1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 22:42:46 +02:00
llvm-mirror/lib/Target/WebAssembly/Relooper.cpp
JF Bastien 8905d63bd8 [WebAssembly] Add Relooper
This is just an initial checkin of an implementation of the Relooper algorithm, in preparation for WebAssembly codegen to utilize. It doesn't do anything yet by itself.

The Relooper algorithm takes an arbitrary control flow graph and generates structured control flow from that, utilizing a helper variable when necessary to handle irreducibility. The WebAssembly backend will be able to use this in order to generate an AST for its binary format.

Author: azakai

Reviewers: jfb, sunfish

Subscribers: jevinskie, arsenm, jroelofs, llvm-commits

Differential revision: http://reviews.llvm.org/D11691

llvm-svn: 245142
2015-08-15 01:23:28 +00:00

907 lines
34 KiB
C++

//===-- Relooper.cpp - Top-level interface for WebAssembly ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
///
/// \file
/// \brief This implements the Relooper algorithm. This implementation includes
/// optimizations added since the original academic paper [1] was published.
///
/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
/// Proceedings of the ACM international conference companion on Object
/// oriented programming systems languages and applications companion
/// (SPLASH '11). ACM, New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
/// http://doi.acm.org/10.1145/2048147.2048224
///
//===-------------------------------------------------------------------===//
#include "Relooper.h"
#include <llvm/ADT/STLExtras.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/CommandLine.h>
#include <cstring>
#include <cstdlib>
#include <functional>
#include <list>
#include <stack>
#include <string>
using namespace llvm;
static cl::opt<int> RelooperSplittingFactor(
"relooper-splitting-factor",
cl::desc(
"How much to discount code size when deciding whether to split a node"),
cl::init(5));
static cl::opt<unsigned> RelooperMultipleSwitchThreshold(
"relooper-multiple-switch-threshold",
cl::desc(
"How many entries to allow in a multiple before we use a switch"),
cl::init(10));
static cl::opt<unsigned> RelooperNestingLimit(
"relooper-nesting-limit",
cl::desc(
"How much nesting is acceptable"),
cl::init(20));
namespace llvm {
namespace Relooper {
template <class T, class U>
static bool contains(const T &container, const U &contained) {
return container.count(contained);
}
// Branch
Branch::Branch(const char *ConditionInit, const char *CodeInit)
: Ancestor(nullptr), Labeled(true) {
// FIXME: move from char* to LLVM data structures
Condition = ConditionInit ? strdup(ConditionInit) : nullptr;
Code = CodeInit ? strdup(CodeInit) : nullptr;
}
Branch::~Branch() {
// FIXME: move from char* to LLVM data structures
free(static_cast<void *>(const_cast<char *>(Condition)));
free(static_cast<void *>(const_cast<char *>(Code)));
}
// Block
Block::Block(const char *CodeInit, const char *BranchVarInit)
: Parent(nullptr), Id(-1), IsCheckedMultipleEntry(false) {
// FIXME: move from char* to LLVM data structures
Code = strdup(CodeInit);
BranchVar = BranchVarInit ? strdup(BranchVarInit) : nullptr;
}
Block::~Block() {
// FIXME: move from char* to LLVM data structures
free(static_cast<void *>(const_cast<char *>(Code)));
free(static_cast<void *>(const_cast<char *>(BranchVar)));
}
void Block::AddBranchTo(Block *Target, const char *Condition,
const char *Code) {
assert(
!contains(BranchesOut,
Target)); // cannot add more than one branch to the same target
BranchesOut[Target] = make_unique<Branch>(Condition, Code);
}
// Relooper
Relooper::Relooper()
: Root(nullptr), MinSize(false), BlockIdCounter(1),
ShapeIdCounter(0) { // block ID 0 is reserved for clearings
}
Relooper::~Relooper() {
for (auto Curr : Blocks)
delete Curr;
for (auto Curr : Shapes)
delete Curr;
}
void Relooper::AddBlock(Block *New, int Id) {
New->Id = Id == -1 ? BlockIdCounter++ : Id;
Blocks.push_back(New);
}
struct RelooperRecursor {
Relooper *Parent;
RelooperRecursor(Relooper *ParentInit) : Parent(ParentInit) {}
};
typedef std::list<Block *> BlockList;
void Relooper::Calculate(Block *Entry) {
// Scan and optimize the input
struct PreOptimizer : public RelooperRecursor {
PreOptimizer(Relooper *Parent) : RelooperRecursor(Parent) {}
BlockSet Live;
void FindLive(Block *Root) {
BlockList ToInvestigate;
ToInvestigate.push_back(Root);
while (!ToInvestigate.empty()) {
Block *Curr = ToInvestigate.front();
ToInvestigate.pop_front();
if (contains(Live, Curr))
continue;
Live.insert(Curr);
for (const auto &iter : Curr->BranchesOut)
ToInvestigate.push_back(iter.first);
}
}
// If a block has multiple entries but no exits, and it is small enough, it
// is useful to split it. A common example is a C++ function where
// everything ends up at a final exit block and does some RAII cleanup.
