mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
724883c1d1
I noticed another instance of the issue where references to aliases were being replaced with aliasees, this time in InstCombine. In the instance that I saw it turned out to be only a QoI issue (a symbol ended up being missing from the symbol table due to the last reference to the alias being removed, preventing HWASAN from symbolizing a global reference), but it could easily have manifested as incorrect behaviour. Since this is the third such issue encountered (previously: D65118, D65314) it seems to be time to address this common error/QoI issue once and for all and make the strip* family of functions not look through aliases. Includes a test for the specific issue that I saw, but no doubt there are other similar bugs fixed here. As with D65118 this has been tested to make sure that the optimization isn't load bearing. I built Clang, Chromium for Linux, Android and Windows as well as the test-suite and there were no size regressions. Differential Revision: https://reviews.llvm.org/D66606 llvm-svn: 369697
882 lines
36 KiB
C++
882 lines
36 KiB
C++
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass builds a ModuleSummaryIndex object for the module, to be written
|
|
// to bitcode or LLVM assembly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSummaryIndex.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/Object/ModuleSymbolTable.h"
|
|
#include "llvm/Object/SymbolicFile.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "module-summary-analysis"
|
|
|
|
// Option to force edges cold which will block importing when the
|
|
// -import-cold-multiplier is set to 0. Useful for debugging.
|
|
FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
|
|
FunctionSummary::FSHT_None;
|
|
cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
|
|
"force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
|
|
cl::desc("Force all edges in the function summary to cold"),
|
|
cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
|
|
clEnumValN(FunctionSummary::FSHT_AllNonCritical,
|
|
"all-non-critical", "All non-critical edges."),
|
|
clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
|
|
|
|
cl::opt<std::string> ModuleSummaryDotFile(
|
|
"module-summary-dot-file", cl::init(""), cl::Hidden,
|
|
cl::value_desc("filename"),
|
|
cl::desc("File to emit dot graph of new summary into."));
|
|
|
|
// Walk through the operands of a given User via worklist iteration and populate
|
|
// the set of GlobalValue references encountered. Invoked either on an
|
|
// Instruction or a GlobalVariable (which walks its initializer).
|
|
// Return true if any of the operands contains blockaddress. This is important
|
|
// to know when computing summary for global var, because if global variable
|
|
// references basic block address we can't import it separately from function
|
|
// containing that basic block. For simplicity we currently don't import such
|
|
// global vars at all. When importing function we aren't interested if any
|
|
// instruction in it takes an address of any basic block, because instruction
|
|
// can only take an address of basic block located in the same function.
|
|
static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
|
|
SetVector<ValueInfo> &RefEdges,
|
|
SmallPtrSet<const User *, 8> &Visited) {
|
|
bool HasBlockAddress = false;
|
|
SmallVector<const User *, 32> Worklist;
|
|
Worklist.push_back(CurUser);
|
|
|
|
while (!Worklist.empty()) {
|
|
const User *U = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(U).second)
|
|
continue;
|
|
|
|
ImmutableCallSite CS(U);
|
|
|
|
for (const auto &OI : U->operands()) {
|
|
const User *Operand = dyn_cast<User>(OI);
|
|
if (!Operand)
|
|
continue;
|
|
if (isa<BlockAddress>(Operand)) {
|
|
HasBlockAddress = true;
|
|
continue;
|
|
}
|
|
if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
|
|
// We have a reference to a global value. This should be added to
|
|
// the reference set unless it is a callee. Callees are handled
|
|
// specially by WriteFunction and are added to a separate list.
|
|
if (!(CS && CS.isCallee(&OI)))
|
|
RefEdges.insert(Index.getOrInsertValueInfo(GV));
|
|
continue;
|
|
}
|
|
Worklist.push_back(Operand);
|
|
}
|
|
}
|
|
return HasBlockAddress;
|
|
}
|
|
|
|
static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
|
|
ProfileSummaryInfo *PSI) {
|
|
if (!PSI)
|
|
return CalleeInfo::HotnessType::Unknown;
|
|
if (PSI->isHotCount(ProfileCount))
|
|
return CalleeInfo::HotnessType::Hot;
|
|
if (PSI->isColdCount(ProfileCount))
|
|
return CalleeInfo::HotnessType::Cold;
|
|
return CalleeInfo::HotnessType::None;
|
|
}
|
|
|
|
static bool isNonRenamableLocal(const GlobalValue &GV) {
|
|
return GV.hasSection() && GV.hasLocalLinkage();
|
|
}
|
|
|
|
/// Determine whether this call has all constant integer arguments (excluding
|
|
/// "this") and summarize it to VCalls or ConstVCalls as appropriate.
