mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
204 lines
6.7 KiB
C++
204 lines
6.7 KiB
C++
//===- PPCMacroFusion.cpp - PowerPC Macro Fusion --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This file contains the PowerPC implementation of the DAG scheduling
|
|
/// mutation to pair instructions back to back.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPC.h"
|
|
#include "PPCSubtarget.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/CodeGen/MacroFusion.h"
|
|
|
|
using namespace llvm;
|
|
namespace {
|
|
|
|
class FusionFeature {
|
|
public:
|
|
typedef SmallDenseSet<unsigned> FusionOpSet;
|
|
|
|
enum FusionKind {
|
|
#define FUSION_KIND(KIND) FK_##KIND
|
|
#define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) \
|
|
FUSION_KIND(KIND),
|
|
#include "PPCMacroFusion.def"
|
|
FUSION_KIND(END)
|
|
};
|
|
private:
|
|
// Each fusion feature is assigned with one fusion kind. All the
|
|
// instructions with the same fusion kind have the same fusion characteristic.
|
|
FusionKind Kd;
|
|
// True if this feature is enabled.
|
|
bool Supported;
|
|
// li rx, si
|
|
// load rt, ra, rx
|
|
// The dependent operand index in the second op(load). And the negative means
|
|
// it could be any one.
|
|
int DepOpIdx;
|
|
// The first fusion op set.
|
|
FusionOpSet OpSet1;
|
|
// The second fusion op set.
|
|
FusionOpSet OpSet2;
|
|
public:
|
|
FusionFeature(FusionKind Kind, bool HasFeature, int Index,
|
|
const FusionOpSet &First, const FusionOpSet &Second) :
|
|
Kd(Kind), Supported(HasFeature), DepOpIdx(Index), OpSet1(First),
|
|
OpSet2(Second) {}
|
|
|
|
bool hasOp1(unsigned Opc) const { return OpSet1.contains(Opc); }
|
|
bool hasOp2(unsigned Opc) const { return OpSet2.contains(Opc); }
|
|
bool isSupported() const { return Supported; }
|
|
Optional<unsigned> depOpIdx() const {
|
|
if (DepOpIdx < 0)
|
|
return None;
|
|
return DepOpIdx;
|
|
}
|
|
|
|
FusionKind getKind() const { return Kd; }
|
|
};
|
|
|
|
static bool matchingRegOps(const MachineInstr &FirstMI,
|
|
int FirstMIOpIndex,
|
|
const MachineInstr &SecondMI,
|
|
int SecondMIOpIndex) {
|
|
const MachineOperand &Op1 = FirstMI.getOperand(FirstMIOpIndex);
|
|
const MachineOperand &Op2 = SecondMI.getOperand(SecondMIOpIndex);
|
|
if (!Op1.isReg() || !Op2.isReg())
|
|
return false;
|
|
|
|
return Op1.getReg() == Op2.getReg();
|
|
}
|
|
|
|
// Return true if the FirstMI meets the constraints of SecondMI according to
|
|
// fusion specification.
|
|
static bool checkOpConstraints(FusionFeature::FusionKind Kd,
|
|
const MachineInstr &FirstMI,
|
|
const MachineInstr &SecondMI) {
|
|
switch (Kd) {
|
|
// The hardware didn't require any specific check for the fused instructions'
|
|
// operands. Therefore, return true to indicate that, it is fusable.
|
|
default: return true;
|
|
// [addi rt,ra,si - lxvd2x xt,ra,rb] etc.
|
|
case FusionFeature::FK_AddiLoad: {
|
|
// lxvd2x(ra) cannot be zero
|
|
const MachineOperand &RA = SecondMI.getOperand(1);
|
|
if (!RA.isReg())
|
|
return true;
|
|
|
|
return Register::isVirtualRegister(RA.getReg()) ||
|
|
(RA.getReg() != PPC::ZERO && RA.getReg() != PPC::ZERO8);
|
|
}
|
|
// [addis rt,ra,si - ld rt,ds(ra)] etc.
|
|
case FusionFeature::FK_AddisLoad: {
|
|
const MachineOperand &RT = SecondMI.getOperand(0);
|
|
if (!RT.isReg())
|
|
return true;
|
|
|
|
// Only check it for non-virtual register.