// Without splitting, we will be forced to introduce labelled loops to
// allow reaching the final block
void SplitDeadEnds() {
unsigned TotalCodeSize = 0;
for (const auto &Curr : Live) {
TotalCodeSize += strlen(Curr->Code);
}
BlockSet Splits;
BlockSet Removed;
for (const auto &Original : Live) {
if (Original->BranchesIn.size() <= 1 ||
!Original->BranchesOut.empty())
continue; // only dead ends, for now
if (contains(Original->BranchesOut, Original))
continue; // cannot split a looping node
if (strlen(Original->Code) * (Original->BranchesIn.size() - 1) >
TotalCodeSize / RelooperSplittingFactor)
continue; // if splitting increases raw code size by a significant
// amount, abort
// Split the node (for simplicity, we replace all the blocks, even
// though we could have reused the original)
for (const auto &Prior : Original->BranchesIn) {
Block *Split = new Block(Original->Code, Original->BranchVar);
Parent->AddBlock(Split, Original->Id);
Split->BranchesIn.insert(Prior);
std::unique_ptr<Branch> Details;
Details.swap(Prior->BranchesOut[Original]);
Prior->BranchesOut[Split] = make_unique<Branch>(Details->Condition,
Details->Code);
for (const auto &iter : Original->BranchesOut) {
Block *Post = iter.first;
Branch *Details = iter.second.get();
Split->BranchesOut[Post] = make_unique<Branch>(Details->Condition,
Details->Code);
Post->BranchesIn.insert(Split);
}
Splits.insert(Split);
Removed.insert(Original);
}
for (const auto &iter : Original->BranchesOut) {
Block *Post = iter.first;
Post->BranchesIn.remove(Original);
}
}
for (const auto &iter : Splits)
Live.insert(iter);
for (const auto &iter : Removed)
Live.remove(iter);
}
};
PreOptimizer Pre(this);
Pre.FindLive(Entry);
// Add incoming branches from live blocks, ignoring dead code
for (unsigned i = 0; i < Blocks.size(); i++) {
Block *Curr = Blocks[i];
if (!contains(Pre.Live, Curr))
continue;
for (const auto &iter : Curr->BranchesOut)
iter.first->BranchesIn.insert(Curr);
}
if (!MinSize)
Pre.SplitDeadEnds();
// Recursively process the graph
struct Analyzer : public RelooperRecursor {
Analyzer(Relooper *Parent) : RelooperRecursor(Parent) {}
// Add a shape to the list of shapes in this Relooper calculation
void Notice(Shape *New) {
New->Id = Parent->ShapeIdCounter++;
Parent->Shapes.push_back(New);
}
// Create a list of entries from a block. If LimitTo is provided, only
// results in that set will appear
void GetBlocksOut(Block *Source, BlockSet &Entries,
BlockSet *LimitTo = nullptr) {
for (const auto &iter : Source->BranchesOut)
if (!LimitTo || contains(*LimitTo, iter.first))
Entries.insert(iter.first);
}
// Converts/processes all branchings to a specific target
void Solipsize(Block *Target, Branch::FlowType Type, Shape *Ancestor,
BlockSet &From) {
for (auto iter = Target->BranchesIn.begin();
iter != Target->BranchesIn.end();) {
Block *Prior = *iter;
if (!contains(From, Prior)) {
iter++;
continue;
}
std::unique_ptr<Branch> PriorOut;
PriorOut.swap(Prior->BranchesOut[Target]);
PriorOut->Ancestor = Ancestor;
PriorOut->Type = Type;
if (MultipleShape *Multiple = dyn_cast<MultipleShape>(Ancestor))
Multiple->Breaks++; // We are breaking out of this Multiple, so need a
// loop
iter++; // carefully increment iter before erasing
Target->BranchesIn.remove(Prior);
Target->ProcessedBranchesIn.insert(Prior);
Prior->ProcessedBranchesOut[Target].swap(PriorOut);
}
}
Shape *MakeSimple(BlockSet &Blocks, Block *Inner, BlockSet &NextEntries) {
SimpleShape *Simple = new SimpleShape;
Notice(Simple);
Simple->Inner = Inner;
Inner->Parent = Simple;
if (Blocks.size() > 1) {
Blocks.remove(Inner);
GetBlocksOut(Inner, NextEntries, &Blocks);
BlockSet JustInner;
JustInner.insert(Inner);
for (const auto &iter : NextEntries)
Solipsize(iter, Branch::Direct, Simple, JustInner);
}
return Simple;
}
Shape *MakeLoop(BlockSet &Blocks, BlockSet &Entries,
BlockSet &NextEntries) {
// Find the inner blocks in this loop. Proceed backwards from the entries
// until
// you reach a seen block, collecting as you go.