|
|
static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
|
|
SetVector<FunctionSummary::VFuncId> &VCalls,
|
|
SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
|
|
std::vector<uint64_t> Args;
|
|
// Start from the second argument to skip the "this" pointer.
|
|
for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) {
|
|
auto *CI = dyn_cast<ConstantInt>(Arg);
|
|
if (!CI || CI->getBitWidth() > 64) {
|
|
VCalls.insert({Guid, Call.Offset});
|
|
return;
|
|
}
|
|
Args.push_back(CI->getZExtValue());
|
|
}
|
|
ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
|
|
}
|
|
|
|
/// If this intrinsic call requires that we add information to the function
|
|
/// summary, do so via the non-constant reference arguments.
|
|
static void addIntrinsicToSummary(
|
|
const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
|
|
SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
|
|
SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
|
|
SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
|
|
SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
|
|
DominatorTree &DT) {
|
|
switch (CI->getCalledFunction()->getIntrinsicID()) {
|
|
case Intrinsic::type_test: {
|
|
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
|
|
auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
|
|
if (!TypeId)
|
|
break;
|
|
GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
|
|
|
|
// Produce a summary from type.test intrinsics. We only summarize type.test
|
|
// intrinsics that are used other than by an llvm.assume intrinsic.
|
|
// Intrinsics that are assumed are relevant only to the devirtualization
|
|
// pass, not the type test lowering pass.
|
|
bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
|
|
auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
|
|
if (!AssumeCI)
|
|
return true;
|
|
Function *F = AssumeCI->getCalledFunction();
|
|
return !F || F->getIntrinsicID() != Intrinsic::assume;
|
|
});
|
|
if (HasNonAssumeUses)
|
|
TypeTests.insert(Guid);
|
|
|
|
SmallVector<DevirtCallSite, 4> DevirtCalls;
|
|
SmallVector<CallInst *, 4> Assumes;
|
|
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
|
|
for (auto &Call : DevirtCalls)
|
|
addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
|
|
TypeTestAssumeConstVCalls);
|
|
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::type_checked_load: {
|
|
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
|
|
auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
|
|
if (!TypeId)
|
|
break;
|
|
GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
|
|
|
|
SmallVector<DevirtCallSite, 4> DevirtCalls;
|
|
SmallVector<Instruction *, 4> LoadedPtrs;
|
|
SmallVector<Instruction *, 4> Preds;
|
|
bool HasNonCallUses = false;
|
|
findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
|
|
HasNonCallUses, CI, DT);
|
|
// Any non-call uses of the result of llvm.type.checked.load will
|
|
// prevent us from optimizing away the llvm.type.test.
|
|
if (HasNonCallUses)
|
|
TypeTests.insert(Guid);
|
|
for (auto &Call : DevirtCalls)
|
|
addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
|
|
TypeCheckedLoadConstVCalls);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool isNonVolatileLoad(const Instruction *I) {
|
|
if (const auto *LI = dyn_cast<LoadInst>(I))
|
|
return !LI->isVolatile();
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isNonVolatileStore(const Instruction *I) {
|
|
if (const auto *SI = dyn_cast<StoreInst>(I))
|
|
return !SI->isVolatile();
|
|
|
|
return false;
|
|
}
|
|
|
|
static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
|
|
const Function &F, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, DominatorTree &DT,
|
|
bool HasLocalsInUsedOrAsm,
|
|
DenseSet<GlobalValue::GUID> &CantBePromoted,
|
|
bool IsThinLTO) {
|
|
// Summary not currently supported for anonymous functions, they should
|
|
// have been named.
|
|
assert(F.hasName());
|
|
|
|
unsigned NumInsts = 0;
|
|
// Map from callee ValueId to profile count. Used to accumulate profile
|
|
// counts for all static calls to a given callee.
|
|
MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
|
|
SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
|
|
SetVector<GlobalValue::GUID> TypeTests;
|
|
SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
|
|
TypeCheckedLoadVCalls;
|
|
SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
|
|
TypeCheckedLoadConstVCalls;
|
|
ICallPromotionAnalysis ICallAnalysis;
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
|
|
// Add personality function, prefix data and prologue data to function's ref
|
|
// list.
