1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/include/llvm/IR/Operator.h
Sanjay Patel fd69991264 [IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html

...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.

As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the 
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic 
reassociation - 'AllowReassoc'.

We're also adding a bit to allow approximations for library functions called 'ApproxFunc' 
(this was initially proposed as 'libm' or similar).

...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did 
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits), 
but that's apparently already used for other purposes. Also, I don't think we can just 
add a field to FPMathOperator because Operator is not intended to be instantiated. 
We'll defer movement of FMF to another day.

We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.

Finally, this change is binary incompatible with existing IR as seen in the 
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile 
them. For example, if nsw is ever replaced with something else, dropping it would be 
a valid way to upgrade the IR." 
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR 
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will 
fail to optimize some previously 'fast' code because it's no longer recognized as 
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.

Note: an inter-dependent clang commit to use the new API name should closely follow 
commit.

Differential Revision: https://reviews.llvm.org/D39304

llvm-svn: 317488
2017-11-06 16:27:15 +00:00

567 lines
18 KiB
C++

//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various classes for working with Instructions and
// ConstantExprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_OPERATOR_H
#define LLVM_IR_OPERATOR_H
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cstddef>
namespace llvm {
/// This is a utility class that provides an abstraction for the common
/// functionality between Instructions and ConstantExprs.
class Operator : public User {
public:
// The Operator class is intended to be used as a utility, and is never itself
// instantiated.
Operator() = delete;
~Operator() = delete;
void *operator new(size_t s) = delete;
/// Return the opcode for this Instruction or ConstantExpr.
unsigned getOpcode() const {
if (const Instruction *I = dyn_cast<Instruction>(this))
return I->getOpcode();
return cast<ConstantExpr>(this)->getOpcode();
}
/// If V is an Instruction or ConstantExpr, return its opcode.
/// Otherwise return UserOp1.
static unsigned getOpcode(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getOpcode();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode();
return Instruction::UserOp1;
}
static bool classof(const Instruction *) { return true; }
static bool classof(const ConstantExpr *) { return true; }
static bool classof(const Value *V) {
return isa<Instruction>(V) || isa<ConstantExpr>(V);
}
};
/// Utility class for integer operators which may exhibit overflow - Add, Sub,
/// Mul, and Shl. It does not include SDiv, despite that operator having the
/// potential for overflow.
class OverflowingBinaryOperator : public Operator {
public:
enum {
NoUnsignedWrap = (1 << 0),
NoSignedWrap = (1 << 1)
};
private:
friend class Instruction;
friend class ConstantExpr;
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
}
public:
/// Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const {
return SubclassOptionalData & NoUnsignedWrap;
}
/// Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const {
return (SubclassOptionalData & NoSignedWrap) != 0;
}
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Sub ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::Shl;
}
static bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Instruction::Add ||
CE->getOpcode() == Instruction::Sub ||
CE->getOpcode() == Instruction::Mul ||
CE->getOpcode() == Instruction::Shl;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// A udiv or sdiv instruction, which can be marked as "exact",
/// indicating that no bits are destroyed.
class PossiblyExactOperator : public Operator {
public:
enum {
IsExact = (1 << 0)
};
private:
friend class Instruction;
friend class ConstantExpr;
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
}
public:
/// Test whether this division is known to be exact, with zero remainder.
bool isExact() const {
return SubclassOptionalData & IsExact;
}
static bool isPossiblyExactOpcode(unsigned OpC) {
return OpC == Instruction::SDiv ||
OpC == Instruction::UDiv ||
OpC == Instruction::AShr ||
OpC == Instruction::LShr;
}
static bool classof(const ConstantExpr *CE) {
return isPossiblyExactOpcode(CE->getOpcode());
}
static bool classof(const Instruction *I) {
return isPossiblyExactOpcode(I->getOpcode());