BlockSet InnerBlocks;
BlockSet Queue = Entries;
while (!Queue.empty()) {
Block *Curr = *(Queue.begin());
Queue.remove(*Queue.begin());
if (!contains(InnerBlocks, Curr)) {
// This element is new, mark it as inner and remove from outer
InnerBlocks.insert(Curr);
Blocks.remove(Curr);
// Add the elements prior to it
for (const auto &iter : Curr->BranchesIn)
Queue.insert(iter);
}
}
assert(!InnerBlocks.empty());
for (const auto &Curr : InnerBlocks) {
for (const auto &iter : Curr->BranchesOut) {
Block *Possible = iter.first;
if (!contains(InnerBlocks, Possible))
NextEntries.insert(Possible);
}
}
LoopShape *Loop = new LoopShape();
Notice(Loop);
// Solipsize the loop, replacing with break/continue and marking branches
// as Processed (will not affect later calculations)
// A. Branches to the loop entries become a continue to this shape
for (const auto &iter : Entries)
Solipsize(iter, Branch::Continue, Loop, InnerBlocks);
// B. Branches to outside the loop (a next entry) become breaks on this
// shape
for (const auto &iter : NextEntries)
Solipsize(iter, Branch::Break, Loop, InnerBlocks);
// Finish up
Shape *Inner = Process(InnerBlocks, Entries, nullptr);
Loop->Inner = Inner;
return Loop;
}
// For each entry, find the independent group reachable by it. The
// independent group is the entry itself, plus all the blocks it can
// reach that cannot be directly reached by another entry. Note that we
// ignore directly reaching the entry itself by another entry.
// @param Ignore - previous blocks that are irrelevant
void FindIndependentGroups(BlockSet &Entries,
BlockBlockSetMap &IndependentGroups,
BlockSet *Ignore = nullptr) {
typedef std::map<Block *, Block *> BlockBlockMap;
struct HelperClass {
BlockBlockSetMap &IndependentGroups;
BlockBlockMap Ownership; // For each block, which entry it belongs to.
// We have reached it from there.
HelperClass(BlockBlockSetMap &IndependentGroupsInit)
: IndependentGroups(IndependentGroupsInit) {}
void InvalidateWithChildren(Block *New) {
// Being in the list means you need to be invalidated
BlockList ToInvalidate;
ToInvalidate.push_back(New);
while (!ToInvalidate.empty()) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Block *Owner = Ownership[Invalidatee];
// Owner may have been invalidated, do not add to
// IndependentGroups!
if (contains(IndependentGroups, Owner))
IndependentGroups[Owner].remove(Invalidatee);
if (Ownership[Invalidatee]) { // may have been seen before and
// invalidated already
Ownership[Invalidatee] = nullptr;
for (const auto &iter : Invalidatee->BranchesOut) {
Block *Target = iter.first;
BlockBlockMap::iterator Known = Ownership.find(Target);
if (Known != Ownership.end()) {
Block *TargetOwner = Known->second;
if (TargetOwner)
ToInvalidate.push_back(Target);
}
}
}
}
}
};
HelperClass Helper(IndependentGroups);
// We flow out from each of the entries, simultaneously.