|
|
findRefEdges(Index, &F, RefEdges, Visited);
|
|
std::vector<const Instruction *> NonVolatileLoads;
|
|
std::vector<const Instruction *> NonVolatileStores;
|
|
|
|
bool HasInlineAsmMaybeReferencingInternal = false;
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
++NumInsts;
|
|
// Regular LTO module doesn't participate in ThinLTO import,
|
|
// so no reference from it can be read/writeonly, since this
|
|
// would require importing variable as local copy
|
|
if (IsThinLTO) {
|
|
if (isNonVolatileLoad(&I)) {
|
|
// Postpone processing of non-volatile load instructions
|
|
// See comments below
|
|
Visited.insert(&I);
|
|
NonVolatileLoads.push_back(&I);
|
|
continue;
|
|
} else if (isNonVolatileStore(&I)) {
|
|
Visited.insert(&I);
|
|
NonVolatileStores.push_back(&I);
|
|
// All references from second operand of store (destination address)
|
|
// can be considered write-only if they're not referenced by any
|
|
// non-store instruction. References from first operand of store
|
|
// (stored value) can't be treated either as read- or as write-only
|
|
// so we add them to RefEdges as we do with all other instructions
|
|
// except non-volatile load.
|
|
Value *Stored = I.getOperand(0);
|
|
if (auto *GV = dyn_cast<GlobalValue>(Stored))
|
|
// findRefEdges will try to examine GV operands, so instead
|
|
// of calling it we should add GV to RefEdges directly.
|
|
RefEdges.insert(Index.getOrInsertValueInfo(GV));
|
|
else if (auto *U = dyn_cast<User>(Stored))
|
|
findRefEdges(Index, U, RefEdges, Visited);
|
|
continue;
|
|
}
|
|
}
|
|
findRefEdges(Index, &I, RefEdges, Visited);
|
|
auto CS = ImmutableCallSite(&I);
|
|
if (!CS)
|
|
continue;
|
|
|
|
const auto *CI = dyn_cast<CallInst>(&I);
|
|
// Since we don't know exactly which local values are referenced in inline
|
|
// assembly, conservatively mark the function as possibly referencing
|
|
// a local value from inline assembly to ensure we don't export a
|
|
// reference (which would require renaming and promotion of the
|
|
// referenced value).
|
|
if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
|
|
HasInlineAsmMaybeReferencingInternal = true;
|
|
|
|
auto *CalledValue = CS.getCalledValue();
|
|
auto *CalledFunction = CS.getCalledFunction();
|
|
if (CalledValue && !CalledFunction) {
|
|
CalledValue = CalledValue->stripPointerCasts();
|
|
// Stripping pointer casts can reveal a called function.
|
|
CalledFunction = dyn_cast<Function>(CalledValue);
|
|
}
|
|
// Check if this is an alias to a function. If so, get the
|
|
// called aliasee for the checks below.
|
|
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
|
|
assert(!CalledFunction && "Expected null called function in callsite for alias");
|
|
CalledFunction = dyn_cast<Function>(GA->getBaseObject());
|
|
}
|
|
// Check if this is a direct call to a known function or a known
|
|
// intrinsic, or an indirect call with profile data.
|
|
if (CalledFunction) {
|
|
if (CI && CalledFunction->isIntrinsic()) {
|
|
addIntrinsicToSummary(
|
|
CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
|
|
TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
|
|
continue;
|
|
}
|
|
// We should have named any anonymous globals
|
|
assert(CalledFunction->hasName());
|
|
auto ScaledCount = PSI->getProfileCount(&I, BFI);
|
|
auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
|
|
: CalleeInfo::HotnessType::Unknown;
|
|
if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
|
|
Hotness = CalleeInfo::HotnessType::Cold;
|
|
|
|
// Use the original CalledValue, in case it was an alias. We want
|
|
// to record the call edge to the alias in that case. Eventually
|
|
// an alias summary will be created to associate the alias and
|
|
// aliasee.
|
|
auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
|
|
cast<GlobalValue>(CalledValue))];
|
|
ValueInfo.updateHotness(Hotness);
|
|
// Add the relative block frequency to CalleeInfo if there is no profile
|
|
// information.
