1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/Target/NVPTX/NVPTXTargetMachine.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

366 lines
13 KiB
C++

//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the NVPTX target.
//
//===----------------------------------------------------------------------===//
#include "NVPTXTargetMachine.h"
#include "NVPTX.h"
#include "NVPTXAllocaHoisting.h"
#include "NVPTXLowerAggrCopies.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXTargetTransformInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Vectorize.h"
#include <cassert>
#include <string>
using namespace llvm;
// LSV is still relatively new; this switch lets us turn it off in case we
// encounter (or suspect) a bug.
static cl::opt<bool>
DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
cl::desc("Disable load/store vectorizer"),
cl::init(false), cl::Hidden);
namespace llvm {
void initializeNVVMIntrRangePass(PassRegistry&);
void initializeNVVMReflectPass(PassRegistry&);
void initializeGenericToNVVMPass(PassRegistry&);
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
void initializeNVPTXLowerArgsPass(PassRegistry &);
void initializeNVPTXLowerAllocaPass(PassRegistry &);
} // end namespace llvm
extern "C" void LLVMInitializeNVPTXTarget() {
// Register the target.
RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
// FIXME: This pass is really intended to be invoked during IR optimization,
// but it's very NVPTX-specific.
PassRegistry &PR = *PassRegistry::getPassRegistry();
initializeNVVMReflectPass(PR);
initializeNVVMIntrRangePass(PR);
initializeGenericToNVVMPass(PR);
initializeNVPTXAllocaHoistingPass(PR);
initializeNVPTXAssignValidGlobalNamesPass(PR);
initializeNVPTXLowerArgsPass(PR);
initializeNVPTXLowerAllocaPass(PR);
initializeNVPTXLowerAggrCopiesPass(PR);
}
static std::string computeDataLayout(bool is64Bit) {
std::string Ret = "e";
if (!is64Bit)
Ret += "-p:32:32";
Ret += "-i64:64-v16:16-v32:32-n16:32:64";
return Ret;
}
NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL, bool is64bit)
// The pic relocation model is used regardless of what the client has
// specified, as it is the only relocation model currently supported.
: LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options,
Reloc::PIC_, CM, OL),
is64bit(is64bit),
TLOF(llvm::make_unique<NVPTXTargetObjectFile>()),
Subtarget(TT, CPU, FS, *this) {
if (TT.getOS() == Triple::NVCL)
drvInterface = NVPTX::NVCL;
else
drvInterface = NVPTX::CUDA;
initAsmInfo();
}
NVPTXTargetMachine::~NVPTXTargetMachine() = default;
void NVPTXTargetMachine32::anchor() {}
NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL)
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
void NVPTXTargetMachine64::anchor() {}
NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL)
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
namespace {
class NVPTXPassConfig : public TargetPassConfig {
public:
NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
NVPTXTargetMachine &getNVPTXTargetMachine() const {
return getTM<NVPTXTargetMachine>();
}
void addIRPasses() override;
bool addInstSelector() override;
void addPostRegAlloc() override;
void addMachineSSAOptimization() override;
FunctionPass *createTargetRegisterAllocator(bool) override;
void addFastRegAlloc(FunctionPass *RegAllocPass) override;
void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
private:
// If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
// function is only called in opt mode.
void addEarlyCSEOrGVNPass();
// Add passes that propagate special memory spaces.
void addAddressSpaceInferencePasses();
// Add passes that perform straight-line scalar optimizations.
void addStraightLineScalarOptimizationPasses();
};
} // end anonymous namespace
TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
return new NVPTXPassConfig(*this, PM);
}
void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
Builder.addExtension(
PassManagerBuilder::EP_EarlyAsPossible,
[&](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
PM.add(createNVVMReflectPass());
PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
});
}
TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(NVPTXTTIImpl(this, F));
});
}
void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
if (getOptLevel() == CodeGenOpt::Aggressive)
addPass(createGVNPass());
else
addPass(createEarlyCSEPass());
}
void NVPTXPassConfig::addAddressSpaceInferencePasses() {
// NVPTXLowerArgs emits alloca for byval parameters which can often
// be eliminated by SROA.
addPass(createSROAPass());
addPass(createNVPTXLowerAllocaPass());
addPass(createInferAddressSpacesPass());
}
void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
addPass(createSeparateConstOffsetFromGEPPass());
addPass(createSpeculativeExecutionPass());
// ReassociateGEPs exposes more opportunites for SLSR. See
// the example in reassociate-geps-and-slsr.ll.
addPass(createStraightLineStrengthReducePass());
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
// EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
// for some of our benchmarks.
addEarlyCSEOrGVNPass();
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
addPass(createNaryReassociatePass());
// NaryReassociate on GEPs creates redundant common expressions, so run
// EarlyCSE after it.
addPass(createEarlyCSEPass());
}
void NVPTXPassConfig::addIRPasses() {
// The following passes are known to not play well with virtual regs hanging
// around after register allocation (which in our case, is *all* registers).
