mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
4aa2677e39
This patch extends VPWidenPHIRecipe to manage pairs of incoming (VPValue, VPBasicBlock) in the VPlan native path. This is made possible because we now directly manage defined VPValues for recipes. By keeping both the incoming value and block in the recipe directly, code-generation in the VPlan native path becomes independent of the predecessor ordering when fixing up non-induction phis, which currently can cause crashes in the VPlan native path. This fixes PR45958. Reviewed By: sguggill Differential Revision: https://reviews.llvm.org/D96773
2059 lines
74 KiB
C++
2059 lines
74 KiB
C++
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file contains the declarations of the Vectorization Plan base classes:
|
|
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
|
/// VPBlockBase, together implementing a Hierarchical CFG;
|
|
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
|
|
/// treated as proper graphs for generic algorithms;
|
|
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
|
/// within VPBasicBlocks;
|
|
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
|
|
/// instruction;
|
|
/// 5. The VPlan class holding a candidate for vectorization;
|
|
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
|
|
/// These are documented in docs/VectorizationPlan.rst.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
|
|
#include "VPlanLoopInfo.h"
|
|
#include "VPlanValue.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <map>
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
|
|
class BasicBlock;
|
|
class DominatorTree;
|
|
class InnerLoopVectorizer;
|
|
class LoopInfo;
|
|
class raw_ostream;
|
|
class RecurrenceDescriptor;
|
|
class Value;
|
|
class VPBasicBlock;
|
|
class VPRegionBlock;
|
|
class VPlan;
|
|
class VPlanSlp;
|
|
|
|
/// A range of powers-of-2 vectorization factors with fixed start and
|
|
/// adjustable end. The range includes start and excludes end, e.g.,:
|
|
/// [1, 9) = {1, 2, 4, 8}
|
|
struct VFRange {
|
|
// A power of 2.
|
|
const ElementCount Start;
|
|
|
|
// Need not be a power of 2. If End <= Start range is empty.
|
|
ElementCount End;
|
|
|
|
bool isEmpty() const {
|
|
return End.getKnownMinValue() <= Start.getKnownMinValue();
|
|
}
|
|
|
|
VFRange(const ElementCount &Start, const ElementCount &End)
|
|
: Start(Start), End(End) {
|
|
assert(Start.isScalable() == End.isScalable() &&
|
|
"Both Start and End should have the same scalable flag");
|
|
assert(isPowerOf2_32(Start.getKnownMinValue()) &&
|
|
"Expected Start to be a power of 2");
|
|
}
|
|
};
|
|
|
|
using VPlanPtr = std::unique_ptr<VPlan>;
|
|
|
|
/// In what follows, the term "input IR" refers to code that is fed into the
|
|
/// vectorizer whereas the term "output IR" refers to code that is generated by
|
|
/// the vectorizer.
|
|
|
|
/// VPIteration represents a single point in the iteration space of the output
|
|
/// (vectorized and/or unrolled) IR loop.
|
|
struct VPIteration {
|
|
/// in [0..UF)
|
|
unsigned Part;
|
|
|
|
/// in [0..VF)
|
|
unsigned Lane;
|
|
|
|
VPIteration(unsigned Part, unsigned Lane) : Part(Part), Lane(Lane) {}
|
|
|
|
bool isFirstIteration() const { return Part == 0 && Lane == 0; }
|
|
};
|
|
|
|
/// VPTransformState holds information passed down when "executing" a VPlan,
|
|
/// needed for generating the output IR.
|
|
struct VPTransformState {
|
|
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
|
|
DominatorTree *DT, IRBuilder<> &Builder,
|
|
InnerLoopVectorizer *ILV, VPlan *Plan)
|
|
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ILV(ILV),
|
|
Plan(Plan) {}
|
|
|
|
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
|
ElementCount VF;
|
|
unsigned UF;
|
|
|
|
/// Hold the indices to generate specific scalar instructions. Null indicates
|
|
/// that all instances are to be generated, using either scalar or vector
|
|
/// instructions.
|
|
Optional<VPIteration> Instance;
|
|
|
|
struct DataState {
|
|
/// A type for vectorized values in the new loop. Each value from the
|
|
/// original loop, when vectorized, is represented by UF vector values in
|
|
/// the new unrolled loop, where UF is the unroll factor.
|
|
typedef SmallVector<Value *, 2> PerPartValuesTy;
|
|
|
|
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
|
|
|
|
using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
|
|
DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
|
|
} Data;
|
|
|
|
/// Get the generated Value for a given VPValue and a given Part. Note that
|
|
/// as some Defs are still created by ILV and managed in its ValueMap, this
|
|
/// method will delegate the call to ILV in such cases in order to provide
|
|
/// callers a consistent API.
|
|
/// \see set.
|
|
Value *get(VPValue *Def, unsigned Part);
|
|
|
|
/// Get the generated Value for a given VPValue and given Part and Lane.
|
|
Value *get(VPValue *Def, const VPIteration &Instance);
|
|
|
|
bool hasVectorValue(VPValue *Def, unsigned Part) {
|
|
auto I = Data.PerPartOutput.find(Def);
|
|
return I != Data.PerPartOutput.end() && Part < I->second.size() &&
|
|
I->second[Part];
|
|
}
|
|
|
|
bool hasAnyVectorValue(VPValue *Def) const {
|
|
return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end();
|
|
}
|
|
|
|
bool hasScalarValue(VPValue *Def, VPIteration Instance) {
|
|
auto I = Data.PerPartScalars.find(Def);
|
|
if (I == Data.PerPartScalars.end())
|
|
return false;
|
|
return Instance.Part < I->second.size() &&
|
|
Instance.Lane < I->second[Instance.Part].size() &&
|
|
I->second[Instance.Part][Instance.Lane];
|
|
}
|
|
|
|
/// Set the generated Value for a given VPValue and a given Part.
|
|
void set(VPValue *Def, Value *V, unsigned Part) {
|
|
if (!Data.PerPartOutput.count(Def)) {
|
|
DataState::PerPartValuesTy Entry(UF);
|
|
Data.PerPartOutput[Def] = Entry;
|
|
}
|
|
Data.PerPartOutput[Def][Part] = V;
|
|
}
|
|
/// Reset an existing vector value for \p Def and a given \p Part.
|
|
void reset(VPValue *Def, Value *V, unsigned Part) {
|
|
auto Iter = Data.PerPartOutput.find(Def);
|
|
assert(Iter != Data.PerPartOutput.end() &&
|
|
"need to overwrite existing value");
|
|
Iter->second[Part] = V;
|
|
}
|
|
|
|
/// Set the generated scalar \p V for \p Def and the given \p Instance.
|
|
void set(VPValue *Def, Value *V, const VPIteration &Instance) {
|
|
auto Iter = Data.PerPartScalars.insert({Def, {}});
|
|
auto &PerPartVec = Iter.first->second;
|
|
while (PerPartVec.size() <= Instance.Part)
|
|
PerPartVec.emplace_back();
|
|
auto &Scalars = PerPartVec[Instance.Part];
|
|
while (Scalars.size() <= Instance.Lane)
|
|
Scalars.push_back(nullptr);
|
|
assert(!Scalars[Instance.Lane] && "should overwrite existing value");
|
|
Scalars[Instance.Lane] = V;
|
|
}
|
|
|
|
/// Reset an existing scalar value for \p Def and a given \p Instance.
|
|
void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
|
|
auto Iter = Data.PerPartScalars.find(Def);
|
|
assert(Iter != Data.PerPartScalars.end() &&
|
|
"need to overwrite existing value");
|
|
assert(Instance.Part < Iter->second.size() &&
|
|
"need to overwrite existing value");
|
|
assert(Instance.Lane < Iter->second[Instance.Part].size() &&
|
|
"need to overwrite existing value");
|
|
Iter->second[Instance.Part][Instance.Lane] = V;
|
|
}
|
|
|
|
/// Hold state information used when constructing the CFG of the output IR,
|
|
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
|
struct CFGState {
|
|
/// The previous VPBasicBlock visited. Initially set to null.
