mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 16:33:37 +01:00
2c2dcc69d8
llvm-svn: 117155
1791 lines
66 KiB
C++
1791 lines
66 KiB
C++
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a simple register coalescing pass that attempts to
|
|
// aggressively coalesce every register copy that it can.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regcoalescing"
|
|
#include "SimpleRegisterCoalescing.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(numJoins , "Number of interval joins performed");
|
|
STATISTIC(numCrossRCs , "Number of cross class joins performed");
|
|
STATISTIC(numCommutes , "Number of instruction commuting performed");
|
|
STATISTIC(numExtends , "Number of copies extended");
|
|
STATISTIC(NumReMats , "Number of instructions re-materialized");
|
|
STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
|
|
STATISTIC(numAborts , "Number of times interval joining aborted");
|
|
STATISTIC(numDeadValNo, "Number of valno def marked dead");
|
|
|
|
char SimpleRegisterCoalescing::ID = 0;
|
|
static cl::opt<bool>
|
|
EnableJoining("join-liveintervals",
|
|
cl::desc("Coalesce copies (default=true)"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
DisableCrossClassJoin("disable-cross-class-join",
|
|
cl::desc("Avoid coalescing cross register class copies"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
DisablePhysicalJoin("disable-physical-join",
|
|
cl::desc("Avoid coalescing physical register copies"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing, RegisterCoalescer,
|
|
"simple-register-coalescing", "Simple Register Coalescing",
|
|
false, false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
|
|
INITIALIZE_PASS_DEPENDENCY(PHIElimination)
|
|
INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_AG_PASS_END(SimpleRegisterCoalescing, RegisterCoalescer,
|
|
"simple-register-coalescing", "Simple Register Coalescing",
|
|
false, false, true)
|
|
|
|
char &llvm::SimpleRegisterCoalescingID = SimpleRegisterCoalescing::ID;
|
|
|
|
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
if (StrongPHIElim)
|
|
AU.addPreservedID(StrongPHIEliminationID);
|
|
else
|
|
AU.addPreservedID(PHIEliminationID);
|
|
AU.addPreservedID(TwoAddressInstructionPassID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
|
|
/// being the source and IntB being the dest, thus this defines a value number
|
|
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
|
|
/// see if we can merge these two pieces of B into a single value number,
|
|
/// eliminating a copy. For example:
|
|
///
|
|
/// A3 = B0
|
|
/// ...
|
|
/// B1 = A3 <- this copy
|
|
///
|
|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
|
|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
|
|
///
|
|
/// This returns true if an interval was modified.
|
|
///
|
|
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI) {
|
|
// Bail if there is no dst interval - can happen when merging physical subreg
|
|
// operations.
|
|
if (!li_->hasInterval(CP.getDstReg()))
|
|
return false;
|
|
|
|
LiveInterval &IntA =
|
|
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
|
|
LiveInterval &IntB =
|
|
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
|
|
// the example above.
|
|
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
|
|
if (BLR == IntB.end()) return false;
|
|
VNInfo *BValNo = BLR->valno;
|
|
|
|
// Get the location that B is defined at. Two options: either this value has
|
|
// an unknown definition point or it is defined at CopyIdx. If unknown, we
|
|
// can't process it.
|
|
if (!BValNo->isDefByCopy()) return false;
|
|
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
|
|
LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
|
|
// The live range might not exist after fun with physreg coalescing.
|
|
if (ALR == IntA.end()) return false;
|
|
VNInfo *AValNo = ALR->valno;
|
|
// If it's re-defined by an early clobber somewhere in the live range, then
|
|
// it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
|
|
// See PR3149:
|
|
// 172 %ECX<def> = MOV32rr %reg1039<kill>
|
|
// 180 INLINEASM <es:subl $5,$1
|
|
// sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
|
|
// %EAX<kill>,
|
|
// 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
|
|
// 188 %EAX<def> = MOV32rr %EAX<kill>
|
|
// 196 %ECX<def> = MOV32rr %ECX<kill>
|
|
// 204 %ECX<def> = MOV32rr %ECX<kill>
|
|
// 212 %EAX<def> = MOV32rr %EAX<kill>
|
|
// 220 %EAX<def> = MOV32rr %EAX
|
|
// 228 %reg1039<def> = MOV32rr %ECX<kill>
|
|
// The early clobber operand ties ECX input to the ECX def.
|
|
//
|
|
// The live interval of ECX is represented as this:
|
|
// %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
|
|
// The coalescer has no idea there was a def in the middle of [174,230].
|
|
if (AValNo->hasRedefByEC())
|
|
return false;
|
|
|
|
// If AValNo is defined as a copy from IntB, we can potentially process this.
