cerr << " *** Marking constant allowed us to simplify "
"all users and delete global!\n");
GV->getParent()->getGlobalList().erase(GV);
++NumDeleted;
}
++NumMarked;
return true;
} else if (!GS.isNotSuitableForSRA &&
!GV->getInitializer()->getType()->isFirstClassType()) {
DEBUG(std::cerr << "PERFORMING GLOBAL SRA ON: " << *GV);
if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
GVI = FirstNewGV; // Don't skip the newly produced globals!
return true;
}
} else if (GS.StoredType == GlobalStatus::isStoredOnce) {
// Try to optimize globals based on the knowledge that only one value
// (besides its initializer) is ever stored to the global.
if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue))
return true;
}
}
return false;
}
bool GlobalOpt::runOnModule(Module &M) {
bool Changed = false;
// As a prepass, delete functions that are trivially dead.
bool LocalChange = true;
while (LocalChange) {
LocalChange = false;
for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
Function *F = FI++;
F->removeDeadConstantUsers();
if (F->use_empty() && (F->hasInternalLinkage() || F->hasWeakLinkage())) {
M.getFunctionList().erase(F);
LocalChange = true;
++NumFnDeleted;
}
}
Changed |= LocalChange;
}
LocalChange = true;
while (LocalChange) {
LocalChange = false;
for (Module::giterator GVI = M.gbegin(), E = M.gend(); GVI != E;) {
GlobalVariable *GV = GVI++;
if (!GV->isConstant() && GV->hasInternalLinkage() &&
GV->hasInitializer())
LocalChange |= ProcessInternalGlobal(GV, GVI);
}
Changed |= LocalChange;
}
return Changed;
}