|
|
if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
|
|
uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
|
|
uint64_t EntryFreq = BFI->getEntryFreq();
|
|
ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
|
|
}
|
|
} else {
|
|
// Skip inline assembly calls.
|
|
if (CI && CI->isInlineAsm())
|
|
continue;
|
|
// Skip direct calls.
|
|
if (!CalledValue || isa<Constant>(CalledValue))
|
|
continue;
|
|
|
|
// Check if the instruction has a callees metadata. If so, add callees
|
|
// to CallGraphEdges to reflect the references from the metadata, and
|
|
// to enable importing for subsequent indirect call promotion and
|
|
// inlining.
|
|
if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
|
|
for (auto &Op : MD->operands()) {
|
|
Function *Callee = mdconst::extract_or_null<Function>(Op);
|
|
if (Callee)
|
|
CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
|
|
}
|
|
}
|
|
|
|
uint32_t NumVals, NumCandidates;
|
|
uint64_t TotalCount;
|
|
auto CandidateProfileData =
|
|
ICallAnalysis.getPromotionCandidatesForInstruction(
|
|
&I, NumVals, TotalCount, NumCandidates);
|
|
for (auto &Candidate : CandidateProfileData)
|
|
CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
|
|
.updateHotness(getHotness(Candidate.Count, PSI));
|
|
}
|
|
}
|
|
|
|
std::vector<ValueInfo> Refs;
|
|
if (IsThinLTO) {
|
|
auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
|
|
SetVector<ValueInfo> &Edges,
|
|
SmallPtrSet<const User *, 8> &Cache) {
|
|
for (const auto *I : Instrs) {
|
|
Cache.erase(I);
|
|
findRefEdges(Index, I, Edges, Cache);
|
|
}
|
|
};
|
|
|
|
// By now we processed all instructions in a function, except
|
|
// non-volatile loads and non-volatile value stores. Let's find
|
|
// ref edges for both of instruction sets
|
|
AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
|
|
// We can add some values to the Visited set when processing load
|
|
// instructions which are also used by stores in NonVolatileStores.
|
|
// For example this can happen if we have following code:
|
|
//
|
|
// store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
|
|
// %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
|
|
//
|
|
// After processing loads we'll add bitcast to the Visited set, and if
|
|
// we use the same set while processing stores, we'll never see store
|
|
// to @bar and @bar will be mistakenly treated as readonly.
|
|
SmallPtrSet<const llvm::User *, 8> StoreCache;
|
|
AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
|
|
|
|
// If both load and store instruction reference the same variable
|
|
// we won't be able to optimize it. Add all such reference edges
|
|
// to RefEdges set.
|
|
for (auto &VI : StoreRefEdges)
|
|
if (LoadRefEdges.remove(VI))
|
|
RefEdges.insert(VI);
|
|
|
|
unsigned RefCnt = RefEdges.size();
|
|
// All new reference edges inserted in two loops below are either
|
|
// read or write only. They will be grouped in the end of RefEdges
|
|
// vector, so we can use a single integer value to identify them.
|
|
for (auto &VI : LoadRefEdges)
|
|
RefEdges.insert(VI);
|
|
|
|
unsigned FirstWORef = RefEdges.size();
|
|
for (auto &VI : StoreRefEdges)
|
|
RefEdges.insert(VI);
|
|
|
|
Refs = RefEdges.takeVector();
|
|
for (; RefCnt < FirstWORef; ++RefCnt)
|
|
Refs[RefCnt].setReadOnly();
|
|
|
|
for (; RefCnt < Refs.size(); ++RefCnt)
|
|
Refs[RefCnt].setWriteOnly();
|
|
} else {
|
|
Refs = RefEdges.takeVector();
|
|
}
|
|
// Explicit add hot edges to enforce importing for designated GUIDs for
|
|
// sample PGO, to enable the same inlines as the profiled optimized binary.
|
|
for (auto &I : F.getImportGUIDs())
|
|
CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
|
|
ForceSummaryEdgesCold == FunctionSummary::FSHT_All
|
|
? CalleeInfo::HotnessType::Cold
|
|
: CalleeInfo::HotnessType::Critical);
|
|
|
|
bool NonRenamableLocal = isNonRenamableLocal(F);
|
|
bool NotEligibleForImport =
|
|
NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
|
|
GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
|
|
/* Live = */ false, F.isDSOLocal(),
|
|
F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
|
|
FunctionSummary::FFlags FunFlags{
|
|
F.hasFnAttribute(Attribute::ReadNone),
|
|
F.hasFnAttribute(Attribute::ReadOnly),
|
|
F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
|
|
// FIXME: refactor this to use the same code that inliner is using.