|
|
// Get the instruction that defines this value number.
|
|
if (!CP.isCoalescable(AValNo->getCopy()))
|
|
return false;
|
|
|
|
// Get the LiveRange in IntB that this value number starts with.
|
|
LiveInterval::iterator ValLR =
|
|
IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
|
|
if (ValLR == IntB.end())
|
|
return false;
|
|
|
|
// Make sure that the end of the live range is inside the same block as
|
|
// CopyMI.
|
|
MachineInstr *ValLREndInst =
|
|
li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
|
|
if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
|
|
return false;
|
|
|
|
// Okay, we now know that ValLR ends in the same block that the CopyMI
|
|
// live-range starts. If there are no intervening live ranges between them in
|
|
// IntB, we can merge them.
|
|
if (ValLR+1 != BLR) return false;
|
|
|
|
// If a live interval is a physical register, conservatively check if any
|
|
// of its sub-registers is overlapping the live interval of the virtual
|
|
// register. If so, do not coalesce.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
|
|
*tri_->getSubRegisters(IntB.reg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "Extending: ";
|
|
IntB.print(dbgs(), tri_);
|
|
});
|
|
|
|
SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
|
|
// We are about to delete CopyMI, so need to remove it as the 'instruction
|
|
// that defines this value #'. Update the valnum with the new defining
|
|
// instruction #.
|
|
BValNo->def = FillerStart;
|
|
BValNo->setCopy(0);
|
|
|
|
// Okay, we can merge them. We need to insert a new liverange:
|
|
// [ValLR.end, BLR.begin) of either value number, then we merge the
|
|
// two value numbers.
|
|
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
|
|
|
|
// If the IntB live range is assigned to a physical register, and if that
|
|
// physreg has sub-registers, update their live intervals as well.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
|
|
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
LiveInterval &SRLI = li_->getInterval(*SR);
|
|
SRLI.addRange(LiveRange(FillerStart, FillerEnd,
|
|
SRLI.getNextValue(FillerStart, 0,
|
|
li_->getVNInfoAllocator())));
|
|
}
|
|
}
|
|
|
|
// Okay, merge "B1" into the same value number as "B0".
|
|
if (BValNo != ValLR->valno) {
|
|
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
|
|
}
|
|
DEBUG({
|
|
dbgs() << " result = ";
|
|
IntB.print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// If the source instruction was killing the source register before the
|
|
// merge, unset the isKill marker given the live range has been extended.
|
|
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
|
|
if (UIdx != -1) {
|
|
ValLREndInst->getOperand(UIdx).setIsKill(false);
|
|
}
|
|
|
|
// If the copy instruction was killing the destination register before the
|
|
// merge, find the last use and trim the live range. That will also add the
|
|
// isKill marker.
|
|
if (ALR->end == CopyIdx)
|
|
TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
|
|
|
|
++numExtends;
|
|
return true;
|
|
}
|
|
|
|
/// HasOtherReachingDefs - Return true if there are definitions of IntB
|
|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
|
|
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
|
|
LiveInterval &IntB,
|
|
VNInfo *AValNo,
|
|
VNInfo *BValNo) {
|
|
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
|
|
AI != AE; ++AI) {
|
|
if (AI->valno != AValNo) continue;
|
|
LiveInterval::Ranges::iterator BI =
|
|
std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
|
|
if (BI != IntB.ranges.begin())
|
|
--BI;
|
|
for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
|
|
if (BI->valno == BValNo)
|
|
continue;
|
|
if (BI->start <= AI->start && BI->end > AI->start)
|
|
return true;
|
|
if (BI->start > AI->start && BI->start < AI->end)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
|
|
/// IntA being the source and IntB being the dest, thus this defines a value
|
|
/// number in IntB. If the source value number (in IntA) is defined by a
|
|
/// commutable instruction and its other operand is coalesced to the copy dest
|
|
/// register, see if we can transform the copy into a noop by commuting the
|
|
/// definition. For example,
|
|
///
|
|
/// A3 = op A2 B0<kill>
|
|
/// ...
|
|
/// B1 = A3 <- this copy
|
|
/// ...
|
|
/// = op A3 <- more uses
|
|
///
|
|
/// ==>
|
|
///
|
|
/// B2 = op B0 A2<kill>
|
|
/// ...
|
|
/// B1 = B2 <- now an identify copy
|
|
/// ...
|
|
/// = op B2 <- more uses
|
|
///
|
|
/// This returns true if an interval was modified.
|
|
///
|
|
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI) {
|
|
// FIXME: For now, only eliminate the copy by commuting its def when the
|
|
// source register is a virtual register. We want to guard against cases
|
|
// where the copy is a back edge copy and commuting the def lengthen the
|
|
// live interval of the source register to the entire loop.
