mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 16:33:37 +01:00
b0f64b3d2b
It is legal for an instruction to have two operands using the same register, only one a kill. This is interpreted as a kill. llvm-svn: 117981
1130 lines
40 KiB
C++
1130 lines
40 KiB
C++
//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Pass to verify generated machine code. The following is checked:
|
|
//
|
|
// Operand counts: All explicit operands must be present.
|
|
//
|
|
// Register classes: All physical and virtual register operands must be
|
|
// compatible with the register class required by the instruction descriptor.
|
|
//
|
|
// Register live intervals: Registers must be defined only once, and must be
|
|
// defined before use.
|
|
//
|
|
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
|
|
// command-line option -verify-machineinstrs, or by defining the environment
|
|
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
|
|
// the verifier errors.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct MachineVerifier {
|
|
|
|
MachineVerifier(Pass *pass) :
|
|
PASS(pass),
|
|
OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
|
|
{}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
Pass *const PASS;
|
|
const char *const OutFileName;
|
|
raw_ostream *OS;
|
|
const MachineFunction *MF;
|
|
const TargetMachine *TM;
|
|
const TargetRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
|
|
unsigned foundErrors;
|
|
|
|
typedef SmallVector<unsigned, 16> RegVector;
|
|
typedef DenseSet<unsigned> RegSet;
|
|
typedef DenseMap<unsigned, const MachineInstr*> RegMap;
|
|
|
|
BitVector regsReserved;
|
|
RegSet regsLive;
|
|
RegVector regsDefined, regsDead, regsKilled;
|
|
RegSet regsLiveInButUnused;
|
|
|
|
// Add Reg and any sub-registers to RV
|
|
void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
|
|
RV.push_back(Reg);
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
|
|
RV.push_back(*R);
|
|
}
|
|
|
|
struct BBInfo {
|
|
// Is this MBB reachable from the MF entry point?
|
|
bool reachable;
|
|
|
|
// Vregs that must be live in because they are used without being
|
|
// defined. Map value is the user.
|
|
RegMap vregsLiveIn;
|
|
|
|
// Regs killed in MBB. They may be defined again, and will then be in both
|
|
// regsKilled and regsLiveOut.
|
|
RegSet regsKilled;
|
|
|
|
// Regs defined in MBB and live out. Note that vregs passing through may
|
|
// be live out without being mentioned here.
|
|
RegSet regsLiveOut;
|
|
|
|
// Vregs that pass through MBB untouched. This set is disjoint from
|
|
// regsKilled and regsLiveOut.
|
|
RegSet vregsPassed;
|
|
|
|
// Vregs that must pass through MBB because they are needed by a successor
|
|
// block. This set is disjoint from regsLiveOut.
|
|
RegSet vregsRequired;
|
|
|
|
BBInfo() : reachable(false) {}
|
|
|
|
// Add register to vregsPassed if it belongs there. Return true if
|
|
// anything changed.
|
|
bool addPassed(unsigned Reg) {
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return false;
|
|
if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
|
|
return false;
|
|
return vregsPassed.insert(Reg).second;
|
|
}
|
|
|
|
// Same for a full set.
|
|
bool addPassed(const RegSet &RS) {
|
|
bool changed = false;
|
|
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
|
|
if (addPassed(*I))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Add register to vregsRequired if it belongs there. Return true if
|
|
// anything changed.
|
|
bool addRequired(unsigned Reg) {
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return false;
|
|
if (regsLiveOut.count(Reg))
|
|
return false;
|
|
return vregsRequired.insert(Reg).second;
|
|
}
|
|
|
|
// Same for a full set.
|
|
bool addRequired(const RegSet &RS) {
|
|
bool changed = false;
|
|
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
|
|
if (addRequired(*I))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Same for a full map.
|
|
bool addRequired(const RegMap &RM) {
|
|
bool changed = false;
|
|
for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
|
|
if (addRequired(I->first))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Live-out registers are either in regsLiveOut or vregsPassed.
|
|
bool isLiveOut(unsigned Reg) const {
|
|
return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
|
|
}
|
|
};
|
|
|
|
// Extra register info per MBB.