// When we reach a new block, we add it as belonging to the one we got to
// it from.
// If we reach a new block that is already marked as belonging to someone,
// it is reachable by two entries and is not valid for any of them.
// Remove it and all it can reach that have been visited.
// Being in the queue means we just added this item, and
// we need to add its children
BlockList Queue;
for (const auto &Entry : Entries) {
Helper.Ownership[Entry] = Entry;
IndependentGroups[Entry].insert(Entry);
Queue.push_back(Entry);
}
while (!Queue.empty()) {
Block *Curr = Queue.front();
Queue.pop_front();
Block *Owner = Helper.Ownership[Curr]; // Curr must be in the ownership
// map if we are in the queue
if (!Owner)
continue; // we have been invalidated meanwhile after being reached
// from two entries
// Add all children
for (const auto &iter : Curr->BranchesOut) {
Block *New = iter.first;
BlockBlockMap::iterator Known = Helper.Ownership.find(New);
if (Known == Helper.Ownership.end()) {
// New node. Add it, and put it in the queue
Helper.Ownership[New] = Owner;
IndependentGroups[Owner].insert(New);
Queue.push_back(New);
continue;
}
Block *NewOwner = Known->second;
if (!NewOwner)
continue; // We reached an invalidated node
if (NewOwner != Owner)
// Invalidate this and all reachable that we have seen - we reached
// this from two locations
Helper.InvalidateWithChildren(New);
// otherwise, we have the same owner, so do nothing
}
}
// Having processed all the interesting blocks, we remain with just one
// potential issue:
// If a->b, and a was invalidated, but then b was later reached by
// someone else, we must invalidate b. To check for this, we go over all
// elements in the independent groups, if an element has a parent which
// does *not* have the same owner, we/ must remove it and all its
// children.
for (const auto &iter : Entries) {
BlockSet &CurrGroup = IndependentGroups[iter];
BlockList ToInvalidate;
for (const auto &iter : CurrGroup) {
Block *Child = iter;
for (const auto &iter : Child->BranchesIn) {
Block *Parent = iter;
if (Ignore && contains(*Ignore, Parent))
continue;
if (Helper.Ownership[Parent] != Helper.Ownership[Child])
ToInvalidate.push_back(Child);
}
}
while (!ToInvalidate.empty()) {
Block *Invalidatee = ToInvalidate.front();
ToInvalidate.pop_front();
Helper.InvalidateWithChildren(Invalidatee);
}
}
// Remove empty groups
for (const auto &iter : Entries)
if (IndependentGroups[iter].empty())
IndependentGroups.erase(iter);
}
Shape *MakeMultiple(BlockSet &Blocks, BlockSet &Entries,
BlockBlockSetMap &IndependentGroups, Shape *Prev,
BlockSet &NextEntries) {
bool Fused = isa<SimpleShape>(Prev);
MultipleShape *Multiple = new MultipleShape();
Notice(Multiple);
BlockSet CurrEntries;
for (auto &iter : IndependentGroups) {
Block *CurrEntry = iter.first;
BlockSet &CurrBlocks = iter.second;
// Create inner block
CurrEntries.clear();
CurrEntries.insert(CurrEntry);
for (const auto &CurrInner : CurrBlocks) {
// Remove the block from the remaining blocks
Blocks.remove(CurrInner);
// Find new next entries and fix branches to them
for (auto iter = CurrInner->BranchesOut.begin();
iter != CurrInner->BranchesOut.end();) {
Block *CurrTarget = iter->first;
auto Next = iter;
Next++;
if (!contains(CurrBlocks, CurrTarget)) {
NextEntries.insert(CurrTarget);
Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks);
}
iter = Next; // increment carefully because Solipsize can remove us
}
}
Multiple->InnerMap[CurrEntry->Id] =
Process(CurrBlocks, CurrEntries, nullptr);
// If we are not fused, then our entries will actually be checked
if (!Fused)
CurrEntry->IsCheckedMultipleEntry = true;
}
// Add entries not handled as next entries, they are deferred
for (const auto &Entry : Entries)
if (!contains(IndependentGroups, Entry))
NextEntries.insert(Entry);
// The multiple has been created, we can decide how to implement it
if (Multiple->InnerMap.size() >= RelooperMultipleSwitchThreshold) {
Multiple->UseSwitch = true;
Multiple->Breaks++; // switch captures breaks
}
return Multiple;
}
// Main function.