|
|
if (CP.isPhys() && CP.isFlipped())
|
|
return false;
|
|
|
|
// Bail if there is no dst interval.
|
|
if (!li_->hasInterval(CP.getDstReg()))
|
|
return false;
|
|
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
|
|
LiveInterval &IntA =
|
|
li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
|
|
LiveInterval &IntB =
|
|
li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
|
|
// the example above.
|
|
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
|
|
if (!BValNo || !BValNo->isDefByCopy())
|
|
return false;
|
|
|
|
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
|
|
assert(AValNo && "COPY source not live");
|
|
|
|
// If other defs can reach uses of this def, then it's not safe to perform
|
|
// the optimization.
|
|
if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
|
|
return false;
|
|
MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
|
|
if (!DefMI)
|
|
return false;
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (!TID.isCommutable())
|
|
return false;
|
|
// If DefMI is a two-address instruction then commuting it will change the
|
|
// destination register.
|
|
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
|
|
assert(DefIdx != -1);
|
|
unsigned UseOpIdx;
|
|
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
|
|
return false;
|
|
unsigned Op1, Op2, NewDstIdx;
|
|
if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
|
|
return false;
|
|
if (Op1 == UseOpIdx)
|
|
NewDstIdx = Op2;
|
|
else if (Op2 == UseOpIdx)
|
|
NewDstIdx = Op1;
|
|
else
|
|
return false;
|
|
|
|
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
|
|
unsigned NewReg = NewDstMO.getReg();
|
|
if (NewReg != IntB.reg || !NewDstMO.isKill())
|
|
return false;
|
|
|
|
// Make sure there are no other definitions of IntB that would reach the
|
|
// uses which the new definition can reach.
|
|
if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
|
|
return false;
|
|
|
|
// Abort if the aliases of IntB.reg have values that are not simply the
|
|
// clobbers from the superreg.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
|
|
for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
|
|
if (li_->hasInterval(*AS) &&
|
|
HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
|
|
return false;
|
|
|
|
// If some of the uses of IntA.reg is already coalesced away, return false.
|
|
// It's not possible to determine whether it's safe to perform the coalescing.
|
|
for (MachineRegisterInfo::use_nodbg_iterator UI =
|
|
mri_->use_nodbg_begin(IntA.reg),
|
|
UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
|
|
MachineInstr *UseMI = &*UI;
|
|
SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
|
|
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
|
|
if (ULR == IntA.end())
|
|
continue;
|
|
if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
|
|
<< *DefMI);
|
|
|
|
// At this point we have decided that it is legal to do this
|
|
// transformation. Start by commuting the instruction.
|
|
MachineBasicBlock *MBB = DefMI->getParent();
|
|
MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
|
|
if (!NewMI)
|
|
return false;
|
|
if (NewMI != DefMI) {
|
|
li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
|
|
MBB->insert(DefMI, NewMI);
|
|
MBB->erase(DefMI);
|
|
}
|
|
unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
|
|
NewMI->getOperand(OpIdx).setIsKill();
|
|
|
|
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
|
|
// A = or A, B
|
|
// ...
|
|
// B = A
|
|
// ...
|
|
// C = A<kill>
|
|
// ...
|
|
// = B
|
|
|
|
// Update uses of IntA of the specific Val# with IntB.
|
|
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
|
|
UE = mri_->use_end(); UI != UE;) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
MachineInstr *UseMI = &*UI;
|
|
++UI;
|
|
if (JoinedCopies.count(UseMI))
|
|
continue;
|
|
if (UseMI->isDebugValue()) {
|
|
// FIXME These don't have an instruction index. Not clear we have enough
|
|
// info to decide whether to do this replacement or not. For now do it.
|
|
UseMO.setReg(NewReg);
|
|
continue;
|
|
}
|
|
SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
|
|
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
|
|
if (ULR == IntA.end() || ULR->valno != AValNo)
|
|
continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(NewReg))
|
|
UseMO.substPhysReg(NewReg, *tri_);
|
|
else
|
|
UseMO.setReg(NewReg);
|
|
if (UseMI == CopyMI)
|
|
continue;
|
|
if (!UseMI->isCopy())
|
|
continue;
|
|
if (UseMI->getOperand(0).getReg() != IntB.reg ||
|
|
UseMI->getOperand(0).getSubReg())
|
|
continue;
|
|
|
|
// This copy will become a noop. If it's defining a new val#, merge it into
|
|
// BValNo.
|
|
SlotIndex DefIdx = UseIdx.getDefIndex();
|
|
VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
|
|
if (!DVNI)
|
|
continue;
|
|
DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
|
|
assert(DVNI->def == DefIdx);
|
|
BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
|
|
JoinedCopies.insert(UseMI);
|
|
}
|
|
|
|
// Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
|
|
// is updated.
