1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/tools/bugpoint/BugDriver.cpp
Chris Lattner f28c74870f Reimplement the old and horrible bison parser for .ll files with a nice
and clean recursive descent parser.

This change has a couple of ramifications:
1. The parser code is about 400 lines shorter (in what we maintain, not
   including what is autogenerated).
2. The code should be significantly faster than the old code because we 
   don't have to work around bison's poor handling of datatypes with 
   ctors/dtors.  This also makes the code much more resistant to memory 
   leaks.
3. We now get caret diagnostics from the .ll parser, woo.
4. The actual diagnostics emited from the parser are completely different
   so a bunch of testcases had to be updated.
5. I now disallow "%ty = type opaque %ty = type i32".  There was no good
   reason to support this, it was just an accident of the old 
   implementation.  I have no reason to think that anyone is actually using
   this.
6. The syntax for sticking a global variable has changed to make it 
   unambiguous.  I don't think anyone is depending on this since only clang
   supports this and it is not solid yet, so I'm not worried about anything
   breaking.
7. This gets rid of the last use of bison, and along with it the .cvs files.
   I'll prune this from the makefiles as a subsequent commit.

There are a few minor cleanups that can be done after this commit (suggestions
welcome!) but this passes dejagnu testing and is ready for its time in the
limelight.

