mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
304ecc0487
pressure estimates and liveness alongside. Still experimental. llvm-svn: 108698
818 lines
26 KiB
C++
818 lines
26 KiB
C++
//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements SlotIndex and related classes. The purpuse of SlotIndex
|
|
// is to describe a position at which a register can become live, or cease to
|
|
// be live.
|
|
//
|
|
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
|
|
// is held is LiveIntervals and provides the real numbering. This allows
|
|
// LiveIntervals to perform largely transparent renumbering. The SlotIndex
|
|
// class does hold a PHI bit, which determines whether the index relates to a
|
|
// PHI use or def point, or an actual instruction. See the SlotIndex class
|
|
// description for futher information.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SLOTINDEXES_H
|
|
#define LLVM_CODEGEN_SLOTINDEXES_H
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// This class represents an entry in the slot index list held in the
|
|
/// SlotIndexes pass. It should not be used directly. See the
|
|
/// SlotIndex & SlotIndexes classes for the public interface to this
|
|
/// information.
|
|
class IndexListEntry {
|
|
static const unsigned EMPTY_KEY_INDEX = ~0U & ~3U,
|
|
TOMBSTONE_KEY_INDEX = ~0U & ~7U;
|
|
|
|
IndexListEntry *next, *prev;
|
|
MachineInstr *mi;
|
|
unsigned index;
|
|
|
|
protected:
|
|
|
|
typedef enum { EMPTY_KEY, TOMBSTONE_KEY } ReservedEntryType;
|
|
|
|
// This constructor is only to be used by getEmptyKeyEntry
|
|
// & getTombstoneKeyEntry. It sets index to the given
|
|
// value and mi to zero.
|
|
IndexListEntry(ReservedEntryType r) : mi(0) {
|
|
switch(r) {
|
|
case EMPTY_KEY: index = EMPTY_KEY_INDEX; break;
|
|
case TOMBSTONE_KEY: index = TOMBSTONE_KEY_INDEX; break;
|
|
default: assert(false && "Invalid value for constructor.");
|
|
}
|
|
next = this;
|
|
prev = this;
|
|
}
|
|
|
|
public:
|
|
|
|
IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {
|
|
assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
|
|
"Attempt to create invalid index. "
|
|
"Available indexes may have been exhausted?.");
|
|
}
|
|
|
|
bool isValid() const {
|
|
return (index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX);
|
|
}
|
|
|
|
MachineInstr* getInstr() const { return mi; }
|
|
void setInstr(MachineInstr *mi) {
|
|
assert(isValid() && "Attempt to modify reserved index.");
|
|
this->mi = mi;
|
|
}
|
|
|
|
unsigned getIndex() const { return index; }
|
|
void setIndex(unsigned index) {
|
|
assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
|
|
"Attempt to set index to invalid value.");
|
|
assert(isValid() && "Attempt to reset reserved index value.");
|
|
this->index = index;
|
|
}
|
|
|
|
IndexListEntry* getNext() { return next; }
|
|
const IndexListEntry* getNext() const { return next; }
|
|
void setNext(IndexListEntry *next) {
|
|
assert(isValid() && "Attempt to modify reserved index.");
|
|
this->next = next;
|
|
}
|
|
|
|
IndexListEntry* getPrev() { return prev; }
|
|
const IndexListEntry* getPrev() const { return prev; }
|
|
void setPrev(IndexListEntry *prev) {
|
|
assert(isValid() && "Attempt to modify reserved index.");
|
|
this->prev = prev;
|
|
}
|
|
|
|
// This function returns the index list entry that is to be used for empty
|
|
// SlotIndex keys.
|
|
static IndexListEntry* getEmptyKeyEntry();
|
|
|
|
// This function returns the index list entry that is to be used for
|
|
// tombstone SlotIndex keys.
|
|
static IndexListEntry* getTombstoneKeyEntry();
|
|
};
|
|
|
|
// Specialize PointerLikeTypeTraits for IndexListEntry.
|
|
template <>
|
|
class PointerLikeTypeTraits<IndexListEntry*> {
|
|
public:
|
|
static inline void* getAsVoidPointer(IndexListEntry *p) {
|
|
return p;
|
|
}
|
|
static inline IndexListEntry* getFromVoidPointer(void *p) {
|
|
return static_cast<IndexListEntry*>(p);
|
|
}
|
|
enum { NumLowBitsAvailable = 3 };
|
|
};
|
|
|
|
/// SlotIndex - An opaque wrapper around machine indexes.