|
|
DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
|
|
|
|
bool isReserved(unsigned Reg) {
|
|
return Reg < regsReserved.size() && regsReserved.test(Reg);
|
|
}
|
|
|
|
// Analysis information if available
|
|
LiveVariables *LiveVars;
|
|
LiveIntervals *LiveInts;
|
|
LiveStacks *LiveStks;
|
|
SlotIndexes *Indexes;
|
|
|
|
void visitMachineFunctionBefore();
|
|
void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
|
|
void visitMachineInstrBefore(const MachineInstr *MI);
|
|
void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
|
|
void visitMachineInstrAfter(const MachineInstr *MI);
|
|
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
|
|
void visitMachineFunctionAfter();
|
|
|
|
void report(const char *msg, const MachineFunction *MF);
|
|
void report(const char *msg, const MachineBasicBlock *MBB);
|
|
void report(const char *msg, const MachineInstr *MI);
|
|
void report(const char *msg, const MachineOperand *MO, unsigned MONum);
|
|
|
|
void markReachable(const MachineBasicBlock *MBB);
|
|
void calcRegsPassed();
|
|
void checkPHIOps(const MachineBasicBlock *MBB);
|
|
|
|
void calcRegsRequired();
|
|
void verifyLiveVariables();
|
|
void verifyLiveIntervals();
|
|
};
|
|
|
|
struct MachineVerifierPass : public MachineFunctionPass {
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
MachineVerifierPass()
|
|
: MachineFunctionPass(ID) {
|
|
initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) {
|
|
MF.verify(this);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
char MachineVerifierPass::ID = 0;
|
|
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
|
|
"Verify generated machine code", false, false)
|
|
|
|
FunctionPass *llvm::createMachineVerifierPass() {
|
|
return new MachineVerifierPass();
|
|
}
|
|
|
|
void MachineFunction::verify(Pass *p) const {
|
|
MachineVerifier(p).runOnMachineFunction(const_cast<MachineFunction&>(*this));
|
|
}
|
|
|
|
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
|
|
raw_ostream *OutFile = 0;
|
|
if (OutFileName) {
|
|
std::string ErrorInfo;
|
|
OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
|
|
raw_fd_ostream::F_Append);
|
|
if (!ErrorInfo.empty()) {
|
|
errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
OS = OutFile;
|
|
} else {
|
|
OS = &errs();
|
|
}
|
|
|
|
foundErrors = 0;
|
|
|
|
this->MF = &MF;
|
|
TM = &MF.getTarget();
|
|
TRI = TM->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
LiveVars = NULL;
|
|
LiveInts = NULL;
|
|
LiveStks = NULL;
|
|
Indexes = NULL;
|
|
if (PASS) {
|
|
LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
|
|
// We don't want to verify LiveVariables if LiveIntervals is available.
|
|
if (!LiveInts)
|
|
LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
|
|
LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
|
|
Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
|
|
}
|
|
|
|
visitMachineFunctionBefore();
|
|
for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
|
|
MFI!=MFE; ++MFI) {
|
|
visitMachineBasicBlockBefore(MFI);
|
|
for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
|
|
MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
|
|
visitMachineInstrBefore(MBBI);
|
|
for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
|
|
visitMachineOperand(&MBBI->getOperand(I), I);
|
|
visitMachineInstrAfter(MBBI);
|
|
}
|
|
visitMachineBasicBlockAfter(MFI);
|
|
}
|
|
visitMachineFunctionAfter();
|
|
|
|
if (OutFile)
|
|
delete OutFile;
|
|
else if (foundErrors)
|
|
report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
|
|
|
|
// Clean up.
|
|
regsLive.clear();
|
|
regsDefined.clear();
|
|
regsDead.clear();
|
|
regsKilled.clear();
|
|
regsLiveInButUnused.clear();
|
|
MBBInfoMap.clear();
|
|
|
|
return false; // no changes
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
|
|
assert(MF);
|
|
*OS << '\n';
|
|
if (!foundErrors++)
|
|
MF->print(*OS, Indexes);
|
|
*OS << "*** Bad machine code: " << msg << " ***\n"
|
|
<< "- function: " << MF->getFunction()->getNameStr() << "\n";
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
|
|
assert(MBB);
|
|
report(msg, MBB->getParent());
|
|
*OS << "- basic block: " << MBB->getName()
|
|
<< " " << (void*)MBB
|
|
<< " (BB#" << MBB->getNumber() << ")";
|
|
if (Indexes)
|
|
*OS << " [" << Indexes->getMBBStartIdx(MBB)
|
|
<< ';' << Indexes->getMBBEndIdx(MBB) << ')';
|
|
*OS << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
|
|
assert(MI);
|
|
report(msg, MI->getParent());
|
|
*OS << "- instruction: ";
|
|
if (Indexes && Indexes->hasIndex(MI))
|
|
*OS << Indexes->getInstructionIndex(MI) << '\t';
|
|
MI->print(*OS, TM);
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg,
|
|
const MachineOperand *MO, unsigned MONum) {
|
|
assert(MO);
|
|
report(msg, MO->getParent());
|
|
*OS << "- operand " << MONum << ": ";
|
|
MO->print(*OS, TM);
|
|
*OS << "\n";
|
|
}
|
|
|
|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
if (!MInfo.reachable) {
|
|
MInfo.reachable = true;
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
|
|
SuE = MBB->succ_end(); SuI != SuE; ++SuI)
|
|
markReachable(*SuI);
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionBefore() {
|
|
regsReserved = TRI->getReservedRegs(*MF);
|
|
|
|
// A sub-register of a reserved register is also reserved
|
|
for (int Reg = regsReserved.find_first(); Reg>=0;
|
|
Reg = regsReserved.find_next(Reg)) {
|
|
for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
|
|
// FIXME: This should probably be:
|
|
// assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
|
|
regsReserved.set(*Sub);
|
|
}
|
|
}
|
|
markReachable(&MF->front());
|
|
}
|
|
|
|
// Does iterator point to a and b as the first two elements?