|
|
// Don't try to import functions with noinline attribute.
|
|
F.getAttributes().hasFnAttribute(Attribute::NoInline)};
|
|
auto FuncSummary = std::make_unique<FunctionSummary>(
|
|
Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
|
|
CallGraphEdges.takeVector(), TypeTests.takeVector(),
|
|
TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
|
|
TypeTestAssumeConstVCalls.takeVector(),
|
|
TypeCheckedLoadConstVCalls.takeVector());
|
|
if (NonRenamableLocal)
|
|
CantBePromoted.insert(F.getGUID());
|
|
Index.addGlobalValueSummary(F, std::move(FuncSummary));
|
|
}
|
|
|
|
/// Find function pointers referenced within the given vtable initializer
|
|
/// (or subset of an initializer) \p I. The starting offset of \p I within
|
|
/// the vtable initializer is \p StartingOffset. Any discovered function
|
|
/// pointers are added to \p VTableFuncs along with their cumulative offset
|
|
/// within the initializer.
|
|
static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
|
|
const Module &M, ModuleSummaryIndex &Index,
|
|
VTableFuncList &VTableFuncs) {
|
|
// First check if this is a function pointer.
|
|
if (I->getType()->isPointerTy()) {
|
|
auto Fn = dyn_cast<Function>(I->stripPointerCasts());
|
|
// We can disregard __cxa_pure_virtual as a possible call target, as
|
|
// calls to pure virtuals are UB.
|
|
if (Fn && Fn->getName() != "__cxa_pure_virtual")
|
|
VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
|
|
return;
|
|
}
|
|
|
|
// Walk through the elements in the constant struct or array and recursively
|
|
// look for virtual function pointers.
|
|
const DataLayout &DL = M.getDataLayout();
|
|
if (auto *C = dyn_cast<ConstantStruct>(I)) {
|
|
StructType *STy = dyn_cast<StructType>(C->getType());
|
|
assert(STy);
|
|
const StructLayout *SL = DL.getStructLayout(C->getType());
|
|
|
|
for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
|
|
EE = STy->element_end();
|
|
EI != EE; ++EI) {
|
|
auto Offset = SL->getElementOffset(EI - EB);
|
|
unsigned Op = SL->getElementContainingOffset(Offset);
|
|
findFuncPointers(cast<Constant>(I->getOperand(Op)),
|
|
StartingOffset + Offset, M, Index, VTableFuncs);
|
|
}
|
|
} else if (auto *C = dyn_cast<ConstantArray>(I)) {
|
|
ArrayType *ATy = C->getType();
|
|
Type *EltTy = ATy->getElementType();
|
|
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
|
|
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
|
|
findFuncPointers(cast<Constant>(I->getOperand(i)),
|
|
StartingOffset + i * EltSize, M, Index, VTableFuncs);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Identify the function pointers referenced by vtable definition \p V.
|
|
static void computeVTableFuncs(ModuleSummaryIndex &Index,
|
|
const GlobalVariable &V, const Module &M,
|
|
VTableFuncList &VTableFuncs) {
|
|
if (!V.isConstant())
|
|
return;
|
|
|
|
findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
|
|
VTableFuncs);
|
|
|
|
#ifndef NDEBUG
|
|
// Validate that the VTableFuncs list is ordered by offset.
|
|
uint64_t PrevOffset = 0;
|
|
for (auto &P : VTableFuncs) {
|
|
// The findVFuncPointers traversal should have encountered the
|
|
// functions in offset order. We need to use ">=" since PrevOffset
|
|
// starts at 0.
|
|
assert(P.VTableOffset >= PrevOffset);
|
|
PrevOffset = P.VTableOffset;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Record vtable definition \p V for each type metadata it references.
