1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/include/llvm/Analysis/LoopInfoImpl.h
Chandler Carruth ee051af6e2 [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00

552 lines
20 KiB
C++

//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I)) {
// Not in current loop? It must be an exit block.
ExitingBlocks.push_back(*BI);
break;
}
}
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
SmallVector<BlockT*, 8> ExitingBlocks;
getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() == 1)
return ExitingBlocks[0];
return 0;
}
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I))
// Not in current loop? It must be an exit block.
ExitBlocks.push_back(*I);
}
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
SmallVector<BlockT*, 8> ExitBlocks;
getExitBlocks(ExitBlocks);
if (ExitBlocks.size() == 1)
return ExitBlocks[0];
return 0;
}
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!contains(*I))
// Not in current loop? It must be an exit block.
ExitEdges.push_back(Edge(*BI, *I));
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = getLoopPredecessor();
if (!Out) return 0;
// Make sure there is only one exit out of the preheader.
typedef GraphTraits<BlockT*> BlockTraits;
typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
++SI;
if (SI != BlockTraits::child_end(Out))
return 0; // Multiple exits from the block, must not be a preheader.
// The predecessor has exactly one successor, so it is a preheader.
return Out;
}
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = 0;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
typename InvBlockTraits::NodeType *N = *PI;
if (!contains(N)) { // If the block is not in the loop...
if (Out && Out != N)
return 0; // Multiple predecessors outside the loop
Out = N;
}
}
// Make sure there is only one exit out of the preheader.
assert(Out && "Header of loop has no predecessors from outside loop?");
return Out;
}
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header);
typename InvBlockTraits::ChildIteratorType PE =
InvBlockTraits::child_end(Header);
BlockT *Latch = 0;
for (; PI != PE; ++PI) {
typename InvBlockTraits::NodeType *N = *PI;
if (contains(N)) {
if (Latch) return 0;
Latch = N;
}
}
return Latch;
}
//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
assert((Blocks.empty() || LIB[getHeader()] == this) &&
"Incorrect LI specified for this loop!");
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
LoopT *L = static_cast<LoopT *>(this);
// Add the loop mapping to the LoopInfo object...
LIB.BBMap[NewBB] = L;
// Add the basic block to this loop and all parent loops...
while (L) {
L->addBlockEntry(NewBB);
L = L->getParentLoop();
}
}
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
assert(OldChild->ParentLoop == this && "This loop is already broken!");
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
typename std::vector<LoopT *>::iterator I =
std::find(SubLoops.begin(), SubLoops.end(), OldChild);
assert(I != SubLoops.end() && "OldChild not in loop!");
*I = NewChild;
OldChild->ParentLoop = 0;
NewChild->ParentLoop = static_cast<LoopT *>(this);
}
/// verifyLoop - Verify loop structure
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoop() const {
#ifndef NDEBUG
assert(!Blocks.empty() && "Loop header is missing");
// Setup for using a depth-first iterator to visit every block in the loop.
SmallVector<BlockT*, 8> ExitBBs;
getExitBlocks(ExitBBs);
llvm::SmallPtrSet<BlockT*, 8> VisitSet;
VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
BI = df_ext_begin(getHeader(), VisitSet),
BE = df_ext_end(getHeader(), VisitSet);
// Keep track of the number of BBs visited.
unsigned NumVisited = 0;
// Check the individual blocks.
for ( ; BI != BE; ++BI) {
BlockT *BB = *BI;
bool HasInsideLoopSuccs = false;
bool HasInsideLoopPreds = false;
SmallVector<BlockT *, 2> OutsideLoopPreds;
typedef GraphTraits<BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
SI != SE; ++SI)
if (contains(*SI)) {
HasInsideLoopSuccs = true;
break;
}
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
PI != PE; ++PI) {
BlockT *N = *PI;
if (contains(N))
HasInsideLoopPreds = true;
else
OutsideLoopPreds.push_back(N);
}
if (BB == getHeader()) {
assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
} else if (!OutsideLoopPreds.empty()) {
// A non-header loop shouldn't be reachable from outside the loop,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = BB->getParent()->begin();
for (df_iterator<BlockT *> NI = df_begin(EntryBB),
NE = df_end(EntryBB); NI != NE; ++NI)
for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
assert(*NI != OutsideLoopPreds[i] &&
"Loop has multiple entry points!");
}
assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
assert(BB != getHeader()->getParent()->begin() &&
"Loop contains function entry block!");
NumVisited++;
}
assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
// Check the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
// Each block in each subloop should be contained within this loop.