|
|
VPBasicBlock *PrevVPBB = nullptr;
|
|
|
|
/// The previous IR BasicBlock created or used. Initially set to the new
|
|
/// header BasicBlock.
|
|
BasicBlock *PrevBB = nullptr;
|
|
|
|
/// The last IR BasicBlock in the output IR. Set to the new latch
|
|
/// BasicBlock, used for placing the newly created BasicBlocks.
|
|
BasicBlock *LastBB = nullptr;
|
|
|
|
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
|
|
/// of replication, maps the BasicBlock of the last replica created.
|
|
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
|
|
|
|
/// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
|
|
/// up at the end of vector code generation.
|
|
SmallVector<VPBasicBlock *, 8> VPBBsToFix;
|
|
|
|
CFGState() = default;
|
|
} CFG;
|
|
|
|
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
|
LoopInfo *LI;
|
|
|
|
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
|
|
DominatorTree *DT;
|
|
|
|
/// Hold a reference to the IRBuilder used to generate output IR code.
|
|
IRBuilder<> &Builder;
|
|
|
|
VPValue2ValueTy VPValue2Value;
|
|
|
|
/// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
|
|
Value *CanonicalIV = nullptr;
|
|
|
|
/// Hold the trip count of the scalar loop.
|
|
Value *TripCount = nullptr;
|
|
|
|
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
|
|
InnerLoopVectorizer *ILV;
|
|
|
|
/// Pointer to the VPlan code is generated for.
|
|
VPlan *Plan;
|
|
};
|
|
|
|
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
|
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
|
class VPBlockBase {
|
|
friend class VPBlockUtils;
|
|
|
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
|
|
|
/// An optional name for the block.
|
|
std::string Name;
|
|
|
|
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
|
/// it is a topmost VPBlockBase.
|
|
VPRegionBlock *Parent = nullptr;
|
|
|
|
/// List of predecessor blocks.
|
|
SmallVector<VPBlockBase *, 1> Predecessors;
|
|
|
|
/// List of successor blocks.
|
|
SmallVector<VPBlockBase *, 1> Successors;
|
|
|
|
/// Successor selector managed by a VPUser. For blocks with zero or one
|
|
/// successors, there is no operand. Otherwise there is exactly one operand
|
|
/// which is the branch condition.
|
|
VPUser CondBitUser;
|
|
|
|
/// Current block predicate - null if the block does not need a predicate.
|
|
VPValue *Predicate = nullptr;
|
|
|
|
/// VPlan containing the block. Can only be set on the entry block of the
|
|
/// plan.
|
|
VPlan *Plan = nullptr;
|
|
|
|
/// Add \p Successor as the last successor to this block.
|
|
void appendSuccessor(VPBlockBase *Successor) {
|
|
assert(Successor && "Cannot add nullptr successor!");
|
|
Successors.push_back(Successor);
|
|
}
|
|
|
|
/// Add \p Predecessor as the last predecessor to this block.
|
|
void appendPredecessor(VPBlockBase *Predecessor) {
|
|
assert(Predecessor && "Cannot add nullptr predecessor!");
|
|
Predecessors.push_back(Predecessor);
|
|
}
|
|
|
|
/// Remove \p Predecessor from the predecessors of this block.
|
|
void removePredecessor(VPBlockBase *Predecessor) {
|
|
auto Pos = find(Predecessors, Predecessor);
|
|
assert(Pos && "Predecessor does not exist");
|
|
Predecessors.erase(Pos);
|
|
}
|
|
|
|
/// Remove \p Successor from the successors of this block.
|
|
void removeSuccessor(VPBlockBase *Successor) {
|
|
auto Pos = find(Successors, Successor);
|
|
assert(Pos && "Successor does not exist");
|
|
Successors.erase(Pos);
|
|
}
|
|
|
|
protected:
|
|
VPBlockBase(const unsigned char SC, const std::string &N)
|
|
: SubclassID(SC), Name(N) {}
|
|
|
|
public:
|
|
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
|
/// that are actually instantiated. Values of this enumeration are kept in the
|
|
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
|
/// type identification.
|
|
using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
|
|
|
|
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
|
|
|
|
virtual ~VPBlockBase() = default;
|
|
|
|
const std::string &getName() const { return Name; }
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
/// \return an ID for the concrete type of this object.
|
|
/// This is used to implement the classof checks. This should not be used
|
|
/// for any other purpose, as the values may change as LLVM evolves.
|
|
unsigned getVPBlockID() const { return SubclassID; }
|
|
|
|
VPRegionBlock *getParent() { return Parent; }
|
|
const VPRegionBlock *getParent() const { return Parent; }
|
|
|
|
/// \return A pointer to the plan containing the current block.
|
|
VPlan *getPlan();
|
|
const VPlan *getPlan() const;
|
|
|
|
/// Sets the pointer of the plan containing the block. The block must be the
|
|
/// entry block into the VPlan.
|
|
void setPlan(VPlan *ParentPlan);
|
|
|
|
void setParent(VPRegionBlock *P) { Parent = P; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getEntryBasicBlock() const;
|
|
VPBasicBlock *getEntryBasicBlock();
|
|
|
|
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getExitBasicBlock() const;
|
|
VPBasicBlock *getExitBasicBlock();
|
|
|
|
const VPBlocksTy &getSuccessors() const { return Successors; }
|
|
VPBlocksTy &getSuccessors() { return Successors; }
|
|
|
|
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
|
VPBlocksTy &getPredecessors() { return Predecessors; }
|
|
|
|
/// \return the successor of this VPBlockBase if it has a single successor.
|
|
/// Otherwise return a null pointer.
|
|
VPBlockBase *getSingleSuccessor() const {
|
|
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
|
}
|
|
|
|
/// \return the predecessor of this VPBlockBase if it has a single
|
|
/// predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSinglePredecessor() const {
|
|
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
|
}
|
|
|
|
size_t getNumSuccessors() const { return Successors.size(); }
|
|
size_t getNumPredecessors() const { return Predecessors.size(); }
|
|
|
|
/// An Enclosing Block of a block B is any block containing B, including B
|
|
/// itself. \return the closest enclosing block starting from "this", which
|
|
/// has successors. \return the root enclosing block if all enclosing blocks
|
|
/// have no successors.
|
|
VPBlockBase *getEnclosingBlockWithSuccessors();
|
|
|
|
/// \return the closest enclosing block starting from "this", which has
|
|
/// predecessors. \return the root enclosing block if all enclosing blocks
|
|
/// have no predecessors.
|
|
VPBlockBase *getEnclosingBlockWithPredecessors();
|
|
|
|
/// \return the successors either attached directly to this VPBlockBase or, if
|
|
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
|
/// successors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has successors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalSuccessors() {
|
|
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
|
}
|
|
|
|
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
|
/// hierarchical successor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalSuccessor() {
|
|
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
|
}
|
|
|
|
/// \return the predecessors either attached directly to this VPBlockBase or,
|
|
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
|
/// predecessors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has predecessors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalPredecessors() {
|
|
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
|
}
|
|
|
|
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
|
/// single hierarchical predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalPredecessor() {
|
|
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
|
}
|
|
|
|
/// \return the condition bit selecting the successor.
|
|
VPValue *getCondBit() {
|
|
if (CondBitUser.getNumOperands())
|
|
return CondBitUser.getOperand(0);
|
|
return nullptr;
|
|
}
|
|
|
|
const VPValue *getCondBit() const {
|
|
if (CondBitUser.getNumOperands())
|
|
return CondBitUser.getOperand(0);
|
|
return nullptr;
|
|
}
|
|
|
|
void setCondBit(VPValue *CV) {
|
|
if (!CV) {
|
|
if (CondBitUser.getNumOperands() == 1)
|
|
CondBitUser.removeLastOperand();
|
|
return;
|
|
}
|
|
if (CondBitUser.getNumOperands() == 1)
|
|
CondBitUser.setOperand(0, CV);
|
|
else
|
|
CondBitUser.addOperand(CV);
|
|
}
|
|
|
|
VPValue *getPredicate() { return Predicate; }
|
|
|
|
const VPValue *getPredicate() const { return Predicate; }
|
|
|
|
void setPredicate(VPValue *Pred) { Predicate = Pred; }
|
|
|
|
/// Set a given VPBlockBase \p Successor as the single successor of this
|
|
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
|
|
/// This VPBlockBase must have no successors.