|
|
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
|
|
const MachineBasicBlock *a, const MachineBasicBlock *b) {
|
|
if (*i == a)
|
|
return *++i == b;
|
|
if (*i == b)
|
|
return *++i == a;
|
|
return false;
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
|
|
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
|
|
|
|
// Count the number of landing pad successors.
|
|
unsigned LandingPadSuccs = 0;
|
|
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
LandingPadSuccs += (*I)->isLandingPad();
|
|
if (LandingPadSuccs > 1)
|
|
report("MBB has more than one landing pad successor", MBB);
|
|
|
|
// Call AnalyzeBranch. If it succeeds, there several more conditions to check.
|
|
MachineBasicBlock *TBB = 0, *FBB = 0;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
|
|
TBB, FBB, Cond)) {
|
|
// Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
|
|
// check whether its answers match up with reality.
|
|
if (!TBB && !FBB) {
|
|
// Block falls through to its successor.
|
|
MachineFunction::const_iterator MBBI = MBB;
|
|
++MBBI;
|
|
if (MBBI == MF->end()) {
|
|
// It's possible that the block legitimately ends with a noreturn
|
|
// call or an unreachable, in which case it won't actually fall
|
|
// out the bottom of the function.
|
|
} else if (MBB->succ_size() == LandingPadSuccs) {
|
|
// It's possible that the block legitimately ends with a noreturn
|
|
// call or an unreachable, in which case it won't actuall fall
|
|
// out of the block.
|
|
} else if (MBB->succ_size() != 1+LandingPadSuccs) {
|
|
report("MBB exits via unconditional fall-through but doesn't have "
|
|
"exactly one CFG successor!", MBB);
|
|
} else if (!MBB->isSuccessor(MBBI)) {
|
|
report("MBB exits via unconditional fall-through but its successor "
|
|
"differs from its CFG successor!", MBB);
|
|
}
|
|
if (!MBB->empty() && MBB->back().getDesc().isBarrier() &&
|
|
!TII->isPredicated(&MBB->back())) {
|
|
report("MBB exits via unconditional fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
}
|
|
if (!Cond.empty()) {
|
|
report("MBB exits via unconditional fall-through but has a condition!",
|
|
MBB);
|
|
}
|
|
} else if (TBB && !FBB && Cond.empty()) {
|
|
// Block unconditionally branches somewhere.
|
|
if (MBB->succ_size() != 1+LandingPadSuccs) {
|
|
report("MBB exits via unconditional branch but doesn't have "
|
|
"exactly one CFG successor!", MBB);
|
|
} else if (!MBB->isSuccessor(TBB)) {
|
|
report("MBB exits via unconditional branch but the CFG "
|
|
"successor doesn't match the actual successor!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via unconditional branch but doesn't contain "
|
|
"any instructions!", MBB);
|
|
} else if (!MBB->back().getDesc().isBarrier()) {
|
|
report("MBB exits via unconditional branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().getDesc().isTerminator()) {
|
|
report("MBB exits via unconditional branch but the branch isn't a "
|
|
"terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && !FBB && !Cond.empty()) {
|
|
// Block conditionally branches somewhere, otherwise falls through.