|
|
if (!Register::isVirtualRegister(RT.getReg()))
|
|
// addis(rt) = ld(ra) = ld(rt)
|
|
// ld(rt) cannot be zero
|
|
if (!matchingRegOps(SecondMI, 0, SecondMI, 2) ||
|
|
(RT.getReg() == PPC::ZERO || RT.getReg() == PPC::ZERO8))
|
|
return false;
|
|
|
|
// addis(si) first 12 bits must be all 1s or all 0s
|
|
const MachineOperand &SI = FirstMI.getOperand(2);
|
|
if (!SI.isImm())
|
|
return true;
|
|
int64_t Imm = SI.getImm();
|
|
if (((Imm & 0xFFF0) != 0) && ((Imm & 0xFFF0) != 0xFFF0))
|
|
return false;
|
|
|
|
// If si = 1111111111110000 and the msb of the d/ds field of the load equals
|
|
// 1, then fusion does not occur.
|
|
if ((Imm & 0xFFF0) == 0xFFF0) {
|
|
const MachineOperand &D = SecondMI.getOperand(1);
|
|
if (!D.isImm())
|
|
return true;
|
|
|
|
// 14 bit for DS field, while 16 bit for D field.
|
|
int MSB = 15;
|
|
if (SecondMI.getOpcode() == PPC::LD)
|
|
MSB = 13;
|
|
|
|
return (D.getImm() & (1ULL << MSB)) == 0;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("All the cases should have been handled");
|
|
return true;
|
|
}
|
|
|
|
/// Check if the instr pair, FirstMI and SecondMI, should be fused together.
|
|
/// Given SecondMI, when FirstMI is unspecified, then check if SecondMI may be
|
|
/// part of a fused pair at all.
|
|
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
|
|
const TargetSubtargetInfo &TSI,
|
|
const MachineInstr *FirstMI,
|
|
const MachineInstr &SecondMI) {
|
|
// We use the PPC namespace to avoid the need to prefix opcodes with PPC:: in
|
|
// the def file.
|
|
using namespace PPC;
|
|
|
|
const PPCSubtarget &ST = static_cast<const PPCSubtarget&>(TSI);
|
|
static const FusionFeature FusionFeatures[] = {
|
|
#define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) { \
|
|
FusionFeature::FUSION_KIND(KIND), ST.HAS_FEATURE(), DEP_OP_IDX, { OPSET1 },\
|
|
{ OPSET2 } },
|
|
#include "PPCMacroFusion.def"
|
|
};
|
|
#undef FUSION_KIND
|
|
|
|
for (auto &Feature : FusionFeatures) {
|
|
// Skip if the feature is not supported.
|
|
if (!Feature.isSupported())
|
|
continue;
|
|
|
|
// Only when the SecondMI is fusable, we are starting to look for the
|
|
// fusable FirstMI.
|
|
if (Feature.hasOp2(SecondMI.getOpcode())) {
|
|
// If FirstMI == nullptr, that means, we're only checking whether SecondMI
|
|
// can be fused at all.
|
|
if (!FirstMI)
|
|
return true;
|
|
|
|
// Checking if the FirstMI is fusable with the SecondMI.
|
|
if (!Feature.hasOp1(FirstMI->getOpcode()))
|
|
continue;
|
|
|
|
auto DepOpIdx = Feature.depOpIdx();
|
|
if (DepOpIdx.hasValue()) {
|
|
// Checking if the result of the FirstMI is the desired operand of the
|
|
// SecondMI if the DepOpIdx is set. Otherwise, ignore it.
|
|
if (!matchingRegOps(*FirstMI, 0, SecondMI, *DepOpIdx))
|
|
return false;
|
|
}
|
|
|
|
// Checking more on the instruction operands.
|
|
if (checkOpConstraints(Feature.getKind(), *FirstMI, SecondMI))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
std::unique_ptr<ScheduleDAGMutation> createPowerPCMacroFusionDAGMutation () {
|
|
return createMacroFusionDAGMutation(shouldScheduleAdjacent);
|
|
}
|
|
|
|
} // end namespace llvm
|