|
|
void setOneSuccessor(VPBlockBase *Successor) {
|
|
assert(Successors.empty() && "Setting one successor when others exist.");
|
|
appendSuccessor(Successor);
|
|
}
|
|
|
|
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
|
/// successors of this VPBlockBase. \p Condition is set as the successor
|
|
/// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
|
|
/// IfFalse. This VPBlockBase must have no successors.
|
|
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
|
|
VPValue *Condition) {
|
|
assert(Successors.empty() && "Setting two successors when others exist.");
|
|
assert(Condition && "Setting two successors without condition!");
|
|
setCondBit(Condition);
|
|
appendSuccessor(IfTrue);
|
|
appendSuccessor(IfFalse);
|
|
}
|
|
|
|
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
|
|
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
|
|
/// as successor of any VPBasicBlock in \p NewPreds.
|
|
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
|
|
assert(Predecessors.empty() && "Block predecessors already set.");
|
|
for (auto *Pred : NewPreds)
|
|
appendPredecessor(Pred);
|
|
}
|
|
|
|
/// Remove all the predecessor of this block.
|
|
void clearPredecessors() { Predecessors.clear(); }
|
|
|
|
/// Remove all the successors of this block and set to null its condition bit
|
|
void clearSuccessors() {
|
|
Successors.clear();
|
|
setCondBit(nullptr);
|
|
}
|
|
|
|
/// The method which generates the output IR that correspond to this
|
|
/// VPBlockBase, thereby "executing" the VPlan.
|
|
virtual void execute(struct VPTransformState *State) = 0;
|
|
|
|
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
|
|
static void deleteCFG(VPBlockBase *Entry);
|
|
|
|
void printAsOperand(raw_ostream &OS, bool PrintType) const {
|
|
OS << getName();
|
|
}
|
|
|
|
void print(raw_ostream &OS) const {
|
|
// TODO: Only printing VPBB name for now since we only have dot printing
|
|
// support for VPInstructions/Recipes.
|
|
printAsOperand(OS, false);
|
|
}
|
|
|
|
/// Return true if it is legal to hoist instructions into this block.
|
|
bool isLegalToHoistInto() {
|
|
// There are currently no constraints that prevent an instruction to be
|
|
// hoisted into a VPBlockBase.
|
|
return true;
|
|
}
|
|
|
|
/// Replace all operands of VPUsers in the block with \p NewValue and also
|
|
/// replaces all uses of VPValues defined in the block with NewValue.
|
|
virtual void dropAllReferences(VPValue *NewValue) = 0;
|
|
};
|
|
|
|
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
|
/// instructions. VPRecipeBase owns the the VPValues it defines through VPDef
|
|
/// and is responsible for deleting its defined values. Single-value
|
|
/// VPRecipeBases that also inherit from VPValue must make sure to inherit from
|
|
/// VPRecipeBase before VPValue.
|
|
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
|
|
public VPDef,
|
|
public VPUser {
|
|
friend VPBasicBlock;
|
|
friend class VPBlockUtils;
|
|
|
|
|
|
/// Each VPRecipe belongs to a single VPBasicBlock.
|
|
VPBasicBlock *Parent = nullptr;
|
|
|
|
public:
|
|
VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands)
|
|
: VPDef(SC), VPUser(Operands) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands)
|
|
: VPDef(SC), VPUser(Operands) {}
|
|
virtual ~VPRecipeBase() = default;
|
|
|
|
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
|
VPBasicBlock *getParent() { return Parent; }
|
|
const VPBasicBlock *getParent() const { return Parent; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRecipe, thereby "executing" the VPlan.
|
|
virtual void execute(struct VPTransformState &State) = 0;
|
|
|
|
/// Insert an unlinked recipe into a basic block immediately before
|
|
/// the specified recipe.
|
|
void insertBefore(VPRecipeBase *InsertPos);
|
|
|
|
/// Insert an unlinked Recipe into a basic block immediately after
|
|
/// the specified Recipe.
|
|
void insertAfter(VPRecipeBase *InsertPos);
|
|
|
|
/// Unlink this recipe from its current VPBasicBlock and insert it into
|
|
/// the VPBasicBlock that MovePos lives in, right after MovePos.
|
|
void moveAfter(VPRecipeBase *MovePos);
|
|
|
|
/// Unlink this recipe and insert into BB before I.
|
|
///
|
|
/// \pre I is a valid iterator into BB.
|
|
void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
|
|
|
|
/// This method unlinks 'this' from the containing basic block, but does not
|
|
/// delete it.
|
|
void removeFromParent();
|
|
|
|
/// This method unlinks 'this' from the containing basic block and deletes it.
|
|
///
|
|
/// \returns an iterator pointing to the element after the erased one
|
|
iplist<VPRecipeBase>::iterator eraseFromParent();
|
|
|
|
/// Returns the underlying instruction, if the recipe is a VPValue or nullptr
|
|
/// otherwise.
|
|
Instruction *getUnderlyingInstr() {
|
|
return cast<Instruction>(getVPValue()->getUnderlyingValue());
|
|
}
|
|
const Instruction *getUnderlyingInstr() const {
|
|
return cast<Instruction>(getVPValue()->getUnderlyingValue());
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
// All VPDefs are also VPRecipeBases.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
inline bool VPUser::classof(const VPDef *Def) {
|
|
return Def->getVPDefID() == VPRecipeBase::VPInstructionSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPWidenSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPWidenCallSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPBlendSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPInterleaveSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPReplicateSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPReductionSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC ||
|
|
Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
|
|
}
|
|
|
|
/// This is a concrete Recipe that models a single VPlan-level instruction.
|
|
/// While as any Recipe it may generate a sequence of IR instructions when
|
|
/// executed, these instructions would always form a single-def expression as
|
|
/// the VPInstruction is also a single def-use vertex.
|
|
class VPInstruction : public VPRecipeBase, public VPValue {
|
|
friend class VPlanSlp;
|
|
|
|
public:
|
|
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
|
|
enum {
|
|
Not = Instruction::OtherOpsEnd + 1,
|
|
ICmpULE,
|
|
SLPLoad,
|
|
SLPStore,
|
|
ActiveLaneMask,
|
|
};
|
|
|
|
private:
|
|
typedef unsigned char OpcodeTy;
|
|
OpcodeTy Opcode;
|
|
|
|
/// Utility method serving execute(): generates a single instance of the
|
|
/// modeled instruction.
|
|
void generateInstruction(VPTransformState &State, unsigned Part);
|
|
|
|
protected:
|
|
void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
|
|
|
|
public:
|
|
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
|
|
: VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands),
|
|
VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {}
|
|
|
|
VPInstruction(unsigned Opcode, ArrayRef<VPInstruction *> Operands)
|
|
: VPRecipeBase(VPRecipeBase::VPInstructionSC, {}),
|
|
VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {
|
|
for (auto *I : Operands)
|
|
addOperand(I->getVPValue());
|
|
}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
|
|
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPValue *V) {
|
|
return V->getVPValueID() == VPValue::VPVInstructionSC;
|
|
}
|
|
|
|
VPInstruction *clone() const {
|
|
SmallVector<VPValue *, 2> Operands(operands());
|
|
return new VPInstruction(Opcode, Operands);
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *R) {
|
|
return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
|
|
}
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Generate the instruction.
|
|
/// TODO: We currently execute only per-part unless a specific instance is
|
|
/// provided.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the VPInstruction to \p O.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// Print the VPInstruction to dbgs() (for debugging).
|
|
void dump() const;
|
|
|
|
/// Return true if this instruction may modify memory.
|
|
bool mayWriteToMemory() const {
|
|
// TODO: we can use attributes of the called function to rule out memory
|
|
// modifications.