|
|
MachineFunction::const_iterator MBBI = MBB;
|
|
++MBBI;
|
|
if (MBBI == MF->end()) {
|
|
report("MBB conditionally falls through out of function!", MBB);
|
|
} if (MBB->succ_size() != 2) {
|
|
report("MBB exits via conditional branch/fall-through but doesn't have "
|
|
"exactly two CFG successors!", MBB);
|
|
} else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
|
|
report("MBB exits via conditional branch/fall-through but the CFG "
|
|
"successors don't match the actual successors!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/fall-through but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (MBB->back().getDesc().isBarrier()) {
|
|
report("MBB exits via conditional branch/fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().getDesc().isTerminator()) {
|
|
report("MBB exits via conditional branch/fall-through but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && FBB) {
|
|
// Block conditionally branches somewhere, otherwise branches
|
|
// somewhere else.
|
|
if (MBB->succ_size() != 2) {
|
|
report("MBB exits via conditional branch/branch but doesn't have "
|
|
"exactly two CFG successors!", MBB);
|
|
} else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
|
|
report("MBB exits via conditional branch/branch but the CFG "
|
|
"successors don't match the actual successors!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/branch but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (!MBB->back().getDesc().isBarrier()) {
|
|
report("MBB exits via conditional branch/branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().getDesc().isTerminator()) {
|
|
report("MBB exits via conditional branch/branch but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
if (Cond.empty()) {
|
|
report("MBB exits via conditinal branch/branch but there's no "
|
|
"condition!", MBB);
|
|
}
|
|
} else {
|
|
report("AnalyzeBranch returned invalid data!", MBB);
|
|
}
|
|
}
|
|
|
|
regsLive.clear();
|
|
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
|
|
E = MBB->livein_end(); I != E; ++I) {
|
|
if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
|
|
report("MBB live-in list contains non-physical register", MBB);
|
|
continue;
|
|
}
|
|
regsLive.insert(*I);
|
|
for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
|
|
regsLive.insert(*R);
|
|
}
|
|
regsLiveInButUnused = regsLive;
|
|
|
|
const MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
assert(MFI && "Function has no frame info");
|
|
BitVector PR = MFI->getPristineRegs(MBB);
|
|
for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
|
|
regsLive.insert(I);
|
|
for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
|
|
regsLive.insert(*R);
|
|
}
|
|
|
|
regsKilled.clear();
|
|
regsDefined.clear();
|
|
}
|
|
|
|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
|
|
const TargetInstrDesc &TI = MI->getDesc();
|
|
if (MI->getNumOperands() < TI.getNumOperands()) {
|
|
report("Too few operands", MI);
|
|
*OS << TI.getNumOperands() << " operands expected, but "
|
|
<< MI->getNumExplicitOperands() << " given.\n";
|
|
}
|
|
|
|
// Check the MachineMemOperands for basic consistency.
|
|
for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
|
|
E = MI->memoperands_end(); I != E; ++I) {
|
|
if ((*I)->isLoad() && !TI.mayLoad())
|
|
report("Missing mayLoad flag", MI);
|
|
if ((*I)->isStore() && !TI.mayStore())
|
|
report("Missing mayStore flag", MI);
|
|
}
|
|
|
|
// Debug values must not have a slot index.
|
|
// Other instructions must have one.
|
|
if (LiveInts) {
|
|
bool mapped = !LiveInts->isNotInMIMap(MI);
|
|
if (MI->isDebugValue()) {
|
|
if (mapped)
|
|
report("Debug instruction has a slot index", MI);
|
|
} else {
|
|
if (!mapped)
|
|
report("Missing slot index", MI);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
|
|
const MachineInstr *MI = MO->getParent();
|
|
const TargetInstrDesc &TI = MI->getDesc();
|
|
|
|
// The first TI.NumDefs operands must be explicit register defines
|
|
if (MONum < TI.getNumDefs()) {
|
|
if (!MO->isReg())
|
|
report("Explicit definition must be a register", MO, MONum);
|
|
else if (!MO->isDef())
|
|
report("Explicit definition marked as use", MO, MONum);
|
|
else if (MO->isImplicit())
|
|
report("Explicit definition marked as implicit", MO, MONum);
|
|
} else if (MONum < TI.getNumOperands()) {
|
|
if (MO->isReg()) {
|
|
if (MO->isDef())
|
|
report("Explicit operand marked as def", MO, MONum);
|
|
if (MO->isImplicit())
|
|
report("Explicit operand marked as implicit", MO, MONum);
|
|
}
|
|
} else {
|
|
// ARM adds %reg0 operands to indicate predicates. We'll allow that.