|
|
class SlotIndex {
|
|
friend class SlotIndexes;
|
|
friend struct DenseMapInfo<SlotIndex>;
|
|
|
|
private:
|
|
static const unsigned PHI_BIT = 1 << 2;
|
|
|
|
PointerIntPair<IndexListEntry*, 3, unsigned> lie;
|
|
|
|
SlotIndex(IndexListEntry *entry, unsigned phiAndSlot)
|
|
: lie(entry, phiAndSlot) {
|
|
assert(entry != 0 && "Attempt to construct index with 0 pointer.");
|
|
}
|
|
|
|
IndexListEntry& entry() const {
|
|
return *lie.getPointer();
|
|
}
|
|
|
|
int getIndex() const {
|
|
return entry().getIndex() | getSlot();
|
|
}
|
|
|
|
static inline unsigned getHashValue(const SlotIndex &v) {
|
|
IndexListEntry *ptrVal = &v.entry();
|
|
return (unsigned((intptr_t)ptrVal) >> 4) ^
|
|
(unsigned((intptr_t)ptrVal) >> 9);
|
|
}
|
|
|
|
public:
|
|
|
|
// FIXME: Ugh. This is public because LiveIntervalAnalysis is still using it
|
|
// for some spill weight stuff. Fix that, then make this private.
|
|
enum Slot { LOAD, USE, DEF, STORE, NUM };
|
|
|
|
static inline SlotIndex getEmptyKey() {
|
|
return SlotIndex(IndexListEntry::getEmptyKeyEntry(), 0);
|
|
}
|
|
|
|
static inline SlotIndex getTombstoneKey() {
|
|
return SlotIndex(IndexListEntry::getTombstoneKeyEntry(), 0);
|
|
}
|
|
|
|
/// Construct an invalid index.
|
|
SlotIndex() : lie(IndexListEntry::getEmptyKeyEntry(), 0) {}
|
|
|
|
// Construct a new slot index from the given one, set the phi flag on the
|
|
// new index to the value of the phi parameter.
|
|
SlotIndex(const SlotIndex &li, bool phi)
|
|
: lie(&li.entry(), phi ? PHI_BIT | li.getSlot() : (unsigned)li.getSlot()){
|
|
assert(lie.getPointer() != 0 &&
|
|
"Attempt to construct index with 0 pointer.");
|
|
}
|
|
|
|
// Construct a new slot index from the given one, set the phi flag on the
|
|
// new index to the value of the phi parameter, and the slot to the new slot.
|
|
SlotIndex(const SlotIndex &li, bool phi, Slot s)
|
|
: lie(&li.entry(), phi ? PHI_BIT | s : (unsigned)s) {
|
|
assert(lie.getPointer() != 0 &&
|
|
"Attempt to construct index with 0 pointer.");
|
|
}
|
|
|
|
/// Returns true if this is a valid index. Invalid indicies do
|
|
/// not point into an index table, and cannot be compared.
|
|
bool isValid() const {
|
|
IndexListEntry *entry = lie.getPointer();
|
|
return ((entry!= 0) && (entry->isValid()));
|
|
}
|
|
|
|
/// Print this index to the given raw_ostream.
|
|
void print(raw_ostream &os) const;
|
|
|
|
/// Dump this index to stderr.
|
|
void dump() const;
|
|
|
|
/// Compare two SlotIndex objects for equality.
|
|
bool operator==(SlotIndex other) const {
|
|
return getIndex() == other.getIndex();
|
|
}
|
|
/// Compare two SlotIndex objects for inequality.
|
|
bool operator!=(SlotIndex other) const {
|
|
return getIndex() != other.getIndex();
|
|
}
|
|
|
|
/// Compare two SlotIndex objects. Return true if the first index
|
|
/// is strictly lower than the second.
|
|
bool operator<(SlotIndex other) const {
|
|
return getIndex() < other.getIndex();
|
|
}
|
|
/// Compare two SlotIndex objects. Return true if the first index
|
|
/// is lower than, or equal to, the second.
|
|
bool operator<=(SlotIndex other) const {
|
|
return getIndex() <= other.getIndex();
|
|
}
|
|
|
|
/// Compare two SlotIndex objects. Return true if the first index
|
|
/// is greater than the second.