|
|
return Opcode == Instruction::Store || Opcode == Instruction::Call ||
|
|
Opcode == Instruction::Invoke || Opcode == SLPStore;
|
|
}
|
|
|
|
bool hasResult() const {
|
|
// CallInst may or may not have a result, depending on the called function.
|
|
// Conservatively return calls have results for now.
|
|
switch (getOpcode()) {
|
|
case Instruction::Ret:
|
|
case Instruction::Br:
|
|
case Instruction::Store:
|
|
case Instruction::Switch:
|
|
case Instruction::IndirectBr:
|
|
case Instruction::Resume:
|
|
case Instruction::CatchRet:
|
|
case Instruction::Unreachable:
|
|
case Instruction::Fence:
|
|
case Instruction::AtomicRMW:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// VPWidenRecipe is a recipe for producing a copy of vector type its
|
|
/// ingredient. This recipe covers most of the traditional vectorization cases
|
|
/// where each ingredient transforms into a vectorized version of itself.
|
|
class VPWidenRecipe : public VPRecipeBase, public VPValue {
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
|
|
: VPRecipeBase(VPRecipeBase::VPWidenSC, Operands),
|
|
VPValue(VPValue::VPVWidenSC, &I, this) {}
|
|
|
|
~VPWidenRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenSC;
|
|
}
|
|
static inline bool classof(const VPValue *V) {
|
|
return V->getVPValueID() == VPValue::VPVWidenSC;
|
|
}
|
|
|
|
/// Produce widened copies of all Ingredients.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A recipe for widening Call instructions.
|
|
class VPWidenCallRecipe : public VPRecipeBase, public VPValue {
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
|
|
: VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments),
|
|
VPValue(VPValue::VPVWidenCallSC, &I, this) {}
|
|
|
|
~VPWidenCallRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenCallSC;
|
|
}
|
|
|
|
/// Produce a widened version of the call instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A recipe for widening select instructions.
|
|
class VPWidenSelectRecipe : public VPRecipeBase, public VPValue {
|
|
|
|
/// Is the condition of the select loop invariant?
|
|
bool InvariantCond;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
|
|
bool InvariantCond)
|
|
: VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands),
|
|
VPValue(VPValue::VPVWidenSelectSC, &I, this),
|
|
InvariantCond(InvariantCond) {}
|
|
|
|
~VPWidenSelectRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC;
|
|
}
|
|
|
|
/// Produce a widened version of the select instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A recipe for handling GEP instructions.
|
|
class VPWidenGEPRecipe : public VPRecipeBase, public VPValue {
|
|
bool IsPtrLoopInvariant;
|
|
SmallBitVector IsIndexLoopInvariant;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
|
|
: VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
|
|
VPValue(VPWidenGEPSC, GEP, this),
|
|
IsIndexLoopInvariant(GEP->getNumIndices(), false) {}
|
|
|
|
template <typename IterT>
|
|
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
|
|
Loop *OrigLoop)
|
|
: VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
|
|
VPValue(VPValue::VPVWidenGEPSC, GEP, this),
|
|
IsIndexLoopInvariant(GEP->getNumIndices(), false) {
|
|
IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
|
|
for (auto Index : enumerate(GEP->indices()))
|
|
IsIndexLoopInvariant[Index.index()] =
|
|
OrigLoop->isLoopInvariant(Index.value().get());
|
|
}
|
|
~VPWidenGEPRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC;
|
|
}
|
|
|
|
/// Generate the gep nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
|
/// producing their vector and scalar values.
|
|
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
|
|
PHINode *IV;
|
|
|
|
public:
|
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, Instruction *Cast,
|
|
TruncInst *Trunc = nullptr)
|
|
: VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), IV(IV) {
|
|
if (Trunc)
|
|
new VPValue(Trunc, this);
|
|
else
|
|
new VPValue(IV, this);
|
|
|
|
if (Cast)
|
|
new VPValue(Cast, this);
|
|
}
|
|
~VPWidenIntOrFpInductionRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
|
|
}
|
|
|
|
/// Generate the vectorized and scalarized versions of the phi node as
|
|
/// needed by their users.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// Returns the start value of the induction.
|
|
VPValue *getStartValue() { return getOperand(0); }
|
|
|
|
/// Returns the cast VPValue, if one is attached, or nullptr otherwise.
|
|
VPValue *getCastValue() {
|
|
if (getNumDefinedValues() != 2)
|
|
return nullptr;
|
|
return getVPValue(1);
|
|
}
|
|
|
|
/// Returns the first defined value as TruncInst, if it is one or nullptr
|
|
/// otherwise.
|
|
TruncInst *getTruncInst() {
|
|
return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
|
|
}
|
|
const TruncInst *getTruncInst() const {
|
|
return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling all phi nodes except for integer and FP inductions.
|
|
/// For reduction PHIs, RdxDesc must point to the corresponding recurrence
|
|
/// descriptor and the start value is the first operand of the recipe.
|
|
/// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
|
|
/// managed in the recipe directly.
|
|
class VPWidenPHIRecipe : public VPRecipeBase, public VPValue {
|
|
/// Descriptor for a reduction PHI.
|
|
RecurrenceDescriptor *RdxDesc = nullptr;
|
|
|
|
/// List of incoming blocks. Only used in the VPlan native path.
|
|
SmallVector<VPBasicBlock *, 2> IncomingBlocks;
|
|
|
|
public:
|
|
/// Create a new VPWidenPHIRecipe for the reduction \p Phi described by \p
|
|
/// RdxDesc.
|
|
VPWidenPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, VPValue &Start)
|
|
: VPWidenPHIRecipe(Phi) {
|
|
this->RdxDesc = &RdxDesc;
|
|
addOperand(&Start);
|
|
}
|
|
|
|
/// Create a VPWidenPHIRecipe for \p Phi
|
|
VPWidenPHIRecipe(PHINode *Phi)
|
|
: VPRecipeBase(VPWidenPHISC, {}),
|
|
VPValue(VPValue::VPVWidenPHISC, Phi, this) {}
|
|
~VPWidenPHIRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenPHISC;
|
|
}
|
|
static inline bool classof(const VPValue *V) {
|
|
return V->getVPValueID() == VPValue::VPVWidenPHISC;
|
|
}
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// Returns the start value of the phi, if it is a reduction.
|
|
VPValue *getStartValue() {
|
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
|
}
|
|
|
|
/// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
|
|
void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
|
|
addOperand(IncomingV);
|
|
IncomingBlocks.push_back(IncomingBlock);
|
|
}
|
|
|
|
/// Returns the \p I th incoming VPValue.
|
|
VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
|
|
|
|
/// Returns the \p I th incoming VPBasicBlock.
|
|
VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
|
|
};
|
|
|
|
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
|
|
/// instructions.
|
|
class VPBlendRecipe : public VPRecipeBase, public VPValue {
|
|
PHINode *Phi;
|
|
|
|
public:
|
|
/// The blend operation is a User of the incoming values and of their
|
|
/// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
|
|
/// might be incoming with a full mask for which there is no VPValue.
|
|
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
|
|
: VPRecipeBase(VPBlendSC, Operands),
|
|
VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) {
|
|
assert(Operands.size() > 0 &&
|
|
((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
|
|
"Expected either a single incoming value or a positive even number "
|
|
"of operands");
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPBlendSC;
|
|
}
|
|
|
|
/// Return the number of incoming values, taking into account that a single
|
|
/// incoming value has no mask.
|
|
unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
|
|
|
|
/// Return incoming value number \p Idx.
|
|
VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
|
|
|
|
/// Return mask number \p Idx.
|
|
VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
|
|
/// or stores into one wide load/store and shuffles. The first operand of a
|
|
/// VPInterleave recipe is the address, followed by the stored values, followed
|
|
/// by an optional mask.
|
|
class VPInterleaveRecipe : public VPRecipeBase {
|
|
const InterleaveGroup<Instruction> *IG;
|
|
|
|
bool HasMask = false;
|
|
|
|
public:
|
|
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
|
|
ArrayRef<VPValue *> StoredValues, VPValue *Mask)
|
|
: VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) {
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (Instruction *I = IG->getMember(i)) {
|
|
if (I->getType()->isVoidTy())
|
|
continue;
|
|
new VPValue(I, this);
|
|
}
|
|
|
|
for (auto *SV : StoredValues)
|
|
addOperand(SV);
|
|
if (Mask) {
|
|
HasMask = true;
|
|
addOperand(Mask);
|
|
}
|
|
}
|
|
~VPInterleaveRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPInterleaveSC;
|
|
}
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const {
|
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last, currently 2nd operand.
