mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 16:33:37 +01:00
9d60f59b55
benchmarks hitting an assertion. Adds LiveIntervalUnion::collectInterferingVRegs. Fixes "late spilling" by checking for any unspillable live vregs among all physReg aliases. llvm-svn: 118701
293 lines
11 KiB
C++
293 lines
11 KiB
C++
//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
|
|
// used during coalescing to represent a congruence class, or during register
|
|
// allocation to model liveness of a physical register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "LiveIntervalUnion.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Find the first segment in the range [segBegin,segments_.end()) that
|
|
// intersects with seg. If no intersection is found, return the first segI
|
|
// such that segI.start >= seg.end
|
|
//
|
|
// This logic is tied to the underlying LiveSegments data structure. For now, we
|
|
// use set::upper_bound to find the nearest starting position,
|
|
// then reverse iterate to find the first overlap.
|
|
//
|
|
// Upon entry we have segBegin.start < seg.end
|
|
// seg |--...
|
|
// \ .
|
|
// lvr ...-|
|
|
//
|
|
// After set::upper_bound, we have segI.start >= seg.start:
|
|
// seg |--...
|
|
// /
|
|
// lvr |--...
|
|
//
|
|
// Assuming intervals are disjoint, if an intersection exists, it must be the
|
|
// segment found or the one immediately preceeding it. We continue reverse
|
|
// iterating to return the first overlapping segment.
|
|
LiveIntervalUnion::SegmentIter
|
|
LiveIntervalUnion::upperBound(SegmentIter segBegin,
|
|
const LiveSegment &seg) {
|
|
assert(seg.end > segBegin->start && "segment iterator precondition");
|
|
// get the next LIU segment such that segI->start is not less than seg.start
|
|
//
|
|
// FIXME: Once we have a B+tree, we can make good use of segBegin as a hint to
|
|
// upper_bound. For now, we're forced to search again from the root each time.
|
|
SegmentIter segI = segments_.upper_bound(seg);
|
|
while (segI != segBegin) {
|
|
--segI;
|
|
if (seg.start >= segI->end)
|
|
return ++segI;
|
|
}
|
|
return segI;
|
|
}
|
|
|
|
// Merge a LiveInterval's segments. Guarantee no overlaps.
|
|
//
|
|
// Consider coalescing adjacent segments to save space, even though it makes
|
|
// extraction more complicated.
|
|
void LiveIntervalUnion::unify(LiveInterval &lvr) {
|
|
// Insert each of the virtual register's live segments into the map
|
|
SegmentIter segPos = segments_.begin();
|
|
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
|
|
lvrI != lvrEnd; ++lvrI ) {
|
|
LiveSegment segment(lvrI->start, lvrI->end, &lvr);
|
|
segPos = segments_.insert(segPos, segment);
|
|
assert(*segPos == segment && "need equal val for equal key");
|
|
#ifndef NDEBUG
|
|
// check for overlap (inductively)
|
|
if (segPos != segments_.begin()) {
|
|
assert(llvm::prior(segPos)->end <= segment.start &&
|
|
"overlapping segments" );
|
|
}
|
|
SegmentIter nextPos = llvm::next(segPos);
|
|
if (nextPos != segments_.end())
|
|
assert(segment.end <= nextPos->start && "overlapping segments" );
|
|
#endif // NDEBUG
|
|
}
|
|
}
|
|
|
|
// Remove a live virtual register's segments from this union.
|
|
void LiveIntervalUnion::extract(const LiveInterval &lvr) {
|
|
// Remove each of the virtual register's live segments from the map.