|
|
if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
|
|
report("Extra explicit operand on non-variadic instruction", MO, MONum);
|
|
}
|
|
|
|
switch (MO->getType()) {
|
|
case MachineOperand::MO_Register: {
|
|
const unsigned Reg = MO->getReg();
|
|
if (!Reg)
|
|
return;
|
|
|
|
// Check Live Variables.
|
|
if (MO->isUndef()) {
|
|
// An <undef> doesn't refer to any register, so just skip it.
|
|
} else if (MO->isUse()) {
|
|
regsLiveInButUnused.erase(Reg);
|
|
|
|
bool isKill = false;
|
|
unsigned defIdx;
|
|
if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
|
|
// A two-addr use counts as a kill if use and def are the same.
|
|
unsigned DefReg = MI->getOperand(defIdx).getReg();
|
|
if (Reg == DefReg) {
|
|
isKill = true;
|
|
// And in that case an explicit kill flag is not allowed.
|
|
if (MO->isKill())
|
|
report("Illegal kill flag on two-address instruction operand",
|
|
MO, MONum);
|
|
} else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
report("Two-address instruction operands must be identical",
|
|
MO, MONum);
|
|
}
|
|
} else
|
|
isKill = MO->isKill();
|
|
|
|
if (isKill)
|
|
addRegWithSubRegs(regsKilled, Reg);
|
|
|
|
// Check that LiveVars knows this kill.
|
|
if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
MO->isKill()) {
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
if (std::find(VI.Kills.begin(),
|
|
VI.Kills.end(), MI) == VI.Kills.end())
|
|
report("Kill missing from LiveVariables", MO, MONum);
|
|
}
|
|
|
|
// Check LiveInts liveness and kill.
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
LiveInts && !LiveInts->isNotInMIMap(MI)) {
|
|
SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex();
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
if (!LI.liveAt(UseIdx)) {
|
|
report("No live range at use", MO, MONum);
|
|
*OS << UseIdx << " is not live in " << LI << '\n';
|
|
}
|
|
// Verify isKill == LI.killedAt.
|
|
if (!MI->isRegTiedToDefOperand(MONum)) {
|
|
// MI could kill register without a kill flag on MO.
|
|
bool miKill = MI->killsRegister(Reg);
|
|
bool liKill = LI.killedAt(UseIdx.getDefIndex());
|
|
if (miKill && !liKill) {
|
|
report("Live range continues after kill flag", MO, MONum);
|
|
*OS << "Live range: " << LI << '\n';
|
|
}
|
|
if (!miKill && liKill) {
|
|
report("Live range ends without kill flag", MO, MONum);
|
|
*OS << "Live range: " << LI << '\n';
|
|
}
|
|
}
|
|
} else {
|
|
report("Virtual register has no Live interval", MO, MONum);
|
|
}
|
|
}
|
|
|
|
// Use of a dead register.
|
|
if (!regsLive.count(Reg)) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// Reserved registers may be used even when 'dead'.
|
|
if (!isReserved(Reg))
|
|
report("Using an undefined physical register", MO, MONum);
|
|
} else {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
// We don't know which virtual registers are live in, so only complain
|
|
// if vreg was killed in this MBB. Otherwise keep track of vregs that
|
|
// must be live in. PHI instructions are handled separately.
|
|
if (MInfo.regsKilled.count(Reg))
|
|
report("Using a killed virtual register", MO, MONum);
|
|
else if (!MI->isPHI())
|
|
MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
|
|
}
|
|
}
|
|
} else {
|
|
assert(MO->isDef());
|
|
// Register defined.
|
|
// TODO: verify that earlyclobber ops are not used.
|
|
if (MO->isDead())
|
|
addRegWithSubRegs(regsDead, Reg);
|
|
else
|
|
addRegWithSubRegs(regsDefined, Reg);
|
|
|
|
// Check LiveInts for a live range, but only for virtual registers.
|
|
if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
!LiveInts->isNotInMIMap(MI)) {
|
|
SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex();
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
|
|
assert(VNI && "NULL valno is not allowed");
|
|
if (VNI->def != DefIdx) {
|
|
report("Inconsistent valno->def", MO, MONum);
|
|
*OS << "Valno " << VNI->id << " is not defined at "
|
|
<< DefIdx << " in " << LI << '\n';
|
|
}
|
|
} else {
|
|
report("No live range at def", MO, MONum);
|
|
*OS << DefIdx << " is not live in " << LI << '\n';
|
|
}
|
|
} else {
|
|
report("Virtual register has no Live interval", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check register classes.