|
|
return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Return the VPValues stored by this interleave group. If it is a load
|
|
/// interleave group, return an empty ArrayRef.
|
|
ArrayRef<VPValue *> getStoredValues() const {
|
|
// The first operand is the address, followed by the stored values, followed
|
|
// by an optional mask.
|
|
return ArrayRef<VPValue *>(op_begin(), getNumOperands())
|
|
.slice(1, getNumOperands() - (HasMask ? 2 : 1));
|
|
}
|
|
|
|
/// Generate the wide load or store, and shuffles.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
|
|
};
|
|
|
|
/// A recipe to represent inloop reduction operations, performing a reduction on
|
|
/// a vector operand into a scalar value, and adding the result to a chain.
|
|
/// The Operands are {ChainOp, VecOp, [Condition]}.
|
|
class VPReductionRecipe : public VPRecipeBase, public VPValue {
|
|
/// The recurrence decriptor for the reduction in question.
|
|
RecurrenceDescriptor *RdxDesc;
|
|
/// Pointer to the TTI, needed to create the target reduction
|
|
const TargetTransformInfo *TTI;
|
|
|
|
public:
|
|
VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp,
|
|
VPValue *VecOp, VPValue *CondOp,
|
|
const TargetTransformInfo *TTI)
|
|
: VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}),
|
|
VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) {
|
|
if (CondOp)
|
|
addOperand(CondOp);
|
|
}
|
|
|
|
~VPReductionRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPValue *V) {
|
|
return V->getVPValueID() == VPValue::VPVReductionSC;
|
|
}
|
|
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPReductionSC;
|
|
}
|
|
|
|
/// Generate the reduction in the loop
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// The VPValue of the scalar Chain being accumulated.
|
|
VPValue *getChainOp() const { return getOperand(0); }
|
|
/// The VPValue of the vector value to be reduced.
|
|
VPValue *getVecOp() const { return getOperand(1); }
|
|
/// The VPValue of the condition for the block.
|
|
VPValue *getCondOp() const {
|
|
return getNumOperands() > 2 ? getOperand(2) : nullptr;
|
|
}
|
|
};
|
|
|
|
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
|
|
/// copies of the original scalar type, one per lane, instead of producing a
|
|
/// single copy of widened type for all lanes. If the instruction is known to be
|
|
/// uniform only one copy, per lane zero, will be generated.
|
|
class VPReplicateRecipe : public VPRecipeBase, public VPValue {
|
|
/// Indicator if only a single replica per lane is needed.
|
|
bool IsUniform;
|
|
|
|
/// Indicator if the replicas are also predicated.
|
|
bool IsPredicated;
|
|
|
|
/// Indicator if the scalar values should also be packed into a vector.
|
|
bool AlsoPack;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
|
|
bool IsUniform, bool IsPredicated = false)
|
|
: VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this),
|
|
IsUniform(IsUniform), IsPredicated(IsPredicated) {
|
|
// Retain the previous behavior of predicateInstructions(), where an
|
|
// insert-element of a predicated instruction got hoisted into the
|
|
// predicated basic block iff it was its only user. This is achieved by
|
|
// having predicated instructions also pack their values into a vector by
|
|
// default unless they have a replicated user which uses their scalar value.
|
|
AlsoPack = IsPredicated && !I->use_empty();
|
|
}
|
|
|
|
~VPReplicateRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPReplicateSC;
|
|
}
|
|
|
|
static inline bool classof(const VPValue *V) {
|
|
return V->getVPValueID() == VPValue::VPVReplicateSC;
|
|
}
|
|
|
|
/// Generate replicas of the desired Ingredient. Replicas will be generated
|
|
/// for all parts and lanes unless a specific part and lane are specified in
|
|
/// the \p State.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
void setAlsoPack(bool Pack) { AlsoPack = Pack; }
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
bool isUniform() const { return IsUniform; }
|
|
|
|
bool isPacked() const { return AlsoPack; }
|
|
};
|
|
|
|
/// A recipe for generating conditional branches on the bits of a mask.
|
|
class VPBranchOnMaskRecipe : public VPRecipeBase {
|
|
public:
|
|
VPBranchOnMaskRecipe(VPValue *BlockInMask)
|
|
: VPRecipeBase(VPBranchOnMaskSC, {}) {
|
|
if (BlockInMask) // nullptr means all-one mask.
|
|
addOperand(BlockInMask);
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC;
|
|
}
|
|
|
|
/// Generate the extraction of the appropriate bit from the block mask and the
|
|
/// conditional branch.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override {
|
|
O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
|
|
if (VPValue *Mask = getMask())
|
|
Mask->printAsOperand(O, SlotTracker);
|
|
else
|
|
O << " All-One";
|
|
O << "\\l\"";
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
|
|
// Mask is optional.
|
|
return getNumOperands() == 1 ? getOperand(0) : nullptr;
|
|
}
|
|
};
|
|
|
|
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
|
|
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
|
|
/// order to merge values that are set under such a branch and feed their uses.
|
|
/// The phi nodes can be scalar or vector depending on the users of the value.
|
|
/// This recipe works in concert with VPBranchOnMaskRecipe.
|
|
class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue {
|
|
public:
|
|
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
|
|
/// nodes after merging back from a Branch-on-Mask.
|
|
VPPredInstPHIRecipe(VPValue *PredV)
|
|
: VPRecipeBase(VPPredInstPHISC, PredV),
|
|
VPValue(VPValue::VPVPredInstPHI, nullptr, this) {}
|
|
~VPPredInstPHIRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC;
|
|
}
|
|
|
|
/// Generates phi nodes for live-outs as needed to retain SSA form.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A Recipe for widening load/store operations.
|
|
/// The recipe uses the following VPValues:
|
|
/// - For load: Address, optional mask
|
|
/// - For store: Address, stored value, optional mask
|
|
/// TODO: We currently execute only per-part unless a specific instance is
|
|
/// provided.
|
|
class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
|
|
Instruction &Ingredient;
|
|
|
|
void setMask(VPValue *Mask) {
|
|
if (!Mask)
|
|
return;
|
|
addOperand(Mask);
|
|
}
|
|
|
|
bool isMasked() const {
|
|
return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
|
|
}
|
|
|
|
public:
|
|
VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask)
|
|
: VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), Ingredient(Load) {
|
|
new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this);
|
|
setMask(Mask);
|
|
}
|
|
|
|
VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
|
|
VPValue *StoredValue, VPValue *Mask)
|
|
: VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}),
|
|
Ingredient(Store) {
|
|
setMask(Mask);
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
|
|
}
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const {
|
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last operand.
|
|
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Returns true if this recipe is a store.
|
|
bool isStore() const { return isa<StoreInst>(Ingredient); }
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getStoredValue() const {
|
|
assert(isStore() && "Stored value only available for store instructions");
|
|
return getOperand(1); // Stored value is the 2nd, mandatory operand.
|
|
}
|
|
|
|
/// Generate the wide load/store.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// A Recipe for widening the canonical induction variable of the vector loop.
|
|
class VPWidenCanonicalIVRecipe : public VPRecipeBase {
|
|
public:
|
|
VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC, {}) {
|
|
new VPValue(nullptr, this);
|
|
}
|
|
|
|
~VPWidenCanonicalIVRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
|
|
}
|
|
|
|
/// Generate a canonical vector induction variable of the vector loop, with
|
|
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
|
|
/// step = <VF*UF, VF*UF, ..., VF*UF>.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
};
|
|
|
|
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
|
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
|
/// output IR instructions.
|
|
class VPBasicBlock : public VPBlockBase {
|
|
public:
|
|
using RecipeListTy = iplist<VPRecipeBase>;
|
|
|
|
private:
|
|
/// The VPRecipes held in the order of output instructions to generate.