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
BI != BE; ++BI) {
assert(contains(*BI) &&
"Loop does not contain all the blocks of a subloop!");
}
// Check the parent loop pointer.
if (ParentLoop) {
assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
ParentLoop->end() &&
"Loop is not a subloop of its parent!");
}
#endif
}
/// verifyLoop - Verify loop structure of this loop and all nested loops.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoopNest(
DenseSet<const LoopT*> *Loops) const {
Loops->insert(static_cast<const LoopT *>(this));
// Verify this loop.
verifyLoop();
// Verify the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->verifyLoopNest(Loops);
}
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
<< " containing: ";
for (unsigned i = 0; i < getBlocks().size(); ++i) {
if (i) OS << ",";
BlockT *BB = getBlocks()[i];
BB->printAsOperand(OS, false);
if (BB == getHeader()) OS << "<header>";
if (BB == getLoopLatch()) OS << "<latch>";
if (isLoopExiting(BB)) OS << "<exiting>";
}
OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->print(OS, Depth+2);
}
//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///
/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template<class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
LoopInfoBase<BlockT, LoopT> *LI,
DominatorTreeBase<BlockT> &DomTree) {
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
unsigned NumBlocks = 0;
unsigned NumSubloops = 0;
// Perform a backward CFG traversal using a worklist.
std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
while (!ReverseCFGWorklist.empty()) {
BlockT *PredBB = ReverseCFGWorklist.back();
ReverseCFGWorklist.pop_back();
LoopT *Subloop = LI->getLoopFor(PredBB);
if (!Subloop) {
if (!DomTree.isReachableFromEntry(PredBB))
continue;
// This is an undiscovered block. Map it to the current loop.
LI->changeLoopFor(PredBB, L);
++NumBlocks;
if (PredBB == L->getHeader())
continue;
// Push all block predecessors on the worklist.
ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
InvBlockTraits::child_begin(PredBB),
InvBlockTraits::child_end(PredBB));
}
else {
// This is a discovered block. Find its outermost discovered loop.
while (LoopT *Parent = Subloop->getParentLoop())
Subloop = Parent;
// If it is already discovered to be a subloop of this loop, continue.
if (Subloop == L)
continue;
// Discover a subloop of this loop.
Subloop->setParentLoop(L);
++NumSubloops;
NumBlocks += Subloop->getBlocks().capacity();
PredBB = Subloop->getHeader();
// Continue traversal along predecessors that are not loop-back edges from
// within this subloop tree itself. Note that a predecessor may directly
// reach another subloop that is not yet discovered to be a subloop of
// this loop, which we must traverse.
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(PredBB),
PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
if (LI->getLoopFor(*PI) != Subloop)
ReverseCFGWorklist.push_back(*PI);
}
}
}
L->getSubLoopsVector().reserve(NumSubloops);
L->reserveBlocks(NumBlocks);
}
namespace {
/// Populate all loop data in a stable order during a single forward DFS.
template<class BlockT, class LoopT>
class PopulateLoopsDFS {
typedef GraphTraits<BlockT*> BlockTraits;
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
LoopInfoBase<BlockT, LoopT> *LI;
DenseSet<const BlockT *> VisitedBlocks;
std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
public:
PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
LI(li) {}
void traverse(BlockT *EntryBlock);
protected:
void insertIntoLoop(BlockT *Block);
BlockT *dfsSource() { return DFSStack.back().first; }
SuccIterTy &dfsSucc() { return DFSStack.back().second; }
SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
void pushBlock(BlockT *Block) {
DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
}
};
} // anonymous
/// Top-level driver for the forward DFS within the loop.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
pushBlock(EntryBlock);
VisitedBlocks.insert(EntryBlock);
while (!DFSStack.empty()) {
// Traverse the leftmost path as far as possible.
while (dfsSucc() != dfsSuccEnd()) {
BlockT *BB = *dfsSucc();
++dfsSucc();
if (!VisitedBlocks.insert(BB).second)
continue;
// Push the next DFS successor onto the stack.
pushBlock(BB);
}
// Visit the top of the stack in postorder and backtrack.
insertIntoLoop(dfsSource());
DFSStack.pop_back();
}
}
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
LoopT *Subloop = LI->getLoopFor(Block);
if (Subloop && Block == Subloop->getHeader()) {
// We reach this point once per subloop after processing all the blocks in
// the subloop.
if (Subloop->getParentLoop())
Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
else
LI->addTopLevelLoop(Subloop);
// For convenience, Blocks and Subloops are inserted in postorder. Reverse
// the lists, except for the loop header, which is always at the beginning.
Subloop->reverseBlock(1);
std::reverse(Subloop->getSubLoopsVector().begin(),
Subloop->getSubLoopsVector().end());
Subloop = Subloop->getParentLoop();
}
for (; Subloop; Subloop = Subloop->getParentLoop())
Subloop->addBlockEntry(Block);
}
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::
Analyze(DominatorTreeBase<BlockT> &DomTree) {
// Postorder traversal of the dominator tree.
DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
BlockT *Header = DomIter->getBlock();
SmallVector<BlockT *, 4> Backedges;
// Check each predecessor of the potential loop header.
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
BlockT *Backedge = *PI;
// If Header dominates predBB, this is a new loop. Collect the backedges.
if (DomTree.dominates(Header, Backedge)
&& DomTree.isReachableFromEntry(Backedge)) {
Backedges.push_back(Backedge);
}
}
// Perform a backward CFG traversal to discover and map blocks in this loop.
if (!Backedges.empty()) {
LoopT *L = new LoopT(Header);
discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
}
}
// Perform a single forward CFG traversal to populate block and subloop
// vectors for all loops.
PopulateLoopsDFS<BlockT, LoopT> DFS(this);
DFS.traverse(DomRoot->getBlock());
}
// Debugging
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
} // End llvm namespace
#endif