// Process a set of blocks with specified entries, returns a shape
// The Make* functions receive a NextEntries. If they fill it with data,
// those are the entries for the ->Next block on them, and the blocks
// are what remains in Blocks (which Make* modify). In this way
// we avoid recursing on Next (imagine a long chain of Simples, if we
// recursed we could blow the stack).
Shape *Process(BlockSet &Blocks, BlockSet &InitialEntries, Shape *Prev) {
BlockSet *Entries = &InitialEntries;
BlockSet TempEntries[2];
int CurrTempIndex = 0;
BlockSet *NextEntries;
Shape *Ret = nullptr;
auto Make = [&](Shape *Temp) {
if (Prev)
Prev->Next = Temp;
if (!Ret)
Ret = Temp;
Prev = Temp;
Entries = NextEntries;
};
while (1) {
CurrTempIndex = 1 - CurrTempIndex;
NextEntries = &TempEntries[CurrTempIndex];
NextEntries->clear();
if (Entries->empty())
return Ret;
if (Entries->size() == 1) {
Block *Curr = *(Entries->begin());
if (Curr->BranchesIn.empty()) {
// One entry, no looping ==> Simple
Make(MakeSimple(Blocks, Curr, *NextEntries));
if (NextEntries->empty())
return Ret;
continue;
}
// One entry, looping ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
if (NextEntries->empty())
return Ret;
continue;
}
// More than one entry, try to eliminate through a Multiple groups of
// independent blocks from an entry/ies. It is important to remove
// through multiples as opposed to looping since the former is more
// performant.
BlockBlockSetMap IndependentGroups;
FindIndependentGroups(*Entries, IndependentGroups);
if (!IndependentGroups.empty()) {
// We can handle a group in a multiple if its entry cannot be reached
// by another group.
// Note that it might be reachable by itself - a loop. But that is
// fine, we will create a loop inside the multiple block (which
// is the performant order to do it).
for (auto iter = IndependentGroups.begin();
iter != IndependentGroups.end();) {
Block *Entry = iter->first;
BlockSet &Group = iter->second;
auto curr = iter++; // iterate carefully, we may delete
for (BlockSet::iterator iterBranch = Entry->BranchesIn.begin();
iterBranch != Entry->BranchesIn.end(); iterBranch++) {
Block *Origin = *iterBranch;
if (!contains(Group, Origin)) {
// Reached from outside the group, so we cannot handle this
IndependentGroups.erase(curr);
break;
}
}
}
// As an optimization, if we have 2 independent groups, and one is a
// small dead end, we can handle only that dead end.
// The other then becomes a Next - without nesting in the code and
// recursion in the analysis.
// TODO: if the larger is the only dead end, handle that too
// TODO: handle >2 groups
// TODO: handle not just dead ends, but also that do not branch to the
// NextEntries. However, must be careful there since we create a
// Next, and that Next can prevent eliminating a break (since we no
// longer naturally reach the same place), which may necessitate a
// one-time loop, which makes the unnesting pointless.
if (IndependentGroups.size() == 2) {
// Find the smaller one
auto iter = IndependentGroups.begin();
Block *SmallEntry = iter->first;
auto SmallSize = iter->second.size();
iter++;
Block *LargeEntry = iter->first;
auto LargeSize = iter->second.size();
if (SmallSize != LargeSize) { // ignore the case where they are
// identical - keep things symmetrical
// there
if (SmallSize > LargeSize) {
Block *Temp = SmallEntry;
SmallEntry = LargeEntry;
LargeEntry = Temp; // Note: we did not flip the Sizes too, they
// are now invalid. TODO: use the smaller
// size as a limit?