|
|
bool operator>(SlotIndex other) const {
|
|
return getIndex() > other.getIndex();
|
|
}
|
|
|
|
/// Compare two SlotIndex objects. Return true if the first index
|
|
/// is greater than, or equal to, the second.
|
|
bool operator>=(SlotIndex other) const {
|
|
return getIndex() >= other.getIndex();
|
|
}
|
|
|
|
/// Return the distance from this index to the given one.
|
|
int distance(SlotIndex other) const {
|
|
return other.getIndex() - getIndex();
|
|
}
|
|
|
|
/// Returns the slot for this SlotIndex.
|
|
Slot getSlot() const {
|
|
return static_cast<Slot>(lie.getInt() & ~PHI_BIT);
|
|
}
|
|
|
|
/// Returns the state of the PHI bit.
|
|
bool isPHI() const {
|
|
return lie.getInt() & PHI_BIT;
|
|
}
|
|
|
|
/// Returns the base index for associated with this index. The base index
|
|
/// is the one associated with the LOAD slot for the instruction pointed to
|
|
/// by this index.
|
|
SlotIndex getBaseIndex() const {
|
|
return getLoadIndex();
|
|
}
|
|
|
|
/// Returns the boundary index for associated with this index. The boundary
|
|
/// index is the one associated with the LOAD slot for the instruction
|
|
/// pointed to by this index.
|
|
SlotIndex getBoundaryIndex() const {
|
|
return getStoreIndex();
|
|
}
|
|
|
|
/// Returns the index of the LOAD slot for the instruction pointed to by
|
|
/// this index.
|
|
SlotIndex getLoadIndex() const {
|
|
return SlotIndex(&entry(), SlotIndex::LOAD);
|
|
}
|
|
|
|
/// Returns the index of the USE slot for the instruction pointed to by
|
|
/// this index.
|
|
SlotIndex getUseIndex() const {
|
|
return SlotIndex(&entry(), SlotIndex::USE);
|
|
}
|
|
|
|
/// Returns the index of the DEF slot for the instruction pointed to by
|
|
/// this index.
|
|
SlotIndex getDefIndex() const {
|
|
return SlotIndex(&entry(), SlotIndex::DEF);
|
|
}
|
|
|
|
/// Returns the index of the STORE slot for the instruction pointed to by
|
|
/// this index.
|
|
SlotIndex getStoreIndex() const {
|
|
return SlotIndex(&entry(), SlotIndex::STORE);
|
|
}
|
|
|
|
/// Returns the next slot in the index list. This could be either the
|
|
/// next slot for the instruction pointed to by this index or, if this
|
|
/// index is a STORE, the first slot for the next instruction.
|
|
/// WARNING: This method is considerably more expensive than the methods
|
|
/// that return specific slots (getUseIndex(), etc). If you can - please
|
|
/// use one of those methods.
|
|
SlotIndex getNextSlot() const {
|
|
Slot s = getSlot();
|
|
if (s == SlotIndex::STORE) {
|
|
return SlotIndex(entry().getNext(), SlotIndex::LOAD);
|
|
}
|
|
return SlotIndex(&entry(), s + 1);
|
|
}
|
|
|
|
/// Returns the next index. This is the index corresponding to the this
|
|
/// index's slot, but for the next instruction.
|
|
SlotIndex getNextIndex() const {
|
|
return SlotIndex(entry().getNext(), getSlot());
|
|
}
|
|
|
|
/// Returns the previous slot in the index list. This could be either the
|
|
/// previous slot for the instruction pointed to by this index or, if this
|
|
/// index is a LOAD, the last slot for the previous instruction.
|
|
/// WARNING: This method is considerably more expensive than the methods
|
|
/// that return specific slots (getUseIndex(), etc). If you can - please
|
|
/// use one of those methods.
|
|
SlotIndex getPrevSlot() const {
|
|
Slot s = getSlot();
|
|
if (s == SlotIndex::LOAD) {
|
|
return SlotIndex(entry().getPrev(), SlotIndex::STORE);
|
|
}
|
|
return SlotIndex(&entry(), s - 1);
|
|
}
|
|
|
|
/// Returns the previous index. This is the index corresponding to this
|
|
/// index's slot, but for the previous instruction.
|
|
SlotIndex getPrevIndex() const {
|
|
return SlotIndex(entry().getPrev(), getSlot());
|
|
}
|
|
|
|
};
|
|
|
|
/// DenseMapInfo specialization for SlotIndex.