|
|
RecipeListTy Recipes;
|
|
|
|
public:
|
|
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
|
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
|
if (Recipe)
|
|
appendRecipe(Recipe);
|
|
}
|
|
|
|
~VPBasicBlock() override { Recipes.clear(); }
|
|
|
|
/// Instruction iterators...
|
|
using iterator = RecipeListTy::iterator;
|
|
using const_iterator = RecipeListTy::const_iterator;
|
|
using reverse_iterator = RecipeListTy::reverse_iterator;
|
|
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// Recipe iterator methods
|
|
///
|
|
inline iterator begin() { return Recipes.begin(); }
|
|
inline const_iterator begin() const { return Recipes.begin(); }
|
|
inline iterator end() { return Recipes.end(); }
|
|
inline const_iterator end() const { return Recipes.end(); }
|
|
|
|
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
|
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
|
inline reverse_iterator rend() { return Recipes.rend(); }
|
|
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
|
|
|
inline size_t size() const { return Recipes.size(); }
|
|
inline bool empty() const { return Recipes.empty(); }
|
|
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
|
inline VPRecipeBase &front() { return Recipes.front(); }
|
|
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
|
inline VPRecipeBase &back() { return Recipes.back(); }
|
|
|
|
/// Returns a reference to the list of recipes.
|
|
RecipeListTy &getRecipeList() { return Recipes; }
|
|
|
|
/// Returns a pointer to a member of the recipe list.
|
|
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
|
return &VPBasicBlock::Recipes;
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
|
|
}
|
|
|
|
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
|
|
assert(Recipe && "No recipe to append.");
|
|
assert(!Recipe->Parent && "Recipe already in VPlan");
|
|
Recipe->Parent = this;
|
|
Recipes.insert(InsertPt, Recipe);
|
|
}
|
|
|
|
/// Augment the existing recipes of a VPBasicBlock with an additional
|
|
/// \p Recipe as the last recipe.
|
|
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
|
void execute(struct VPTransformState *State) override;
|
|
|
|
/// Return the position of the first non-phi node recipe in the block.
|
|
iterator getFirstNonPhi();
|
|
|
|
void dropAllReferences(VPValue *NewValue) override;
|
|
|
|
private:
|
|
/// Create an IR BasicBlock to hold the output instructions generated by this
|
|
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
|
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
|
|
};
|
|
|
|
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
|
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
|
|
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
|
/// times. This is designed to support predicated scalarization, in which a
|
|
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
|
/// this replication indicator helps to keep a single model for multiple
|
|
/// candidate VF's. The actual replication takes place only once the desired VF
|
|
/// and UF have been determined.
|
|
class VPRegionBlock : public VPBlockBase {
|
|
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
|
VPBlockBase *Entry;
|
|
|
|
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
|
|
VPBlockBase *Exit;
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool IsReplicator;
|
|
|
|
public:
|
|
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
|
|
const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
|
|
IsReplicator(IsReplicator) {
|
|
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
|
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
|
|
Entry->setParent(this);
|
|
Exit->setParent(this);
|
|
}
|
|
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
|
|
IsReplicator(IsReplicator) {}
|
|
|
|
~VPRegionBlock() override {
|
|
if (Entry) {
|
|
VPValue DummyValue;
|
|
Entry->dropAllReferences(&DummyValue);
|
|
deleteCFG(Entry);
|
|
}
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
|
}
|
|
|
|
const VPBlockBase *getEntry() const { return Entry; }
|
|
VPBlockBase *getEntry() { return Entry; }
|
|
|
|
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
|
|
/// EntryBlock must have no predecessors.
|
|
void setEntry(VPBlockBase *EntryBlock) {
|
|
assert(EntryBlock->getPredecessors().empty() &&
|
|
"Entry block cannot have predecessors.");
|
|
Entry = EntryBlock;
|
|
EntryBlock->setParent(this);
|
|
}
|
|
|
|
// FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
|
|
// specific interface of llvm::Function, instead of using
|
|
// GraphTraints::getEntryNode. We should add a new template parameter to
|
|
// DominatorTreeBase representing the Graph type.
|
|
VPBlockBase &front() const { return *Entry; }
|
|
|
|
const VPBlockBase *getExit() const { return Exit; }
|
|
VPBlockBase *getExit() { return Exit; }
|
|
|
|
/// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
|
|
/// ExitBlock must have no successors.
|
|
void setExit(VPBlockBase *ExitBlock) {
|
|
assert(ExitBlock->getSuccessors().empty() &&
|
|
"Exit block cannot have successors.");
|
|
Exit = ExitBlock;
|
|
ExitBlock->setParent(this);
|
|
}
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool isReplicator() const { return IsReplicator; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRegionBlock, thereby "executing" the VPlan.
|
|
void execute(struct VPTransformState *State) override;
|
|
|
|
void dropAllReferences(VPValue *NewValue) override;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The following set of template specializations implement GraphTraits to treat
|
|
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
|
|
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
|
|
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
|
|
// successors/predecessors but not to the blocks inside the region.
|
|
|
|
template <> struct GraphTraits<VPBlockBase *> {
|
|
using NodeRef = VPBlockBase *;
|
|
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
|
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
|
return N->getSuccessors().begin();
|
|
}
|
|
|
|
static inline ChildIteratorType child_end(NodeRef N) {
|
|
return N->getSuccessors().end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const VPBlockBase *> {
|
|
using NodeRef = const VPBlockBase *;
|
|
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
|
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
|
return N->getSuccessors().begin();
|
|
}
|
|
|
|
static inline ChildIteratorType child_end(NodeRef N) {
|
|
return N->getSuccessors().end();
|
|
}
|
|
};
|
|
|
|
// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
|
|
// of successors for the inverse traversal.
|
|
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
|
|
using NodeRef = VPBlockBase *;
|
|
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
|
|
|
|
static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
|
|
|
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
|
return N->getPredecessors().begin();
|
|
}
|
|
|
|
static inline ChildIteratorType child_end(NodeRef N) {
|
|
return N->getPredecessors().end();
|
|
}
|
|
};
|
|
|
|
// The following set of template specializations implement GraphTraits to
|
|
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
|
|
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
|
|
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
|
|
// there won't be automatic recursion into other VPBlockBases that turn to be
|
|
// VPRegionBlocks.
|
|
|
|
template <>
|
|
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
|
|
using GraphRef = VPRegionBlock *;
|
|
using nodes_iterator = df_iterator<NodeRef>;
|
|
|
|
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
|
|
|
|
static nodes_iterator nodes_begin(GraphRef N) {
|
|
return nodes_iterator::begin(N->getEntry());
|
|
}
|
|
|
|
static nodes_iterator nodes_end(GraphRef N) {
|
|
// df_iterator::end() returns an empty iterator so the node used doesn't
|
|
// matter.
|
|
return nodes_iterator::end(N);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct GraphTraits<const VPRegionBlock *>
|
|
: public GraphTraits<const VPBlockBase *> {
|
|
using GraphRef = const VPRegionBlock *;
|
|
using nodes_iterator = df_iterator<NodeRef>;
|
|
|
|
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
|
|
|
|
static nodes_iterator nodes_begin(GraphRef N) {
|
|
return nodes_iterator::begin(N->getEntry());
|
|
}
|
|
|
|
static nodes_iterator nodes_end(GraphRef N) {
|
|
// df_iterator::end() returns an empty iterator so the node used doesn't
|
|
// matter.
|
|
return nodes_iterator::end(N);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct GraphTraits<Inverse<VPRegionBlock *>>
|
|
: public GraphTraits<Inverse<VPBlockBase *>> {
|
|
using GraphRef = VPRegionBlock *;
|
|
using nodes_iterator = df_iterator<NodeRef>;
|
|
|
|
static NodeRef getEntryNode(Inverse<GraphRef> N) {
|
|
return N.Graph->getExit();
|
|
}
|
|
|
|
static nodes_iterator nodes_begin(GraphRef N) {
|
|
return nodes_iterator::begin(N->getExit());
|
|
}
|
|
|
|
static nodes_iterator nodes_end(GraphRef N) {
|
|
// df_iterator::end() returns an empty iterator so the node used doesn't
|
|
// matter.