// We explicitly disable them here. We do, however, need some functionality
// of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
// NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
disablePass(&PrologEpilogCodeInserterID);
disablePass(&MachineCopyPropagationID);
disablePass(&TailDuplicateID);
disablePass(&StackMapLivenessID);
disablePass(&LiveDebugValuesID);
disablePass(&PostRASchedulerID);
disablePass(&FuncletLayoutID);
disablePass(&PatchableFunctionID);
// NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
// it here does nothing. But since we need it for correctness when lowering
// to NVPTX, run it here too, in case whoever built our pass pipeline didn't
// call addEarlyAsPossiblePasses.
addPass(createNVVMReflectPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createNVPTXImageOptimizerPass());
addPass(createNVPTXAssignValidGlobalNamesPass());
addPass(createGenericToNVVMPass());
// NVPTXLowerArgs is required for correctness and should be run right
// before the address space inference passes.
addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
if (getOptLevel() != CodeGenOpt::None) {
addAddressSpaceInferencePasses();
if (!DisableLoadStoreVectorizer)
addPass(createLoadStoreVectorizerPass());
addStraightLineScalarOptimizationPasses();
}
// === LSR and other generic IR passes ===
TargetPassConfig::addIRPasses();
// EarlyCSE is not always strong enough to clean up what LSR produces. For
// example, GVN can combine
//
// %0 = add %a, %b
// %1 = add %b, %a
//
// and
//
// %0 = shl nsw %a, 2
// %1 = shl %a, 2
//
// but EarlyCSE can do neither of them.
if (getOptLevel() != CodeGenOpt::None)
addEarlyCSEOrGVNPass();
}
bool NVPTXPassConfig::addInstSelector() {
const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
addPass(createLowerAggrCopies());
addPass(createAllocaHoisting());
addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
if (!ST.hasImageHandles())
addPass(createNVPTXReplaceImageHandlesPass());
return false;
}
void NVPTXPassConfig::addPostRegAlloc() {
addPass(createNVPTXPrologEpilogPass(), false);
if (getOptLevel() != CodeGenOpt::None) {
// NVPTXPrologEpilogPass calculates frame object offset and replace frame
// index with VRFrame register. NVPTXPeephole need to be run after that and
// will replace VRFrame with VRFrameLocal when possible.
addPass(createNVPTXPeephole());
}
}
FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
return nullptr; // No reg alloc
}
void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
assert(!RegAllocPass && "NVPTX uses no regalloc!");
addPass(&PHIEliminationID);
addPass(&TwoAddressInstructionPassID);
}
void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
assert(!RegAllocPass && "NVPTX uses no regalloc!");
addPass(&ProcessImplicitDefsID);
addPass(&LiveVariablesID);
addPass(&MachineLoopInfoID);
addPass(&PHIEliminationID);
addPass(&TwoAddressInstructionPassID);
addPass(&RegisterCoalescerID);
// PreRA instruction scheduling.
if (addPass(&MachineSchedulerID))
printAndVerify("After Machine Scheduling");
addPass(&StackSlotColoringID);
// FIXME: Needs physical registers
//addPass(&PostRAMachineLICMID);
printAndVerify("After StackSlotColoring");
}
void NVPTXPassConfig::addMachineSSAOptimization() {
// Pre-ra tail duplication.
if (addPass(&EarlyTailDuplicateID))
printAndVerify("After Pre-RegAlloc TailDuplicate");
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
addPass(&OptimizePHIsID);
// This pass merges large allocas. StackSlotColoring is a different pass
// which merges spill slots.
addPass(&StackColoringID);
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(&LocalStackSlotAllocationID);
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
addPass(&DeadMachineInstructionElimID);
printAndVerify("After codegen DCE pass");
// Allow targets to insert passes that improve instruction level parallelism,
// like if-conversion. Such passes will typically need dominator trees and
// loop info, just like LICM and CSE below.
if (addILPOpts())
printAndVerify("After ILP optimizations");
addPass(&MachineLICMID);
addPass(&MachineCSEID);
addPass(&MachineSinkingID);
printAndVerify("After Machine LICM, CSE and Sinking passes");
addPass(&PeepholeOptimizerID);
printAndVerify("After codegen peephole optimization pass");
}