|
|
if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
|
|
const TargetOperandInfo &TOI = TI.OpInfo[MONum];
|
|
unsigned SubIdx = MO->getSubReg();
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
unsigned sr = Reg;
|
|
if (SubIdx) {
|
|
unsigned s = TRI->getSubReg(Reg, SubIdx);
|
|
if (!s) {
|
|
report("Invalid subregister index for physical register",
|
|
MO, MONum);
|
|
return;
|
|
}
|
|
sr = s;
|
|
}
|
|
if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
|
|
if (!DRC->contains(sr)) {
|
|
report("Illegal physical register for instruction", MO, MONum);
|
|
*OS << TRI->getName(sr) << " is not a "
|
|
<< DRC->getName() << " register.\n";
|
|
}
|
|
}
|
|
} else {
|
|
// Virtual register.
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
if (SubIdx) {
|
|
const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx);
|
|
if (!SRC) {
|
|
report("Invalid subregister index for virtual register", MO, MONum);
|
|
*OS << "Register class " << RC->getName()
|
|
<< " does not support subreg index " << SubIdx << "\n";
|
|
return;
|
|
}
|
|
RC = SRC;
|
|
}
|
|
if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
|
|
if (RC != DRC && !RC->hasSuperClass(DRC)) {
|
|
report("Illegal virtual register for instruction", MO, MONum);
|
|
*OS << "Expected a " << DRC->getName() << " register, but got a "
|
|
<< RC->getName() << " register\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
|
|
report("PHI operand is not in the CFG", MO, MONum);
|
|
break;
|
|
|
|
case MachineOperand::MO_FrameIndex:
|
|
if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
|
|
LiveInts && !LiveInts->isNotInMIMap(MI)) {
|
|
LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
|
|
SlotIndex Idx = LiveInts->getInstructionIndex(MI);
|
|
if (TI.mayLoad() && !LI.liveAt(Idx.getUseIndex())) {
|
|
report("Instruction loads from dead spill slot", MO, MONum);
|
|
*OS << "Live stack: " << LI << '\n';
|
|
}
|
|
if (TI.mayStore() && !LI.liveAt(Idx.getDefIndex())) {
|
|
report("Instruction stores to dead spill slot", MO, MONum);
|
|
*OS << "Live stack: " << LI << '\n';
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
set_union(MInfo.regsKilled, regsKilled);
|
|
set_subtract(regsLive, regsKilled); regsKilled.clear();
|
|
set_subtract(regsLive, regsDead); regsDead.clear();
|
|
set_union(regsLive, regsDefined); regsDefined.clear();
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
|
|
MBBInfoMap[MBB].regsLiveOut = regsLive;
|
|
regsLive.clear();
|
|
}
|
|
|
|
// Calculate the largest possible vregsPassed sets. These are the registers that
|
|
// can pass through an MBB live, but may not be live every time. It is assumed
|
|
// that all vregsPassed sets are empty before the call.
|
|
void MachineVerifier::calcRegsPassed() {
|
|
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
|
|
// have any vregsPassed.
|
|
DenseSet<const MachineBasicBlock*> todo;
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
const MachineBasicBlock &MBB(*MFI);
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
|
|
SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
|
|
BBInfo &SInfo = MBBInfoMap[*SuI];
|
|
if (SInfo.addPassed(MInfo.regsLiveOut))
|
|
todo.insert(*SuI);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsPassed to successors. This will converge to the same
|
|
// final state regardless of DenseSet iteration order.
|
|
while (!todo.empty()) {
|
|
const MachineBasicBlock *MBB = *todo.begin();
|
|
todo.erase(MBB);
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
|
|
SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
|
|
if (*SuI == MBB)
|
|
continue;
|
|
BBInfo &SInfo = MBBInfoMap[*SuI];
|
|
if (SInfo.addPassed(MInfo.vregsPassed))
|
|
todo.insert(*SuI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the set of virtual registers that must be passed through each basic
|
|
// block in order to satisfy the requirements of successor blocks. This is very
|
|
// similar to calcRegsPassed, only backwards.
|
|
void MachineVerifier::calcRegsRequired() {
|
|
// First push live-in regs to predecessors' vregsRequired.
|
|
DenseSet<const MachineBasicBlock*> todo;
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
const MachineBasicBlock &MBB(*MFI);
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
|
|
PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
|
|
BBInfo &PInfo = MBBInfoMap[*PrI];
|
|
if (PInfo.addRequired(MInfo.vregsLiveIn))
|
|
todo.insert(*PrI);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsRequired to predecessors. This will converge to the
|
|
// same final state regardless of DenseSet iteration order.