|
|
template <>
|
|
struct DenseMapInfo<SlotIndex> {
|
|
static inline SlotIndex getEmptyKey() {
|
|
return SlotIndex::getEmptyKey();
|
|
}
|
|
static inline SlotIndex getTombstoneKey() {
|
|
return SlotIndex::getTombstoneKey();
|
|
}
|
|
static inline unsigned getHashValue(const SlotIndex &v) {
|
|
return SlotIndex::getHashValue(v);
|
|
}
|
|
static inline bool isEqual(const SlotIndex &LHS, const SlotIndex &RHS) {
|
|
return (LHS == RHS);
|
|
}
|
|
};
|
|
|
|
template <> struct isPodLike<SlotIndex> { static const bool value = true; };
|
|
|
|
|
|
inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
|
|
li.print(os);
|
|
return os;
|
|
}
|
|
|
|
typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
|
|
|
|
inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
|
|
return V < IM.first;
|
|
}
|
|
|
|
inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
|
|
return IM.first < V;
|
|
}
|
|
|
|
struct Idx2MBBCompare {
|
|
bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
|
|
return LHS.first < RHS.first;
|
|
}
|
|
};
|
|
|
|
/// SlotIndexes pass.
|
|
///
|
|
/// This pass assigns indexes to each instruction.
|
|
class SlotIndexes : public MachineFunctionPass {
|
|
private:
|
|
|
|
MachineFunction *mf;
|
|
IndexListEntry *indexListHead;
|
|
unsigned functionSize;
|
|
|
|
typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
|
|
Mi2IndexMap mi2iMap;
|
|
|
|
/// MBB2IdxMap - The indexes of the first and last instructions in the
|
|
/// specified basic block.
|
|
typedef DenseMap<const MachineBasicBlock*,
|
|
std::pair<SlotIndex, SlotIndex> > MBB2IdxMap;
|
|
MBB2IdxMap mbb2IdxMap;
|
|
|
|
/// Idx2MBBMap - Sorted list of pairs of index of first instruction
|
|
/// and MBB id.
|
|
std::vector<IdxMBBPair> idx2MBBMap;
|
|
|
|
typedef DenseMap<const MachineBasicBlock*, SlotIndex> TerminatorGapsMap;
|
|
TerminatorGapsMap terminatorGaps;
|
|
|
|
// IndexListEntry allocator.
|
|
BumpPtrAllocator ileAllocator;
|
|
|
|
IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
|
|
IndexListEntry *entry =
|
|
static_cast<IndexListEntry*>(
|
|
ileAllocator.Allocate(sizeof(IndexListEntry),
|
|
alignof<IndexListEntry>()));
|
|
|
|
new (entry) IndexListEntry(mi, index);
|
|
|
|
return entry;
|
|
}
|
|
|
|
void initList() {
|
|
assert(indexListHead == 0 && "Zero entry non-null at initialisation.");
|
|
indexListHead = createEntry(0, ~0U);
|
|
indexListHead->setNext(0);
|
|
indexListHead->setPrev(indexListHead);
|
|
}
|
|
|
|
void clearList() {
|
|
indexListHead = 0;
|
|
ileAllocator.Reset();
|
|
}
|
|
|
|
IndexListEntry* getTail() {
|
|
assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
|
|
return indexListHead->getPrev();
|
|
}
|
|
|
|
const IndexListEntry* getTail() const {
|
|
assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
|
|
return indexListHead->getPrev();
|
|
}
|
|
|
|
// Returns true if the index list is empty.
|
|
bool empty() const { return (indexListHead == getTail()); }
|
|
|
|
IndexListEntry* front() {
|
|
assert(!empty() && "front() called on empty index list.");
|
|
return indexListHead;
|
|
}
|
|
|
|
const IndexListEntry* front() const {
|
|
assert(!empty() && "front() called on empty index list.");
|
|
return indexListHead;
|
|
}
|
|
|
|
IndexListEntry* back() {
|
|
assert(!empty() && "back() called on empty index list.");
|
|
return getTail()->getPrev();
|
|
}
|
|
|
|
const IndexListEntry* back() const {
|
|
assert(!empty() && "back() called on empty index list.");
|
|
return getTail()->getPrev();
|
|
}
|
|
|
|
/// Insert a new entry before itr.