|
|
static void
|
|
recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
|
|
const GlobalVariable &V,
|
|
SmallVectorImpl<MDNode *> &Types) {
|
|
for (MDNode *Type : Types) {
|
|
auto TypeID = Type->getOperand(1).get();
|
|
|
|
uint64_t Offset =
|
|
cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
|
|
->getZExtValue();
|
|
|
|
if (auto *TypeId = dyn_cast<MDString>(TypeID))
|
|
Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
|
|
.push_back({Offset, Index.getOrInsertValueInfo(&V)});
|
|
}
|
|
}
|
|
|
|
static void computeVariableSummary(ModuleSummaryIndex &Index,
|
|
const GlobalVariable &V,
|
|
DenseSet<GlobalValue::GUID> &CantBePromoted,
|
|
const Module &M,
|
|
SmallVectorImpl<MDNode *> &Types) {
|
|
SetVector<ValueInfo> RefEdges;
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
|
|
bool NonRenamableLocal = isNonRenamableLocal(V);
|
|
GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
|
|
/* Live = */ false, V.isDSOLocal(),
|
|
V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
|
|
|
|
VTableFuncList VTableFuncs;
|
|
// If splitting is not enabled, then we compute the summary information
|
|
// necessary for index-based whole program devirtualization.
|
|
if (!Index.enableSplitLTOUnit()) {
|
|
Types.clear();
|
|
V.getMetadata(LLVMContext::MD_type, Types);
|
|
if (!Types.empty()) {
|
|
// Identify the function pointers referenced by this vtable definition.
|
|
computeVTableFuncs(Index, V, M, VTableFuncs);
|
|
|
|
// Record this vtable definition for each type metadata it references.
|
|
recordTypeIdCompatibleVtableReferences(Index, V, Types);
|
|
}
|
|
}
|
|
|
|
// Don't mark variables we won't be able to internalize as read/write-only.
|
|
bool CanBeInternalized =
|
|
!V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
|
|
!V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
|
|
GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, CanBeInternalized);
|
|
auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
|
|
RefEdges.takeVector());
|
|
if (NonRenamableLocal)
|
|
CantBePromoted.insert(V.getGUID());
|
|
if (HasBlockAddress)
|
|
GVarSummary->setNotEligibleToImport();
|
|
if (!VTableFuncs.empty())
|
|
GVarSummary->setVTableFuncs(VTableFuncs);
|
|
Index.addGlobalValueSummary(V, std::move(GVarSummary));
|
|
}
|
|
|
|
static void
|
|
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
|
|
DenseSet<GlobalValue::GUID> &CantBePromoted) {
|
|
bool NonRenamableLocal = isNonRenamableLocal(A);
|
|
GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
|
|
/* Live = */ false, A.isDSOLocal(),
|
|
A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
|
|
auto AS = std::make_unique<AliasSummary>(Flags);
|
|
auto *Aliasee = A.getBaseObject();
|
|
auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
|
|
assert(AliaseeVI && "Alias expects aliasee summary to be available");
|
|
assert(AliaseeVI.getSummaryList().size() == 1 &&
|
|
"Expected a single entry per aliasee in per-module index");
|
|
AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
|
|
if (NonRenamableLocal)
|
|
CantBePromoted.insert(A.getGUID());
|
|
Index.addGlobalValueSummary(A, std::move(AS));
|
|
}
|
|
|
|
// Set LiveRoot flag on entries matching the given value name.
|
|
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
|
|
if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
|
|
for (auto &Summary : VI.getSummaryList())
|
|
Summary->setLive(true);
|
|
}
|
|
|
|
ModuleSummaryIndex llvm::buildModuleSummaryIndex(
|
|
const Module &M,
|
|
std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
|
|
ProfileSummaryInfo *PSI) {
|
|
assert(PSI);
|
|
bool EnableSplitLTOUnit = false;
|
|
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
|
|
M.getModuleFlag("EnableSplitLTOUnit")))
|
|
EnableSplitLTOUnit = MD->getZExtValue();
|
|
ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
|
|
|
|
// Identify the local values in the llvm.used and llvm.compiler.used sets,
|
|
// which should not be exported as they would then require renaming and
|
|
// promotion, but we may have opaque uses e.g. in inline asm. We collect them
|
|
// here because we use this information to mark functions containing inline
|
|
// assembly calls as not importable.
|
|
SmallPtrSet<GlobalValue *, 8> LocalsUsed;
|
|
SmallPtrSet<GlobalValue *, 8> Used;
|
|
// First collect those in the llvm.used set.
|
|
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
|
|
// Next collect those in the llvm.compiler.used set.