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// Convenience struct for specifying and reasoning about fast-math flags.
class FastMathFlags {
private:
friend class FPMathOperator;
unsigned Flags = 0;
FastMathFlags(unsigned F) {
// If all 7 bits are set, turn this into -1. If the number of bits grows,
// this must be updated. This is intended to provide some forward binary
// compatibility insurance for the meaning of 'fast' in case bits are added.
if (F == 0x7F) Flags = ~0U;
else Flags = F;
}
public:
// This is how the bits are used in Value::SubclassOptionalData so they
// should fit there too.
// WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
// functionality will require a change in how this information is stored.
enum {
AllowReassoc = (1 << 0),
NoNaNs = (1 << 1),
NoInfs = (1 << 2),
NoSignedZeros = (1 << 3),
AllowReciprocal = (1 << 4),
AllowContract = (1 << 5),
ApproxFunc = (1 << 6)
};
FastMathFlags() = default;
bool any() const { return Flags != 0; }
bool none() const { return Flags == 0; }
bool all() const { return Flags == ~0U; }
void clear() { Flags = 0; }
void set() { Flags = ~0U; }
/// Flag queries
bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
bool noNaNs() const { return 0 != (Flags & NoNaNs); }
bool noInfs() const { return 0 != (Flags & NoInfs); }
bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
bool allowContract() const { return 0 != (Flags & AllowContract); }
bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
/// 'Fast' means all bits are set.
bool isFast() const { return all(); }
/// Flag setters
void setAllowReassoc() { Flags |= AllowReassoc; }
void setNoNaNs() { Flags |= NoNaNs; }
void setNoInfs() { Flags |= NoInfs; }
void setNoSignedZeros() { Flags |= NoSignedZeros; }
void setAllowReciprocal() { Flags |= AllowReciprocal; }
// TODO: Change the other set* functions to take a parameter?
void setAllowContract(bool B) {
Flags = (Flags & ~AllowContract) | B * AllowContract;
}
void setApproxFunc() { Flags |= ApproxFunc; }
void setFast() { set(); }
void operator&=(const FastMathFlags &OtherFlags) {
Flags &= OtherFlags.Flags;
}
};
/// Utility class for floating point operations which can have
/// information about relaxed accuracy requirements attached to them.
class FPMathOperator : public Operator {
private:
friend class Instruction;
/// 'Fast' means all bits are set.
void setFast(bool B) {
setHasAllowReassoc(B);
setHasNoNaNs(B);
setHasNoInfs(B);
setHasNoSignedZeros(B);
setHasAllowReciprocal(B);
setHasAllowContract(B);
setHasApproxFunc(B);
}
void setHasAllowReassoc(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
(B * FastMathFlags::AllowReassoc);
}
void setHasNoNaNs(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoNaNs) |
(B * FastMathFlags::NoNaNs);
}
void setHasNoInfs(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoInfs) |
(B * FastMathFlags::NoInfs);
}
void setHasNoSignedZeros(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
(B * FastMathFlags::NoSignedZeros);
}
void setHasAllowReciprocal(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
(B * FastMathFlags::AllowReciprocal);
}
void setHasAllowContract(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowContract) |
(B * FastMathFlags::AllowContract);
}
void setHasApproxFunc(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
(B * FastMathFlags::ApproxFunc);
}
/// Convenience function for setting multiple fast-math flags.
/// FMF is a mask of the bits to set.
void setFastMathFlags(FastMathFlags FMF) {
SubclassOptionalData |= FMF.Flags;
}
/// Convenience function for copying all fast-math flags.
/// All values in FMF are transferred to this operator.
void copyFastMathFlags(FastMathFlags FMF) {
SubclassOptionalData = FMF.Flags;
}
public:
/// Test if this operation allows all non-strict floating-point transforms.
bool isFast() const {
return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
(SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
(SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
(SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
(SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
(SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
(SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
}
/// Test if this operation may be simplified with reassociative transforms.
bool hasAllowReassoc() const {
return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
}
/// Test if this operation's arguments and results are assumed not-NaN.
bool hasNoNaNs() const {
return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
}
/// Test if this operation's arguments and results are assumed not-infinite.
bool hasNoInfs() const {
return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
}
/// Test if this operation can ignore the sign of zero.
bool hasNoSignedZeros() const {
return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