|
|
while (!todo.empty()) {
|
|
const MachineBasicBlock *MBB = *todo.begin();
|
|
todo.erase(MBB);
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
|
|
PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
|
|
if (*PrI == MBB)
|
|
continue;
|
|
BBInfo &SInfo = MBBInfoMap[*PrI];
|
|
if (SInfo.addRequired(MInfo.vregsRequired))
|
|
todo.insert(*PrI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check PHI instructions at the beginning of MBB. It is assumed that
|
|
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
|
|
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
|
|
for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
|
|
BBI != BBE && BBI->isPHI(); ++BBI) {
|
|
DenseSet<const MachineBasicBlock*> seen;
|
|
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
|
|
unsigned Reg = BBI->getOperand(i).getReg();
|
|
const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
|
|
if (!Pre->isSuccessor(MBB))
|
|
continue;
|
|
seen.insert(Pre);
|
|
BBInfo &PrInfo = MBBInfoMap[Pre];
|
|
if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
|
|
report("PHI operand is not live-out from predecessor",
|
|
&BBI->getOperand(i), i);
|
|
}
|
|
|
|
// Did we see all predecessors?
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
|
|
PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
|
|
if (!seen.count(*PrI)) {
|
|
report("Missing PHI operand", BBI);
|
|
*OS << "BB#" << (*PrI)->getNumber()
|
|
<< " is a predecessor according to the CFG.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionAfter() {
|
|
calcRegsPassed();
|
|
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
BBInfo &MInfo = MBBInfoMap[MFI];
|
|
|
|
// Skip unreachable MBBs.
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
|
|
checkPHIOps(MFI);
|
|
}
|
|
|
|
// Now check liveness info if available
|
|
if (LiveVars || LiveInts)
|
|
calcRegsRequired();
|
|
if (LiveVars)
|
|
verifyLiveVariables();
|
|
if (LiveInts)
|
|
verifyLiveIntervals();
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveVariables() {
|
|
assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
|
|
for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
|
|
RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
BBInfo &MInfo = MBBInfoMap[MFI];
|
|
|
|
// Our vregsRequired should be identical to LiveVariables' AliveBlocks
|
|
if (MInfo.vregsRequired.count(Reg)) {
|
|
if (!VI.AliveBlocks.test(MFI->getNumber())) {
|
|
report("LiveVariables: Block missing from AliveBlocks", MFI);
|
|
*OS << "Virtual register %reg" << Reg
|
|
<< " must be live through the block.\n";
|
|
}
|
|
} else {
|
|
if (VI.AliveBlocks.test(MFI->getNumber())) {
|
|
report("LiveVariables: Block should not be in AliveBlocks", MFI);
|
|
*OS << "Virtual register %reg" << Reg
|
|
<< " is not needed live through the block.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveIntervals() {
|
|
assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
|
|
for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
|
|
LVE = LiveInts->end(); LVI != LVE; ++LVI) {
|
|
const LiveInterval &LI = *LVI->second;
|
|
|
|
// Spilling and splitting may leave unused registers around. Skip them.
|
|
if (MRI->use_empty(LI.reg))
|
|
continue;
|
|
|
|
// Physical registers have much weirdness going on, mostly from coalescing.
|
|
// We should probably fix it, but for now just ignore them.
|
|
if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
|
|
continue;
|
|
|
|
assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
|
|
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
|
|
I!=E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
|
|
|
|
if (!DefVNI) {
|
|
if (!VNI->isUnused()) {
|
|
report("Valno not live at def and not marked unused", MF);
|
|
*OS << "Valno #" << VNI->id << " in " << LI << '\n';
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (VNI->isUnused())
|
|
continue;
|
|
|
|
if (DefVNI != VNI) {
|
|
report("Live range at def has different valno", MF);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " where valno #" << DefVNI->id << " is live in " << LI << '\n';
|
|
continue;
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
|
|
if (!MBB) {
|
|
report("Invalid definition index", MF);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " in " << LI << '\n';
|
|
continue;
|
|
}
|
|
|
|
if (VNI->isPHIDef()) {
|
|
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
|
|
report("PHIDef value is not defined at MBB start", MF);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< ", not at the beginning of BB#" << MBB->getNumber()
|
|
<< " in " << LI << '\n';
|
|
}
|
|
} else {
|
|
// Non-PHI def.