|
|
void insert(IndexListEntry *itr, IndexListEntry *val) {
|
|
assert(itr != 0 && "itr should not be null.");
|
|
IndexListEntry *prev = itr->getPrev();
|
|
val->setNext(itr);
|
|
val->setPrev(prev);
|
|
|
|
if (itr != indexListHead) {
|
|
prev->setNext(val);
|
|
}
|
|
else {
|
|
indexListHead = val;
|
|
}
|
|
itr->setPrev(val);
|
|
}
|
|
|
|
/// Push a new entry on to the end of the list.
|
|
void push_back(IndexListEntry *val) {
|
|
insert(getTail(), val);
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
SlotIndexes() : MachineFunctionPass(&ID), indexListHead(0) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &au) const;
|
|
virtual void releaseMemory();
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &fn);
|
|
|
|
/// Dump the indexes.
|
|
void dump() const;
|
|
|
|
/// Renumber the index list, providing space for new instructions.
|
|
void renumberIndexes();
|
|
|
|
/// Returns the zero index for this analysis.
|
|
SlotIndex getZeroIndex() {
|
|
assert(front()->getIndex() == 0 && "First index is not 0?");
|
|
return SlotIndex(front(), 0);
|
|
}
|
|
|
|
/// Returns the base index of the last slot in this analysis.
|
|
SlotIndex getLastIndex() {
|
|
return SlotIndex(back(), 0);
|
|
}
|
|
|
|
/// Returns the invalid index marker for this analysis.
|
|
SlotIndex getInvalidIndex() {
|
|
return getZeroIndex();
|
|
}
|
|
|
|
/// Returns the distance between the highest and lowest indexes allocated
|
|
/// so far.
|
|
unsigned getIndexesLength() const {
|
|
assert(front()->getIndex() == 0 &&
|
|
"Initial index isn't zero?");
|
|
|
|
return back()->getIndex();
|
|
}
|
|
|
|
/// Returns the number of instructions in the function.
|
|
unsigned getFunctionSize() const {
|
|
return functionSize;
|
|
}
|
|
|
|
/// Returns true if the given machine instr is mapped to an index,
|
|
/// otherwise returns false.
|
|
bool hasIndex(const MachineInstr *instr) const {
|
|
return (mi2iMap.find(instr) != mi2iMap.end());
|
|
}
|
|
|
|
/// Returns the base index for the given instruction.
|
|
SlotIndex getInstructionIndex(const MachineInstr *instr) const {
|
|
Mi2IndexMap::const_iterator itr = mi2iMap.find(instr);
|
|
assert(itr != mi2iMap.end() && "Instruction not found in maps.");
|
|
return itr->second;
|
|
}
|
|
|
|
/// Returns the instruction for the given index, or null if the given
|
|
/// index has no instruction associated with it.
|
|
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
|
|
return index.entry().getInstr();
|
|
}
|
|
|
|
/// Returns the next non-null index.
|
|
SlotIndex getNextNonNullIndex(SlotIndex index) {
|
|
SlotIndex nextNonNull = index.getNextIndex();
|
|
|
|
while (&nextNonNull.entry() != getTail() &&
|
|
getInstructionFromIndex(nextNonNull) == 0) {
|
|
nextNonNull = nextNonNull.getNextIndex();
|
|
}
|
|
|
|
return nextNonNull;
|
|
}
|
|
|
|
/// Returns the first index in the given basic block.
|
|
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
|
|
MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
|
|
assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
|
|
return itr->second.first;
|
|
}
|
|
|
|
/// Returns the last index in the given basic block.
|
|
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
|
|
MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
|
|
assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
|
|
return itr->second.second;
|
|
}
|
|
|
|
/// Returns the terminator gap for the given index.
|
|
SlotIndex getTerminatorGap(const MachineBasicBlock *mbb) {
|
|
TerminatorGapsMap::iterator itr = terminatorGaps.find(mbb);
|
|
assert(itr != terminatorGaps.end() &&
|
|
"All MBBs should have terminator gaps in their indexes.");
|
|
return itr->second;
|
|
}
|
|
|
|
/// Returns the basic block which the given index falls in.