llvm-svn: 61558
2009-01-02 07:01:27 +00:00

242 lines
8.3 KiB
C++

//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations. This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "ToolRunner.h"
#include "llvm/Linker.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <iostream>
#include <memory>
using namespace llvm;
// Anonymous namespace to define command line options for debugging.
//
namespace {
// Output - The user can specify a file containing the expected output of the
// program. If this filename is set, it is used as the reference diff source,
// otherwise the raw input run through an interpreter is used as the reference
// source.
//
cl::opt<std::string>
OutputFile("output", cl::desc("Specify a reference program output "
"(for miscompilation detection)"));
}
/// setNewProgram - If we reduce or update the program somehow, call this method
/// to update bugdriver with it. This deletes the old module and sets the
/// specified one as the current program.
void BugDriver::setNewProgram(Module *M) {
delete Program;
Program = M;
}
/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string llvm::getPassesString(const std::vector<const PassInfo*> &Passes) {
std::string Result;
for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
if (i) Result += " ";
Result += "-";
Result += Passes[i]->getPassArgument();
}
return Result;
}
BugDriver::BugDriver(const char *toolname, bool as_child, bool find_bugs,
unsigned timeout, unsigned memlimit)
: ToolName(toolname), ReferenceOutputFile(OutputFile),
Program(0), Interpreter(0), SafeInterpreter(0), gcc(0),
run_as_child(as_child),
run_find_bugs(find_bugs), Timeout(timeout), MemoryLimit(memlimit) {}
/// ParseInputFile - Given a bitcode or assembly input filename, parse and
/// return it, or return null if not possible.
///
Module *llvm::ParseInputFile(const std::string &Filename) {
std::auto_ptr<MemoryBuffer> Buffer(MemoryBuffer::getFileOrSTDIN(Filename));
Module *Result = 0;
if (Buffer.get())
Result = ParseBitcodeFile(Buffer.get());
ParseError Err;
if (!Result && !(Result = ParseAssemblyFile(Filename, Err))) {
Err.PrintError("bugpoint", errs());
Result = 0;
}
return Result;
}
// This method takes the specified list of LLVM input files, attempts to load
// them, either as assembly or bitcode, then link them together. It returns
// true on failure (if, for example, an input bitcode file could not be
// parsed), and false on success.
//
bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
assert(Program == 0 && "Cannot call addSources multiple times!");
assert(!Filenames.empty() && "Must specify at least on input filename!");
try {
// Load the first input file.
Program = ParseInputFile(Filenames[0]);
if (Program == 0) return true;
if (!run_as_child)
std::cout << "Read input file : '" << Filenames[0] << "'\n";
for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
std::auto_ptr<Module> M(ParseInputFile(Filenames[i]));
if (M.get() == 0) return true;
if (!run_as_child)
std::cout << "Linking in input file: '" << Filenames[i] << "'\n";
std::string ErrorMessage;
if (Linker::LinkModules(Program, M.get(), &ErrorMessage)) {
std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': "
<< ErrorMessage << '\n';
return true;
}
}
} catch (const std::string &Error) {
std::cerr << ToolName << ": error reading input '" << Error << "'\n";
return true;
}
if (!run_as_child)
std::cout << "*** All input ok\n";
// All input files read successfully!
return false;
}
/// run - The top level method that is invoked after all of the instance
/// variables are set up from command line arguments.
///
bool BugDriver::run() {
// The first thing to do is determine if we're running as a child. If we are,
// then what to do is very narrow. This form of invocation is only called
// from the runPasses method to actually run those passes in a child process.
if (run_as_child) {
// Execute the passes
return runPassesAsChild(PassesToRun);
}
if (run_find_bugs) {
// Rearrange the passes and apply them to the program. Repeat this process
// until the user kills the program or we find a bug.
return runManyPasses(PassesToRun);
}
// If we're not running as a child, the first thing that we must do is
// determine what the problem is. Does the optimization series crash the
// compiler, or does it produce illegal code? We make the top-level
// decision by trying to run all of the passes on the the input program,
// which should generate a bitcode file. If it does generate a bitcode
// file, then we know the compiler didn't crash, so try to diagnose a
// miscompilation.
if (!PassesToRun.empty()) {
std::cout << "Running selected passes on program to test for crash: ";
if (runPasses(PassesToRun))
return debugOptimizerCrash();
}
// Set up the execution environment, selecting a method to run LLVM bitcode.
if (initializeExecutionEnvironment()) return true;
// Test to see if we have a code generator crash.
std::cout << "Running the code generator to test for a crash: ";
try {
compileProgram(Program);
std::cout << '\n';
} catch (ToolExecutionError &TEE) {
std::cout << TEE.what();
return debugCodeGeneratorCrash();
}
// Run the raw input to see where we are coming from. If a reference output
// was specified, make sure that the raw output matches it. If not, it's a
// problem in the front-end or the code generator.
//
bool CreatedOutput = false;
if (ReferenceOutputFile.empty()) {
std::cout << "Generating reference output from raw program: ";
if(!createReferenceFile(Program)){
return debugCodeGeneratorCrash();
}
CreatedOutput = true;
}
// Make sure the reference output file gets deleted on exit from this
// function, if appropriate.
sys::Path ROF(ReferenceOutputFile);
FileRemover RemoverInstance(ROF, CreatedOutput);
// Diff the output of the raw program against the reference output. If it
// matches, then we assume there is a miscompilation bug and try to
// diagnose it.
std::cout << "*** Checking the code generator...\n";
try {
if (!diffProgram()) {
std::cout << "\n*** Debugging miscompilation!\n";
return debugMiscompilation();
}
} catch (ToolExecutionError &TEE) {
std::cerr << TEE.what();
return debugCodeGeneratorCrash();
}
std::cout << "\n*** Input program does not match reference diff!\n";
std::cout << "Debugging code generator problem!\n";
try {
return debugCodeGenerator();
} catch (ToolExecutionError &TEE) {
std::cerr << TEE.what();
return debugCodeGeneratorCrash();
}
}
void llvm::PrintFunctionList(const std::vector<Function*> &Funcs) {
unsigned NumPrint = Funcs.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0; i != NumPrint; ++i)
std::cout << " " << Funcs[i]->getName();
if (NumPrint < Funcs.size())
std::cout << "... <" << Funcs.size() << " total>";
std::cout << std::flush;
}
void llvm::PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs) {
unsigned NumPrint = GVs.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0; i != NumPrint; ++i)
std::cout << " " << GVs[i]->getName();
if (NumPrint < GVs.size())
std::cout << "... <" << GVs.size() << " total>";
std::cout << std::flush;
}