}
// Check if dead end
bool DeadEnd = true;
BlockSet &SmallGroup = IndependentGroups[SmallEntry];
for (const auto &Curr : SmallGroup) {
for (const auto &iter : Curr->BranchesOut) {
Block *Target = iter.first;
if (!contains(SmallGroup, Target)) {
DeadEnd = false;
break;
}
}
if (!DeadEnd)
break;
}
if (DeadEnd)
IndependentGroups.erase(LargeEntry);
}
}
if (!IndependentGroups.empty())
// Some groups removable ==> Multiple
Make(MakeMultiple(Blocks, *Entries, IndependentGroups, Prev,
*NextEntries));
if (NextEntries->empty())
return Ret;
continue;
}
// No independent groups, must be loopable ==> Loop
Make(MakeLoop(Blocks, *Entries, *NextEntries));
if (NextEntries->empty())
return Ret;
continue;
}
}
};
// Main
BlockSet AllBlocks;
for (const auto &Curr : Pre.Live) {
AllBlocks.insert(Curr);
}
BlockSet Entries;
Entries.insert(Entry);
Root = Analyzer(this).Process(AllBlocks, Entries, nullptr);
assert(Root);
///
/// Relooper post-optimizer
///
struct PostOptimizer {
Relooper *Parent;
std::stack<Shape *> LoopStack;
PostOptimizer(Relooper *ParentInit) : Parent(ParentInit) {}
void ShapeSwitch(Shape* var,
std::function<void (SimpleShape*)> simple,
std::function<void (MultipleShape*)> multiple,
std::function<void (LoopShape*)> loop) {
switch (var->getKind()) {
case Shape::SK_Simple: {
simple(cast<SimpleShape>(var));
break;
}
case Shape::SK_Multiple: {
multiple(cast<MultipleShape>(var));
break;
}
case Shape::SK_Loop: {
loop(cast<LoopShape>(var));
break;
}
default: llvm_unreachable("invalid shape");
}
}
// Find the blocks that natural control flow can get us directly to, or
// through a multiple that we ignore
void FollowNaturalFlow(Shape *S, BlockSet &Out) {
ShapeSwitch(S, [&](SimpleShape* Simple) {
Out.insert(Simple->Inner);
}, [&](MultipleShape* Multiple) {
for (const auto &iter : Multiple->InnerMap) {
FollowNaturalFlow(iter.second, Out);
}
FollowNaturalFlow(Multiple->Next, Out);
}, [&](LoopShape* Loop) {
FollowNaturalFlow(Loop->Inner, Out);
});
}
void FindNaturals(Shape *Root, Shape *Otherwise = nullptr) {
if (Root->Next) {
Root->Natural = Root->Next;
FindNaturals(Root->Next, Otherwise);
} else {
Root->Natural = Otherwise;
}
ShapeSwitch(Root, [](SimpleShape* Simple) {
}, [&](MultipleShape* Multiple) {
for (const auto &iter : Multiple->InnerMap) {
FindNaturals(iter.second, Root->Natural);
}
}, [&](LoopShape* Loop){
FindNaturals(Loop->Inner, Loop->Inner);
});
}
// Remove unneeded breaks and continues.
// A flow operation is trivially unneeded if the shape we naturally get to
// by normal code execution is the same as the flow forces us to.
void RemoveUnneededFlows(Shape *Root, Shape *Natural = nullptr,
LoopShape *LastLoop = nullptr,
unsigned Depth = 0) {
BlockSet NaturalBlocks;
FollowNaturalFlow(Natural, NaturalBlocks);
Shape *Next = Root;
while (Next) {
Root = Next;
Next = nullptr;
ShapeSwitch(
Root,
[&](SimpleShape* Simple) {
if (Simple->Inner->BranchVar)
LastLoop =
nullptr; // a switch clears out the loop (TODO: only for
// breaks, not continue)
if (Simple->Next) {
if (!Simple->Inner->BranchVar &&
Simple->Inner->ProcessedBranchesOut.size() == 2 &&
Depth < RelooperNestingLimit) {
// If there is a next block, we already know at Simple
// creation time to make direct branches, and we can do
// nothing more in general. But, we try to optimize the
// case of a break and a direct: This would normally be
// if (break?) { break; } ..
// but if we make sure to nest the else, we can save the
// break,
// if (!break?) { .. }
// This is also better because the more canonical nested
// form is easier to further optimize later. The
// downside is more nesting, which adds to size in builds with
// whitespace.