|
|
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
|
|
std::vector<IdxMBBPair>::const_iterator I =
|
|
std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
|
|
// Take the pair containing the index
|
|
std::vector<IdxMBBPair>::const_iterator J =
|
|
((I != idx2MBBMap.end() && I->first > index) ||
|
|
(I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;
|
|
|
|
assert(J != idx2MBBMap.end() && J->first <= index &&
|
|
index < getMBBEndIdx(J->second) &&
|
|
"index does not correspond to an MBB");
|
|
return J->second;
|
|
}
|
|
|
|
bool findLiveInMBBs(SlotIndex start, SlotIndex end,
|
|
SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
|
|
std::vector<IdxMBBPair>::const_iterator itr =
|
|
std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
|
|
bool resVal = false;
|
|
|
|
while (itr != idx2MBBMap.end()) {
|
|
if (itr->first >= end)
|
|
break;
|
|
mbbs.push_back(itr->second);
|
|
resVal = true;
|
|
++itr;
|
|
}
|
|
return resVal;
|
|
}
|
|
|
|
/// Return a list of MBBs that can be reach via any branches or
|
|
/// fall-throughs.
|
|
bool findReachableMBBs(SlotIndex start, SlotIndex end,
|
|
SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
|
|
std::vector<IdxMBBPair>::const_iterator itr =
|
|
std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
|
|
|
|
bool resVal = false;
|
|
while (itr != idx2MBBMap.end()) {
|
|
if (itr->first > end)
|
|
break;
|
|
MachineBasicBlock *mbb = itr->second;
|
|
if (getMBBEndIdx(mbb) > end)
|
|
break;
|
|
for (MachineBasicBlock::succ_iterator si = mbb->succ_begin(),
|
|
se = mbb->succ_end(); si != se; ++si)
|
|
mbbs.push_back(*si);
|
|
resVal = true;
|
|
++itr;
|
|
}
|
|
return resVal;
|
|
}
|
|
|
|
/// Returns the MBB covering the given range, or null if the range covers
|
|
/// more than one basic block.
|
|
MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
|
|
|
|
assert(start < end && "Backwards ranges not allowed.");
|
|
|
|
std::vector<IdxMBBPair>::const_iterator itr =
|
|
std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
|
|
|
|
if (itr == idx2MBBMap.end()) {
|
|
itr = prior(itr);
|
|
return itr->second;
|
|
}
|
|
|
|
// Check that we don't cross the boundary into this block.
|
|
if (itr->first < end)
|
|
return 0;
|
|
|
|
itr = prior(itr);
|
|
|
|
if (itr->first <= start)
|
|
return itr->second;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Insert the given machine instruction into the mapping. Returns the
|
|
/// assigned index.
|
|
SlotIndex insertMachineInstrInMaps(MachineInstr *mi,
|
|
bool *deferredRenumber = 0) {
|
|
assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
|
|
|
|
MachineBasicBlock *mbb = mi->getParent();
|
|
|
|
assert(mbb != 0 && "Instr must be added to function.");
|
|
|
|
MBB2IdxMap::iterator mbbRangeItr = mbb2IdxMap.find(mbb);
|
|
|
|
assert(mbbRangeItr != mbb2IdxMap.end() &&
|
|
"Instruction's parent MBB has not been added to SlotIndexes.");
|
|
|
|
MachineBasicBlock::iterator miItr(mi);
|
|
bool needRenumber = false;
|
|
IndexListEntry *newEntry;
|
|
// Get previous index, considering that not all instructions are indexed.
|
|
IndexListEntry *prevEntry;
|
|
for (;;) {
|
|
// If mi is at the mbb beginning, get the prev index from the mbb.
|
|
if (miItr == mbb->begin()) {
|
|
prevEntry = &mbbRangeItr->second.first.entry();
|
|
break;
|
|
}
|
|
// Otherwise rewind until we find a mapped instruction.
|
|
Mi2IndexMap::const_iterator itr = mi2iMap.find(--miItr);
|
|
if (itr != mi2iMap.end()) {
|
|
prevEntry = &itr->second.entry();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get next entry from previous entry.
|
|
IndexListEntry *nextEntry = prevEntry->getNext();
|
|
|
|
// Get a number for the new instr, or 0 if there's no room currently.
|
|
// In the latter case we'll force a renumber later.
|
|
unsigned dist = nextEntry->getIndex() - prevEntry->getIndex();
|
|
unsigned newNumber = dist > SlotIndex::NUM ?
|
|
prevEntry->getIndex() + ((dist >> 1) & ~3U) : 0;
|
|
|
|
if (newNumber == 0) {
|
|
needRenumber = true;
|
|
}
|
|
|
|
// Insert a new list entry for mi.