|
|
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
|
|
DenseSet<GlobalValue::GUID> CantBePromoted;
|
|
for (auto *V : Used) {
|
|
if (V->hasLocalLinkage()) {
|
|
LocalsUsed.insert(V);
|
|
CantBePromoted.insert(V->getGUID());
|
|
}
|
|
}
|
|
|
|
bool HasLocalInlineAsmSymbol = false;
|
|
if (!M.getModuleInlineAsm().empty()) {
|
|
// Collect the local values defined by module level asm, and set up
|
|
// summaries for these symbols so that they can be marked as NoRename,
|
|
// to prevent export of any use of them in regular IR that would require
|
|
// renaming within the module level asm. Note we don't need to create a
|
|
// summary for weak or global defs, as they don't need to be flagged as
|
|
// NoRename, and defs in module level asm can't be imported anyway.
|
|
// Also, any values used but not defined within module level asm should
|
|
// be listed on the llvm.used or llvm.compiler.used global and marked as
|
|
// referenced from there.
|
|
ModuleSymbolTable::CollectAsmSymbols(
|
|
M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
|
|
// Symbols not marked as Weak or Global are local definitions.
|
|
if (Flags & (object::BasicSymbolRef::SF_Weak |
|
|
object::BasicSymbolRef::SF_Global))
|
|
return;
|
|
HasLocalInlineAsmSymbol = true;
|
|
GlobalValue *GV = M.getNamedValue(Name);
|
|
if (!GV)
|
|
return;
|
|
assert(GV->isDeclaration() && "Def in module asm already has definition");
|
|
GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
|
|
/* NotEligibleToImport = */ true,
|
|
/* Live = */ true,
|
|
/* Local */ GV->isDSOLocal(),
|
|
GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
|
|
CantBePromoted.insert(GV->getGUID());
|
|
// Create the appropriate summary type.
|
|
if (Function *F = dyn_cast<Function>(GV)) {
|
|
std::unique_ptr<FunctionSummary> Summary =
|
|
std::make_unique<FunctionSummary>(
|
|
GVFlags, /*InstCount=*/0,
|
|
FunctionSummary::FFlags{
|
|
F->hasFnAttribute(Attribute::ReadNone),
|
|
F->hasFnAttribute(Attribute::ReadOnly),
|
|
F->hasFnAttribute(Attribute::NoRecurse),
|
|
F->returnDoesNotAlias(),
|
|
/* NoInline = */ false},
|
|
/*EntryCount=*/0, ArrayRef<ValueInfo>{},
|
|
ArrayRef<FunctionSummary::EdgeTy>{},
|
|
ArrayRef<GlobalValue::GUID>{},
|
|
ArrayRef<FunctionSummary::VFuncId>{},
|
|
ArrayRef<FunctionSummary::VFuncId>{},
|
|
ArrayRef<FunctionSummary::ConstVCall>{},
|
|
ArrayRef<FunctionSummary::ConstVCall>{});
|
|
Index.addGlobalValueSummary(*GV, std::move(Summary));
|
|
} else {
|
|
std::unique_ptr<GlobalVarSummary> Summary =
|
|
std::make_unique<GlobalVarSummary>(
|
|
GVFlags, GlobalVarSummary::GVarFlags(false, false),
|
|
ArrayRef<ValueInfo>{});
|
|
Index.addGlobalValueSummary(*GV, std::move(Summary));
|
|
}
|
|
});
|
|
}
|
|
|
|
bool IsThinLTO = true;
|
|
if (auto *MD =
|
|
mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
|
|
IsThinLTO = MD->getZExtValue();
|
|
|
|
// Compute summaries for all functions defined in module, and save in the
|
|
// index.