|
|
return nodes_iterator::end(N);
|
|
}
|
|
};
|
|
|
|
/// VPlan models a candidate for vectorization, encoding various decisions take
|
|
/// to produce efficient output IR, including which branches, basic-blocks and
|
|
/// output IR instructions to generate, and their cost. VPlan holds a
|
|
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
|
/// VPBlock.
|
|
class VPlan {
|
|
friend class VPlanPrinter;
|
|
friend class VPSlotTracker;
|
|
|
|
/// Hold the single entry to the Hierarchical CFG of the VPlan.
|
|
VPBlockBase *Entry;
|
|
|
|
/// Holds the VFs applicable to this VPlan.
|
|
SmallSetVector<ElementCount, 2> VFs;
|
|
|
|
/// Holds the name of the VPlan, for printing.
|
|
std::string Name;
|
|
|
|
/// Holds all the external definitions created for this VPlan.
|
|
// TODO: Introduce a specific representation for external definitions in
|
|
// VPlan. External definitions must be immutable and hold a pointer to its
|
|
// underlying IR that will be used to implement its structural comparison
|
|
// (operators '==' and '<').
|
|
SmallPtrSet<VPValue *, 16> VPExternalDefs;
|
|
|
|
/// Represents the backedge taken count of the original loop, for folding
|
|
/// the tail.
|
|
VPValue *BackedgeTakenCount = nullptr;
|
|
|
|
/// Holds a mapping between Values and their corresponding VPValue inside
|
|
/// VPlan.
|
|
Value2VPValueTy Value2VPValue;
|
|
|
|
/// Contains all VPValues that been allocated by addVPValue directly and need
|
|
/// to be free when the plan's destructor is called.
|
|
SmallVector<VPValue *, 16> VPValuesToFree;
|
|
|
|
/// Holds the VPLoopInfo analysis for this VPlan.
|
|
VPLoopInfo VPLInfo;
|
|
|
|
public:
|
|
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
|
|
if (Entry)
|
|
Entry->setPlan(this);
|
|
}
|
|
|
|
~VPlan() {
|
|
if (Entry) {
|
|
VPValue DummyValue;
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Block->dropAllReferences(&DummyValue);
|
|
|
|
VPBlockBase::deleteCFG(Entry);
|
|
}
|
|
for (VPValue *VPV : VPValuesToFree)
|
|
delete VPV;
|
|
if (BackedgeTakenCount)
|
|
delete BackedgeTakenCount;
|
|
for (VPValue *Def : VPExternalDefs)
|
|
delete Def;
|
|
}
|
|
|
|
/// Generate the IR code for this VPlan.
|
|
void execute(struct VPTransformState *State);
|
|
|
|
VPBlockBase *getEntry() { return Entry; }
|
|
const VPBlockBase *getEntry() const { return Entry; }
|
|
|
|
VPBlockBase *setEntry(VPBlockBase *Block) {
|
|
Entry = Block;
|
|
Block->setPlan(this);
|
|
return Entry;
|
|
}
|
|
|
|
/// The backedge taken count of the original loop.
|
|
VPValue *getOrCreateBackedgeTakenCount() {
|
|
if (!BackedgeTakenCount)
|
|
BackedgeTakenCount = new VPValue();
|
|
return BackedgeTakenCount;
|
|
}
|
|
|
|
void addVF(ElementCount VF) { VFs.insert(VF); }
|
|
|
|
bool hasVF(ElementCount VF) { return VFs.count(VF); }
|
|
|
|
const std::string &getName() const { return Name; }
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
/// Add \p VPVal to the pool of external definitions if it's not already
|
|
/// in the pool.
|
|
void addExternalDef(VPValue *VPVal) {
|
|
VPExternalDefs.insert(VPVal);
|
|
}
|
|
|
|
void addVPValue(Value *V) {
|
|
assert(V && "Trying to add a null Value to VPlan");
|
|
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
|
|
VPValue *VPV = new VPValue(V);
|
|
Value2VPValue[V] = VPV;
|
|
VPValuesToFree.push_back(VPV);
|
|
}
|
|
|
|
void addVPValue(Value *V, VPValue *VPV) {
|
|
assert(V && "Trying to add a null Value to VPlan");
|
|
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
|
|
Value2VPValue[V] = VPV;
|
|
}
|
|
|
|
VPValue *getVPValue(Value *V) {
|
|
assert(V && "Trying to get the VPValue of a null Value");
|
|
assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
|
|
return Value2VPValue[V];
|
|
}
|
|
|
|
VPValue *getOrAddVPValue(Value *V) {
|
|
assert(V && "Trying to get or add the VPValue of a null Value");
|
|
if (!Value2VPValue.count(V))
|
|
addVPValue(V);
|
|
return getVPValue(V);
|
|
}
|
|
|
|
void removeVPValueFor(Value *V) { Value2VPValue.erase(V); }
|
|
|
|
/// Return the VPLoopInfo analysis for this VPlan.
|
|
VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
|
|
const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
|
|
|
|
/// Dump the plan to stderr (for debugging).
|
|
void dump() const;
|
|
|
|
/// Returns a range mapping the values the range \p Operands to their
|
|
/// corresponding VPValues.
|
|
iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
|
|
mapToVPValues(User::op_range Operands) {
|
|
std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
|
|
return getOrAddVPValue(Op);
|
|
};
|
|
return map_range(Operands, Fn);
|
|
}
|
|
|
|
private:
|
|
/// Add to the given dominator tree the header block and every new basic block
|
|
/// that was created between it and the latch block, inclusive.
|
|
static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
|
|
BasicBlock *LoopPreHeaderBB,
|
|
BasicBlock *LoopExitBB);
|
|
};
|
|
|
|
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
|
|
/// indented and follows the dot format.
|
|
class VPlanPrinter {
|
|
friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
|
|
friend inline raw_ostream &operator<<(raw_ostream &OS,
|
|
const struct VPlanIngredient &I);
|
|
|
|
private:
|
|
raw_ostream &OS;
|
|
const VPlan &Plan;
|
|
unsigned Depth = 0;
|
|
unsigned TabWidth = 2;
|
|
std::string Indent;
|
|
unsigned BID = 0;
|
|
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
|
|
|
|
VPSlotTracker SlotTracker;
|
|
|
|
VPlanPrinter(raw_ostream &O, const VPlan &P)
|
|
: OS(O), Plan(P), SlotTracker(&P) {}
|
|
|
|
/// Handle indentation.
|
|
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
|
|
|
|
/// Print a given \p Block of the Plan.
|
|
void dumpBlock(const VPBlockBase *Block);
|
|
|
|
/// Print the information related to the CFG edges going out of a given
|
|
/// \p Block, followed by printing the successor blocks themselves.
|
|
void dumpEdges(const VPBlockBase *Block);
|
|
|
|
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
|
|
/// its successor blocks.
|
|
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
|
|
|
|
/// Print a given \p Region of the Plan.
|
|
void dumpRegion(const VPRegionBlock *Region);
|
|
|
|
unsigned getOrCreateBID(const VPBlockBase *Block) {
|
|
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
|
|
}
|
|
|
|
const Twine getOrCreateName(const VPBlockBase *Block);
|
|
|
|
const Twine getUID(const VPBlockBase *Block);
|
|
|
|
/// Print the information related to a CFG edge between two VPBlockBases.
|
|
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
|
|
const Twine &Label);
|
|
|
|
void dump();
|
|
|
|
static void printAsIngredient(raw_ostream &O, const Value *V);
|
|
};
|
|
|
|
struct VPlanIngredient {
|
|
const Value *V;
|
|
|
|
VPlanIngredient(const Value *V) : V(V) {}
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
|
|
VPlanPrinter::printAsIngredient(OS, I.V);
|
|
return OS;
|
|
}
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
|
|
VPlanPrinter Printer(OS, Plan);
|
|
Printer.dump();
|
|
return OS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VPlan Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Class that provides utilities for VPBlockBases in VPlan.