|
|
if (!VNI->def.isDef()) {
|
|
report("Non-PHI def must be at a DEF slot", MF);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " in " << LI << '\n';
|
|
}
|
|
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
|
|
if (!MI) {
|
|
report("No instruction at def index", MF);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " in " << LI << '\n';
|
|
} else if (!MI->modifiesRegister(LI.reg, TRI)) {
|
|
report("Defining instruction does not modify register", MI);
|
|
*OS << "Valno #" << VNI->id << " in " << LI << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
|
|
const VNInfo *VNI = I->valno;
|
|
assert(VNI && "Live range has no valno");
|
|
|
|
if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
|
|
report("Foreign valno in live range", MF);
|
|
I->print(*OS);
|
|
*OS << " has a valno not in " << LI << '\n';
|
|
}
|
|
|
|
if (VNI->isUnused()) {
|
|
report("Live range valno is marked unused", MF);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n';
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
|
|
if (!MBB) {
|
|
report("Bad start of live segment, no basic block", MF);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n';
|
|
continue;
|
|
}
|
|
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
|
|
if (I->start != MBBStartIdx && I->start != VNI->def) {
|
|
report("Live segment must begin at MBB entry or valno def", MBB);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n' << "Basic block starts at "
|
|
<< MBBStartIdx << '\n';
|
|
}
|
|
|
|
const MachineBasicBlock *EndMBB =
|
|
LiveInts->getMBBFromIndex(I->end.getPrevSlot());
|
|
if (!EndMBB) {
|
|
report("Bad end of live segment, no basic block", MF);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n';
|
|
continue;
|
|
}
|
|
if (I->end != LiveInts->getMBBEndIdx(EndMBB)) {
|
|
// The live segment is ending inside EndMBB
|
|
const MachineInstr *MI =
|
|
LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
|
|
if (!MI) {
|
|
report("Live segment doesn't end at a valid instruction", EndMBB);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n' << "Basic block starts at "
|
|
<< MBBStartIdx << '\n';
|
|
} else if (TargetRegisterInfo::isVirtualRegister(LI.reg) &&
|
|
!MI->readsVirtualRegister(LI.reg)) {
|
|
// FIXME: Should we require a kill flag?
|
|
report("Instruction killing live segment doesn't read register", MI);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n';
|
|
}
|
|
}
|
|
|
|
// Now check all the basic blocks in this live segment.
|
|
MachineFunction::const_iterator MFI = MBB;
|
|
// Is LI live-in to MBB and not a PHIDef?
|
|
if (I->start == VNI->def) {
|
|
// Not live-in to any blocks.
|
|
if (MBB == EndMBB)
|
|
continue;
|
|
// Skip this block.
|
|
++MFI;
|
|
}
|
|
for (;;) {
|
|
assert(LiveInts->isLiveInToMBB(LI, MFI));
|
|
// We don't know how to track physregs into a landing pad.
|
|
if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
|
|
MFI->isLandingPad()) {
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
continue;
|
|
}
|
|
// Check that VNI is live-out of all predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
|
|
PE = MFI->pred_end(); PI != PE; ++PI) {
|
|
SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot();
|
|
const VNInfo *PVNI = LI.getVNInfoAt(PEnd);
|
|
if (!PVNI) {
|
|
report("Register not marked live out of predecessor", *PI);
|
|
*OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
|
|
<< '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at "
|
|
<< PEnd << " in " << LI << '\n';
|
|
} else if (PVNI != VNI) {
|
|
report("Different value live out of predecessor", *PI);
|
|
*OS << "Valno #" << PVNI->id << " live out of BB#"
|
|
<< (*PI)->getNumber() << '@' << PEnd
|
|
<< "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
|
|
<< '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
|
|
}
|
|
}
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
}
|
|
}
|
|
|
|
// Check the LI only has one connected component.
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
|
|
ConnectedVNInfoEqClasses ConEQ(*LiveInts);
|
|
unsigned NumComp = ConEQ.Classify(&LI);
|
|
if (NumComp > 1) {
|
|
report("Multiple connected components in live interval", MF);
|
|
*OS << NumComp << " components in " << LI << '\n';
|
|
for (unsigned comp = 0; comp != NumComp; ++comp) {
|
|
*OS << comp << ": valnos";
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
|
|
E = LI.vni_end(); I!=E; ++I)
|
|
if (comp == ConEQ.getEqClass(*I))
|
|
*OS << ' ' << (*I)->id;
|
|
*OS << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|