}
/// Test if this operation can use reciprocal multiply instead of division.
bool hasAllowReciprocal() const {
return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
}
/// Test if this operation can be floating-point contracted (FMA).
bool hasAllowContract() const {
return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
}
/// Test if this operation allows approximations of math library functions or
/// intrinsics.
bool hasApproxFunc() const {
return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
}
/// Convenience function for getting all the fast-math flags
FastMathFlags getFastMathFlags() const {
return FastMathFlags(SubclassOptionalData);
}
/// Get the maximum error permitted by this operation in ULPs. An accuracy of
/// 0.0 means that the operation should be performed with the default
/// precision.
float getFPAccuracy() const;
static bool classof(const Instruction *I) {
return I->getType()->isFPOrFPVectorTy() ||
I->getOpcode() == Instruction::FCmp;
}
static bool classof(const ConstantExpr *CE) {
return CE->getType()->isFPOrFPVectorTy() ||
CE->getOpcode() == Instruction::FCmp;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// A helper template for defining operators for individual opcodes.
template<typename SuperClass, unsigned Opc>
class ConcreteOperator : public SuperClass {
public:
static bool classof(const Instruction *I) {
return I->getOpcode() == Opc;
}
static bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Opc;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
class AddOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
};
class SubOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
};
class MulOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
};
class ShlOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
};
class SDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
};
class UDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
};
class AShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
};
class LShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
};
class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
class GEPOperator
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
friend class GetElementPtrInst;
friend class ConstantExpr;
enum {
IsInBounds = (1 << 0),
// InRangeIndex: bits 1-6
};
void setIsInBounds(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
}
public:
/// Test whether this is an inbounds GEP, as defined by LangRef.html.
bool isInBounds() const {
return SubclassOptionalData & IsInBounds;
}
/// Returns the offset of the index with an inrange attachment, or None if
/// none.
Optional<unsigned> getInRangeIndex() const {
if (SubclassOptionalData >> 1 == 0) return None;
return (SubclassOptionalData >> 1) - 1;
}
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// Method to return the pointer operand as a PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
Type *getSourceElementType() const;
Type *getResultElementType() const;
/// Method to return the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// Return true if all of the indices of this GEP are zeros.
/// If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
if (C->isZero())
continue;
return false;
}
return true;
}
/// Return true if all of the indices of this GEP are constant integers.
/// If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (!isa<ConstantInt>(I))
return false;
}
return true;
}
unsigned countNonConstantIndices() const {
return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
return !isa<ConstantInt>(*use);
});
}
/// \brief Accumulate the constant address offset of this GEP if possible.
///
/// This routine accepts an APInt into which it will accumulate the constant
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
/// all-constant, it returns false and the value of the offset APInt is
/// undefined (it is *not* preserved!). The APInt passed into this routine
/// must be at exactly as wide as the IntPtr type for the address space of the
/// base GEP pointer.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
};
class PtrToIntOperator
: public ConcreteOperator<Operator, Instruction::PtrToInt> {
friend class PtrToInt;
friend class ConstantExpr;
public:
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// Method to return the pointer operand as a PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
/// Method to return the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return cast<PointerType>(getPointerOperandType())->getAddressSpace();
}
};
class BitCastOperator
: public ConcreteOperator<Operator, Instruction::BitCast> {
friend class BitCastInst;
friend class ConstantExpr;
public:
Type *getSrcTy() const {
return getOperand(0)->getType();
}
Type *getDestTy() const {
return getType();
}
};
} // end namespace llvm
#endif // LLVM_IR_OPERATOR_H