|
|
SegmentIter segPos = segments_.begin();
|
|
for (LiveInterval::const_iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
|
|
lvrI != lvrEnd; ++lvrI) {
|
|
LiveSegment seg(lvrI->start, lvrI->end, const_cast<LiveInterval*>(&lvr));
|
|
segPos = upperBound(segPos, seg);
|
|
assert(segPos != segments_.end() && "missing lvr segment");
|
|
segments_.erase(segPos++);
|
|
}
|
|
}
|
|
|
|
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveSegment &ls) {
|
|
return os << '[' << ls.start << ',' << ls.end << ':' <<
|
|
ls.liveVirtReg->reg << ")";
|
|
}
|
|
|
|
void LiveSegment::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
|
|
void
|
|
LiveIntervalUnion::print(raw_ostream &os,
|
|
const AbstractRegisterDescription *rdesc) const {
|
|
os << "LIU ";
|
|
if (rdesc != NULL)
|
|
os << rdesc->getName(repReg_);
|
|
else {
|
|
os << repReg_;
|
|
}
|
|
for (LiveSegments::const_iterator segI = segments_.begin(),
|
|
segEnd = segments_.end(); segI != segEnd; ++segI) {
|
|
dbgs() << " " << *segI;
|
|
}
|
|
os << "\n";
|
|
}
|
|
|
|
void LiveIntervalUnion::dump(const AbstractRegisterDescription *rdesc) const {
|
|
print(dbgs(), rdesc);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify the live intervals in this union and add them to the visited set.
|
|
void LiveIntervalUnion::verify(LvrBitSet& visitedVRegs) {
|
|
SegmentIter segI = segments_.begin();
|
|
SegmentIter segEnd = segments_.end();
|
|
if (segI == segEnd) return;
|
|
visitedVRegs.set(segI->liveVirtReg->reg);
|
|
for (++segI; segI != segEnd; ++segI) {
|
|
visitedVRegs.set(segI->liveVirtReg->reg);
|
|
assert(llvm::prior(segI)->end <= segI->start && "overlapping segments" );
|
|
}
|
|
}
|
|
#endif //!NDEBUG
|
|
|
|
// Private interface accessed by Query.
|
|
//
|
|
// Find a pair of segments that intersect, one in the live virtual register
|
|
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
|
|
// is responsible for advancing the LiveIntervalUnion segments to find a
|
|
// "notable" intersection, which requires query-specific logic.
|
|
//
|
|
// This design assumes only a fast mechanism for intersecting a single live
|
|
// virtual register segment with a set of LiveIntervalUnion segments. This may
|
|
// be ok since most LVRs have very few segments. If we had a data
|
|
// structure that optimizd MxN intersection of segments, then we would bypass
|
|
// the loop that advances within the LiveInterval.
|
|
//
|
|
// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
|
|
// segment whose start point is greater than LiveInterval's end point.
|
|
//
|
|
// Assumes that segments are sorted by start position in both
|
|
// LiveInterval and LiveSegments.
|
|
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
|
|
LiveInterval::iterator lvrEnd = lvr_->end();
|
|
SegmentIter liuEnd = liu_->end();
|
|
while (ir.liuSegI_ != liuEnd) {
|
|
// Slowly advance the live virtual reg iterator until we surpass the next
|
|
// segment in this union. If this is ever used for coalescing of fixed
|
|
// registers and we have a live vreg with thousands of segments, then use
|
|
// upper bound instead.
|
|
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
|
|
++ir.lvrSegI_;
|
|
if (ir.lvrSegI_ == lvrEnd)
|
|
break;
|
|
// lvrSegI_ may have advanced far beyond liuSegI_,
|
|
// do a fast intersection test to "catch up"
|
|
LiveSegment seg(ir.lvrSegI_->start, ir.lvrSegI_->end, lvr_);
|
|
ir.liuSegI_ = liu_->upperBound(ir.liuSegI_, seg);
|
|
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
|
|
if (ir.liuSegI_ == liuEnd)
|
|
break;
|
|
if (ir.liuSegI_->start < ir.lvrSegI_->end) {
|
|
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
|
|
break;
|
|
}
|
|
}
|
|
if (ir.liuSegI_ == liuEnd)
|
|
ir.lvrSegI_ = lvrEnd;
|
|
}
|
|
|
|
// Find the first intersection, and cache interference info
|
|
// (retain segment iterators into both lvr_ and liu_).
|
|
LiveIntervalUnion::InterferenceResult
|
|
LiveIntervalUnion::Query::firstInterference() {
|
|
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
|
|
return firstInterference_;
|
|
}
|
|
firstInterference_ = InterferenceResult(lvr_->begin(), liu_->begin());
|
|
findIntersection(firstInterference_);
|
|
return firstInterference_;
|
|
}
|
|
|
|
// Treat the result as an iterator and advance to the next interfering pair
|
|
// of segments. This is a plain iterator with no filter.