|
|
class VPBlockUtils {
|
|
public:
|
|
VPBlockUtils() = delete;
|
|
|
|
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
|
|
/// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
|
|
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
|
|
/// has more than one successor, its conditional bit is propagated to \p
|
|
/// NewBlock. \p NewBlock must have neither successors nor predecessors.
|
|
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
|
|
assert(NewBlock->getSuccessors().empty() &&
|
|
"Can't insert new block with successors.");
|
|
// TODO: move successors from BlockPtr to NewBlock when this functionality
|
|
// is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
|
|
// already has successors.
|
|
BlockPtr->setOneSuccessor(NewBlock);
|
|
NewBlock->setPredecessors({BlockPtr});
|
|
NewBlock->setParent(BlockPtr->getParent());
|
|
}
|
|
|
|
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
|
|
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
|
|
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
|
|
/// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
|
|
/// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
|
|
/// must have neither successors nor predecessors.
|
|
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
|
|
VPValue *Condition, VPBlockBase *BlockPtr) {
|
|
assert(IfTrue->getSuccessors().empty() &&
|
|
"Can't insert IfTrue with successors.");
|
|
assert(IfFalse->getSuccessors().empty() &&
|
|
"Can't insert IfFalse with successors.");
|
|
BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
|
|
IfTrue->setPredecessors({BlockPtr});
|
|
IfFalse->setPredecessors({BlockPtr});
|
|
IfTrue->setParent(BlockPtr->getParent());
|
|
IfFalse->setParent(BlockPtr->getParent());
|
|
}
|
|
|
|
/// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
|
|
/// the successors of \p From and \p From to the predecessors of \p To. Both
|
|
/// VPBlockBases must have the same parent, which can be null. Both
|
|
/// VPBlockBases can be already connected to other VPBlockBases.
|
|
static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
|
assert((From->getParent() == To->getParent()) &&
|
|
"Can't connect two block with different parents");
|
|
assert(From->getNumSuccessors() < 2 &&
|
|
"Blocks can't have more than two successors.");
|
|
From->appendSuccessor(To);
|
|
To->appendPredecessor(From);
|
|
}
|
|
|
|
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
|
|
/// from the successors of \p From and \p From from the predecessors of \p To.
|
|
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
|
assert(To && "Successor to disconnect is null.");
|
|
From->removeSuccessor(To);
|
|
To->removePredecessor(From);
|
|
}
|
|
|
|
/// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
|
|
static bool isBackEdge(const VPBlockBase *FromBlock,
|
|
const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
|
|
assert(FromBlock->getParent() == ToBlock->getParent() &&
|
|
FromBlock->getParent() && "Must be in same region");
|
|
const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
|
|
const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
|
|
if (!FromLoop || !ToLoop || FromLoop != ToLoop)
|
|
return false;
|
|
|
|
// A back-edge is a branch from the loop latch to its header.
|
|
return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
|
|
}
|
|
|
|
/// Returns true if \p Block is a loop latch
|
|
static bool blockIsLoopLatch(const VPBlockBase *Block,
|
|
const VPLoopInfo *VPLInfo) {
|
|
if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
|
|
return ParentVPL->isLoopLatch(Block);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Count and return the number of succesors of \p PredBlock excluding any
|
|
/// backedges.
|
|
static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
|
|
VPLoopInfo *VPLI) {
|
|
unsigned Count = 0;
|
|
for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
|
|
if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
|
|
Count++;
|
|
}
|
|
return Count;
|
|
}
|
|
};
|
|
|
|
class VPInterleavedAccessInfo {
|
|
DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
|
|
InterleaveGroupMap;
|
|
|
|
/// Type for mapping of instruction based interleave groups to VPInstruction
|
|
/// interleave groups
|
|
using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
|
|
InterleaveGroup<VPInstruction> *>;
|
|
|
|
/// Recursively \p Region and populate VPlan based interleave groups based on
|
|
/// \p IAI.
|
|
void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI);
|
|
/// Recursively traverse \p Block and populate VPlan based interleave groups
|
|
/// based on \p IAI.
|
|
void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI);
|
|
|
|
public:
|
|
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
|
|
|
|
~VPInterleavedAccessInfo() {
|
|
SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
|
|
// Avoid releasing a pointer twice.
|
|
for (auto &I : InterleaveGroupMap)
|
|
DelSet.insert(I.second);
|
|
for (auto *Ptr : DelSet)
|
|
delete Ptr;
|
|
}
|
|
|
|
/// Get the interleave group that \p Instr belongs to.
|
|
///
|
|
/// \returns nullptr if doesn't have such group.
|
|
InterleaveGroup<VPInstruction> *
|
|
getInterleaveGroup(VPInstruction *Instr) const {
|
|
return InterleaveGroupMap.lookup(Instr);
|
|
}
|
|
};
|
|
|
|
/// Class that maps (parts of) an existing VPlan to trees of combined
|
|
/// VPInstructions.
|
|
class VPlanSlp {
|
|
enum class OpMode { Failed, Load, Opcode };
|
|
|
|
/// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
|
|
/// DenseMap keys.
|
|
struct BundleDenseMapInfo {
|
|
static SmallVector<VPValue *, 4> getEmptyKey() {
|
|
return {reinterpret_cast<VPValue *>(-1)};
|
|
}
|
|
|
|
static SmallVector<VPValue *, 4> getTombstoneKey() {
|
|
return {reinterpret_cast<VPValue *>(-2)};
|
|
}
|
|
|
|
static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
|
|
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
|
|
}
|
|
|
|
static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
|
|
const SmallVector<VPValue *, 4> &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Mapping of values in the original VPlan to a combined VPInstruction.
|
|
DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
|
|
BundleToCombined;
|
|
|
|
VPInterleavedAccessInfo &IAI;
|
|
|
|
/// Basic block to operate on. For now, only instructions in a single BB are
|
|
/// considered.
|
|
const VPBasicBlock &BB;
|
|
|
|
/// Indicates whether we managed to combine all visited instructions or not.
|
|
bool CompletelySLP = true;
|
|
|
|
/// Width of the widest combined bundle in bits.
|
|
unsigned WidestBundleBits = 0;
|
|
|
|
using MultiNodeOpTy =
|
|
typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
|
|
|
|
// Input operand bundles for the current multi node. Each multi node operand
|
|
// bundle contains values not matching the multi node's opcode. They will
|
|
// be reordered in reorderMultiNodeOps, once we completed building a
|
|
// multi node.
|
|
SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
|
|
|
|
/// Indicates whether we are building a multi node currently.
|
|
bool MultiNodeActive = false;
|
|
|
|
/// Check if we can vectorize Operands together.
|
|
bool areVectorizable(ArrayRef<VPValue *> Operands) const;
|
|
|
|
/// Add combined instruction \p New for the bundle \p Operands.
|
|
void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
|
|
|
|
/// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
|
|
VPInstruction *markFailed();
|
|
|
|
/// Reorder operands in the multi node to maximize sequential memory access
|
|
/// and commutative operations.
|
|
SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
|
|
|
|
/// Choose the best candidate to use for the lane after \p Last. The set of
|
|
/// candidates to choose from are values with an opcode matching \p Last's
|
|
/// or loads consecutive to \p Last.
|
|
std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
|
|
SmallPtrSetImpl<VPValue *> &Candidates,
|
|
VPInterleavedAccessInfo &IAI);
|
|
|
|
/// Print bundle \p Values to dbgs().
|
|
void dumpBundle(ArrayRef<VPValue *> Values);
|
|
|
|
public:
|
|
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
|
|
|
|
~VPlanSlp() = default;
|
|
|
|
/// Tries to build an SLP tree rooted at \p Operands and returns a
|
|
/// VPInstruction combining \p Operands, if they can be combined.
|
|
VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
|
|
|
|
/// Return the width of the widest combined bundle in bits.
|
|
unsigned getWidestBundleBits() const { return WidestBundleBits; }
|
|
|
|
/// Return true if all visited instruction can be combined.
|
|
bool isCompletelySLP() const { return CompletelySLP; }
|
|
};
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|