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
DominatorTree DT(const_cast<Function &>(F));
|
|
BlockFrequencyInfo *BFI = nullptr;
|
|
std::unique_ptr<BlockFrequencyInfo> BFIPtr;
|
|
if (GetBFICallback)
|
|
BFI = GetBFICallback(F);
|
|
else if (F.hasProfileData()) {
|
|
LoopInfo LI{DT};
|
|
BranchProbabilityInfo BPI{F, LI};
|
|
BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
|
|
BFI = BFIPtr.get();
|
|
}
|
|
|
|
computeFunctionSummary(Index, M, F, BFI, PSI, DT,
|
|
!LocalsUsed.empty() || HasLocalInlineAsmSymbol,
|
|
CantBePromoted, IsThinLTO);
|
|
}
|
|
|
|
// Compute summaries for all variables defined in module, and save in the
|
|
// index.
|
|
SmallVector<MDNode *, 2> Types;
|
|
for (const GlobalVariable &G : M.globals()) {
|
|
if (G.isDeclaration())
|
|
continue;
|
|
computeVariableSummary(Index, G, CantBePromoted, M, Types);
|
|
}
|
|
|
|
// Compute summaries for all aliases defined in module, and save in the
|
|
// index.
|
|
for (const GlobalAlias &A : M.aliases())
|
|
computeAliasSummary(Index, A, CantBePromoted);
|
|
|
|
for (auto *V : LocalsUsed) {
|
|
auto *Summary = Index.getGlobalValueSummary(*V);
|
|
assert(Summary && "Missing summary for global value");
|
|
Summary->setNotEligibleToImport();
|
|
}
|
|
|
|
// The linker doesn't know about these LLVM produced values, so we need
|
|
// to flag them as live in the index to ensure index-based dead value
|
|
// analysis treats them as live roots of the analysis.
|
|
setLiveRoot(Index, "llvm.used");
|
|
setLiveRoot(Index, "llvm.compiler.used");
|
|
setLiveRoot(Index, "llvm.global_ctors");
|
|
setLiveRoot(Index, "llvm.global_dtors");
|
|
setLiveRoot(Index, "llvm.global.annotations");
|
|
|
|
for (auto &GlobalList : Index) {
|
|
// Ignore entries for references that are undefined in the current module.
|
|
if (GlobalList.second.SummaryList.empty())
|
|
continue;
|
|
|
|
assert(GlobalList.second.SummaryList.size() == 1 &&
|
|
"Expected module's index to have one summary per GUID");
|
|
auto &Summary = GlobalList.second.SummaryList[0];
|
|
if (!IsThinLTO) {
|
|
Summary->setNotEligibleToImport();
|
|
continue;
|
|
}
|
|
|
|
bool AllRefsCanBeExternallyReferenced =
|
|
llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
|
|
return !CantBePromoted.count(VI.getGUID());
|
|
});
|
|
if (!AllRefsCanBeExternallyReferenced) {
|
|
Summary->setNotEligibleToImport();
|
|
continue;
|
|
}
|
|
|
|
if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
|
|
bool AllCallsCanBeExternallyReferenced = llvm::all_of(
|
|
FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
|
|
return !CantBePromoted.count(Edge.first.getGUID());
|
|
});
|
|
if (!AllCallsCanBeExternallyReferenced)
|
|
Summary->setNotEligibleToImport();
|
|
}
|
|
}
|
|
|
|
if (!ModuleSummaryDotFile.empty()) {
|
|
std::error_code EC;
|
|
raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
|
|
if (EC)
|
|
report_fatal_error(Twine("Failed to open dot file ") +
|
|
ModuleSummaryDotFile + ": " + EC.message() + "\n");
|
|
Index.exportToDot(OSDot);
|
|
}
|
|
|
|
return Index;
|
|
}
|
|
|
|
AnalysisKey ModuleSummaryIndexAnalysis::Key;
|
|
|
|
ModuleSummaryIndex
|
|
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
|
|
ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
return buildModuleSummaryIndex(
|
|
M,
|
|
[&FAM](const Function &F) {
|
|
return &FAM.getResult<BlockFrequencyAnalysis>(
|
|
*const_cast<Function *>(&F));
|
|
},
|
|
&PSI);
|
|
}
|
|
|
|
char ModuleSummaryIndexWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
|
|
"Module Summary Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
|
|
"Module Summary Analysis", false, true)
|
|
|
|
ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
|
|
return new ModuleSummaryIndexWrapperPass();
|
|
}
|
|
|
|
ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
|
|
: ModulePass(ID) {
|
|
initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
|
|
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
Index.emplace(buildModuleSummaryIndex(
|
|
M,
|
|
[this](const Function &F) {
|
|
return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
|
|
*const_cast<Function *>(&F))
|
|
.getBFI());
|
|
},
|
|
PSI));
|
|
return false;
|
|
}
|
|
|
|
bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
|
|
Index.reset();
|
|
return false;
|
|
}
|
|
|
|
void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
}
|