|
|
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
|
|
assert(isInterference(ir) && "iteration past end of interferences");
|
|
// Advance either the lvr or liu segment to ensure that we visit all unique
|
|
// overlapping pairs.
|
|
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
|
|
if (++ir.lvrSegI_ == lvr_->end())
|
|
return false;
|
|
}
|
|
else {
|
|
if (++ir.liuSegI_ == liu_->end()) {
|
|
ir.lvrSegI_ = lvr_->end();
|
|
return false;
|
|
}
|
|
}
|
|
if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
|
|
return true;
|
|
// find the next intersection
|
|
findIntersection(ir);
|
|
return isInterference(ir);
|
|
}
|
|
|
|
// Scan the vector of interfering virtual registers in this union. Assuming it's
|
|
// quite small.
|
|
bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *lvr) const {
|
|
SmallVectorImpl<LiveInterval*>::const_iterator I =
|
|
std::find(interferingVRegs_.begin(), interferingVRegs_.end(), lvr);
|
|
return I != interferingVRegs_.end();
|
|
}
|
|
|
|
// Count the number of virtual registers in this union that interfere with this
|
|
// query's live virtual register.
|
|
//
|
|
// The number of times that we either advance ir.lvrSegI_ or call
|
|
// liu_.upperBound() will be no more than the number of holes in
|
|
// lvr_. So each invocation of collectInterferingVirtReg() takes
|
|
// time proportional to |lvr-holes| * time(liu_.upperBound()).
|
|
//
|
|
// For comments on how to speed it up, see Query::findIntersection().
|
|
unsigned LiveIntervalUnion::Query::
|
|
collectInterferingVRegs(unsigned maxInterferingRegs) {
|
|
InterferenceResult ir = firstInterference();
|
|
LiveInterval::iterator lvrEnd = lvr_->end();
|
|
SegmentIter liuEnd = liu_->end();
|
|
LiveInterval *recentInterferingVReg = NULL;
|
|
while (ir.liuSegI_ != liuEnd) {
|
|
// Advance the union's iterator to reach an unseen interfering vreg.
|
|
do {
|
|
if (ir.liuSegI_->liveVirtReg == recentInterferingVReg)
|
|
continue;
|
|
|
|
if (!isSeenInterference(ir.liuSegI_->liveVirtReg))
|
|
break;
|
|
|
|
// Cache the most recent interfering vreg to bypass isSeenInterference.
|
|
recentInterferingVReg = ir.liuSegI_->liveVirtReg;
|
|
|
|
} while( ++ir.liuSegI_ != liuEnd);
|
|
if (ir.liuSegI_ == liuEnd)
|
|
break;
|
|
|
|
// Advance the live vreg reg iterator until surpassing the next
|
|
// segment in this union. If this is ever used for coalescing of fixed
|
|
// registers and we have a live vreg with thousands of segments, then use
|
|
// upper bound instead.
|
|
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
|
|
++ir.lvrSegI_;
|
|
if (ir.lvrSegI_ == lvrEnd)
|
|
break;
|
|
|
|
// Check for intersection with the union's segment.
|
|
if (overlap(*ir.lvrSegI_, *ir.liuSegI_)) {
|
|
if (!ir.liuSegI_->liveVirtReg->isSpillable())
|
|
seenUnspillableVReg_ = true;
|
|
|
|
interferingVRegs_.push_back(ir.liuSegI_->liveVirtReg);
|
|
if (interferingVRegs_.size() == maxInterferingRegs)
|
|
return maxInterferingRegs;
|
|
|
|
// Cache the most recent interfering vreg to bypass isSeenInterference.
|
|
recentInterferingVReg = ir.liuSegI_->liveVirtReg;
|
|
++ir.liuSegI_;
|
|
continue;
|
|
}
|
|
// lvrSegI_ may have advanced far beyond liuSegI_,
|
|
// do a fast intersection test to "catch up"
|
|
LiveSegment seg(ir.lvrSegI_->start, ir.lvrSegI_->end, lvr_);
|
|
ir.liuSegI_ = liu_->upperBound(ir.liuSegI_, seg);
|
|
}
|
|
return interferingVRegs_.size();
|
|
}
|