|
|
newEntry = createEntry(mi, newNumber);
|
|
insert(nextEntry, newEntry);
|
|
|
|
SlotIndex newIndex(newEntry, SlotIndex::LOAD);
|
|
mi2iMap.insert(std::make_pair(mi, newIndex));
|
|
|
|
if (miItr == mbb->end()) {
|
|
// If this is the last instr in the MBB then we need to fix up the bb
|
|
// range:
|
|
mbbRangeItr->second.second = SlotIndex(newEntry, SlotIndex::STORE);
|
|
}
|
|
|
|
// Renumber if we need to.
|
|
if (needRenumber) {
|
|
if (deferredRenumber == 0)
|
|
renumberIndexes();
|
|
else
|
|
*deferredRenumber = true;
|
|
}
|
|
|
|
return newIndex;
|
|
}
|
|
|
|
/// Add all instructions in the vector to the index list. This method will
|
|
/// defer renumbering until all instrs have been added, and should be
|
|
/// preferred when adding multiple instrs.
|
|
void insertMachineInstrsInMaps(SmallVectorImpl<MachineInstr*> &mis) {
|
|
bool renumber = false;
|
|
|
|
for (SmallVectorImpl<MachineInstr*>::iterator
|
|
miItr = mis.begin(), miEnd = mis.end();
|
|
miItr != miEnd; ++miItr) {
|
|
insertMachineInstrInMaps(*miItr, &renumber);
|
|
}
|
|
|
|
if (renumber)
|
|
renumberIndexes();
|
|
}
|
|
|
|
|
|
/// Remove the given machine instruction from the mapping.
|
|
void removeMachineInstrFromMaps(MachineInstr *mi) {
|
|
// remove index -> MachineInstr and
|
|
// MachineInstr -> index mappings
|
|
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
|
|
if (mi2iItr != mi2iMap.end()) {
|
|
IndexListEntry *miEntry(&mi2iItr->second.entry());
|
|
assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
|
|
// FIXME: Eventually we want to actually delete these indexes.
|
|
miEntry->setInstr(0);
|
|
mi2iMap.erase(mi2iItr);
|
|
}
|
|
}
|
|
|
|
/// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
|
|
/// maps used by register allocator.
|
|
void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
|
|
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
|
|
if (mi2iItr == mi2iMap.end())
|
|
return;
|
|
SlotIndex replaceBaseIndex = mi2iItr->second;
|
|
IndexListEntry *miEntry(&replaceBaseIndex.entry());
|
|
assert(miEntry->getInstr() == mi &&
|
|
"Mismatched instruction in index tables.");
|
|
miEntry->setInstr(newMI);
|
|
mi2iMap.erase(mi2iItr);
|
|
mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
|
|
}
|
|
|
|
/// Add the given MachineBasicBlock into the maps.
|
|
void insertMBBInMaps(MachineBasicBlock *mbb) {
|
|
MachineFunction::iterator nextMBB =
|
|
llvm::next(MachineFunction::iterator(mbb));
|
|
IndexListEntry *startEntry = createEntry(0, 0);
|
|
IndexListEntry *terminatorEntry = createEntry(0, 0);
|
|
IndexListEntry *nextEntry = 0;
|
|
|
|
if (nextMBB == mbb->getParent()->end()) {
|
|
nextEntry = getTail();
|
|
} else {
|
|
nextEntry = &getMBBStartIdx(nextMBB).entry();
|
|
}
|
|
|
|
insert(nextEntry, startEntry);
|
|
insert(nextEntry, terminatorEntry);
|
|
|
|
SlotIndex startIdx(startEntry, SlotIndex::LOAD);
|
|
SlotIndex terminatorIdx(terminatorEntry, SlotIndex::PHI_BIT);
|
|
SlotIndex endIdx(nextEntry, SlotIndex::LOAD);
|
|
|
|
terminatorGaps.insert(
|
|
std::make_pair(mbb, terminatorIdx));
|
|
|
|
mbb2IdxMap.insert(
|
|
std::make_pair(mbb, std::make_pair(startIdx, endIdx)));
|
|
|
|
idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
|
|
|
|
if (MachineFunction::iterator(mbb) != mbb->getParent()->begin()) {
|
|
// Have to update the end index of the previous block.
|
|
MachineBasicBlock *priorMBB =
|
|
llvm::prior(MachineFunction::iterator(mbb));
|
|
mbb2IdxMap[priorMBB].second = startIdx;
|
|
}
|
|
|
|
renumberIndexes();
|
|
std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
}
|
|
|
|
#endif // LLVM_CODEGEN_LIVEINDEX_H
|