// Note that we avoid switches, as it complicates control flow
// and is not relevant for the common case we optimize here.
bool Found = false;
bool Abort = false;
for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
Block *Target = iter.first;
Branch *Details = iter.second.get();
if (Details->Type == Branch::Break) {
Found = true;
if (!contains(NaturalBlocks, Target))
Abort = true;
} else if (Details->Type != Branch::Direct)
Abort = true;
}
if (Found && !Abort) {
for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
Branch *Details = iter.second.get();
if (Details->Type == Branch::Break) {
Details->Type = Branch::Direct;
if (MultipleShape *Multiple =
dyn_cast<MultipleShape>(Details->Ancestor))
Multiple->Breaks--;
} else {
assert(Details->Type == Branch::Direct);
Details->Type = Branch::Nested;
}
}
}
Depth++; // this optimization increases depth, for us and all
// our next chain (i.e., until this call returns)
}
Next = Simple->Next;
} else {
// If there is no next then Natural is where we will
// go to by doing nothing, so we can potentially optimize some
// branches to direct.
for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
Block *Target = iter.first;
Branch *Details = iter.second.get();
if (Details->Type != Branch::Direct &&
contains(NaturalBlocks,
Target)) { // note: cannot handle split blocks
Details->Type = Branch::Direct;
if (MultipleShape *Multiple =
dyn_cast<MultipleShape>(Details->Ancestor))
Multiple->Breaks--;
} else if (Details->Type == Branch::Break && LastLoop &&
LastLoop->Natural == Details->Ancestor->Natural) {
// it is important to simplify breaks, as simpler breaks
// enable other optimizations
Details->Labeled = false;
if (MultipleShape *Multiple =
dyn_cast<MultipleShape>(Details->Ancestor))
Multiple->Breaks--;
}
}
}
}, [&](MultipleShape* Multiple)
{
for (const auto &iter : Multiple->InnerMap) {
RemoveUnneededFlows(iter.second, Multiple->Next,
Multiple->Breaks ? nullptr : LastLoop,
Depth + 1);
}
Next = Multiple->Next;
}, [&](LoopShape* Loop)
{
RemoveUnneededFlows(Loop->Inner, Loop->Inner, Loop, Depth + 1);
Next = Loop->Next;
});
}
}
// After we know which loops exist, we can calculate which need to be
// labeled
void FindLabeledLoops(Shape *Root) {
Shape *Next = Root;
while (Next) {
Root = Next;
Next = nullptr;
ShapeSwitch(
Root,
[&](SimpleShape *Simple) {
MultipleShape *Fused = dyn_cast<MultipleShape>(Root->Next);
// If we are fusing a Multiple with a loop into this Simple, then
// visit it now
if (Fused && Fused->Breaks)
LoopStack.push(Fused);
if (Simple->Inner->BranchVar)
LoopStack.push(nullptr); // a switch means breaks are now useless,
// push a dummy
if (Fused) {
if (Fused->UseSwitch)
LoopStack.push(nullptr); // a switch means breaks are now
// useless, push a dummy
for (const auto &iter : Fused->InnerMap) {
FindLabeledLoops(iter.second);
}
}
for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
Branch *Details = iter.second.get();
if (Details->Type == Branch::Break ||
Details->Type == Branch::Continue) {
assert(!LoopStack.empty());
if (Details->Ancestor != LoopStack.top() && Details->Labeled) {
if (MultipleShape *Multiple =
dyn_cast<MultipleShape>(Details->Ancestor)) {
Multiple->Labeled = true;
} else {
LoopShape *Loop = cast<LoopShape>(Details->Ancestor);
Loop->Labeled = true;
}
} else {
Details->Labeled = false;
}
}
if (Fused && Fused->UseSwitch)
LoopStack.pop();
if (Simple->Inner->BranchVar)
LoopStack.pop();
if (Fused && Fused->Breaks)
LoopStack.pop();
if (Fused)
Next = Fused->Next;
else
Next = Root->Next;
}
}
, [&](MultipleShape* Multiple) {
if (Multiple->Breaks)
LoopStack.push(Multiple);
for (const auto &iter : Multiple->InnerMap)
FindLabeledLoops(iter.second);
if (Multiple->Breaks)
LoopStack.pop();
Next = Root->Next;
}
, [&](LoopShape* Loop) {
LoopStack.push(Loop);
FindLabeledLoops(Loop->Inner);
LoopStack.pop();
Next = Root->Next;
});
}
}
void Process(Shape * Root) {
FindNaturals(Root);
RemoveUnneededFlows(Root);
FindLabeledLoops(Root);
}
};
PostOptimizer(this).Process(Root);
}
} // namespace Relooper
} // namespace llvm