|
|
VNInfo *ValNo = BValNo;
|
|
ValNo->def = AValNo->def;
|
|
ValNo->setCopy(0);
|
|
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
|
|
AI != AE; ++AI) {
|
|
if (AI->valno != AValNo) continue;
|
|
IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
|
|
}
|
|
DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
|
|
|
|
IntA.removeValNo(AValNo);
|
|
DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
|
|
++numCommutes;
|
|
return true;
|
|
}
|
|
|
|
/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
|
|
/// fallthoughs to SuccMBB.
|
|
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccMBB,
|
|
const TargetInstrInfo *tii_) {
|
|
if (MBB == SuccMBB)
|
|
return true;
|
|
MachineBasicBlock *TBB = 0, *FBB = 0;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
|
|
MBB->isSuccessor(SuccMBB);
|
|
}
|
|
|
|
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
|
|
/// from a physical register live interval as well as from the live intervals
|
|
/// of its sub-registers.
|
|
static void removeRange(LiveInterval &li,
|
|
SlotIndex Start, SlotIndex End,
|
|
LiveIntervals *li_, const TargetRegisterInfo *tri_) {
|
|
li.removeRange(Start, End, true);
|
|
if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
LiveInterval &sli = li_->getInterval(*SR);
|
|
SlotIndex RemoveStart = Start;
|
|
SlotIndex RemoveEnd = Start;
|
|
|
|
while (RemoveEnd != End) {
|
|
LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
|
|
if (LR == sli.end())
|
|
break;
|
|
RemoveEnd = (LR->end < End) ? LR->end : End;
|
|
sli.removeRange(RemoveStart, RemoveEnd, true);
|
|
RemoveStart = RemoveEnd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
|
|
/// as the copy instruction, trim the live interval to the last use and return
|
|
/// true.
|
|
bool
|
|
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
|
|
MachineBasicBlock *CopyMBB,
|
|
LiveInterval &li,
|
|
const LiveRange *LR) {
|
|
SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
|
|
SlotIndex LastUseIdx;
|
|
MachineOperand *LastUse =
|
|
lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
|
|
if (LastUse) {
|
|
MachineInstr *LastUseMI = LastUse->getParent();
|
|
if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
|
|
// r1024 = op
|
|
// ...
|
|
// BB1:
|
|
// = r1024
|
|
//
|
|
// BB2:
|
|
// r1025<dead> = r1024<kill>
|
|
if (MBBStart < LR->end)
|
|
removeRange(li, MBBStart, LR->end, li_, tri_);
|
|
return true;
|
|
}
|
|
|
|
// There are uses before the copy, just shorten the live range to the end
|
|
// of last use.
|
|
LastUse->setIsKill();
|
|
removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
|
|
if (LastUseMI->isCopy()) {
|
|
MachineOperand &DefMO = LastUseMI->getOperand(0);
|
|
if (DefMO.getReg() == li.reg && !DefMO.getSubReg())
|
|
DefMO.setIsDead();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Is it livein?
|
|
if (LR->start <= MBBStart && LR->end > MBBStart) {
|
|
if (LR->start == li_->getZeroIndex()) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
|
|
// Live-in to the function but dead. Remove it from entry live-in set.
|
|
mf_->begin()->removeLiveIn(li.reg);
|
|
}
|
|
// FIXME: Shorten intervals in BBs that reaches this BB.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
|
|
/// computation, replace the copy by rematerialize the definition.
|
|
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
|
|
unsigned DstReg,
|
|
unsigned DstSubIdx,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
|
|
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
|
|
assert(SrcLR != SrcInt.end() && "Live range not found!");
|
|
VNInfo *ValNo = SrcLR->valno;
|
|
// If other defs can reach uses of this def, then it's not safe to perform
|
|
// the optimization.
|
|
if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
|
|
return false;
|
|
MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
|
|
if (!DefMI)
|
|
return false;
|
|
assert(DefMI && "Defining instruction disappeared");
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (!TID.isAsCheapAsAMove())
|
|
return false;
|
|
if (!tii_->isTriviallyReMaterializable(DefMI, AA))
|
|
return false;
|
|
bool SawStore = false;
|
|
if (!DefMI->isSafeToMove(tii_, AA, SawStore))
|
|
return false;
|
|
if (TID.getNumDefs() != 1)
|
|
return false;
|
|
if (!DefMI->isImplicitDef()) {
|
|
// Make sure the copy destination register class fits the instruction
|
|
// definition register class. The mismatch can happen as a result of earlier
|
|
// extract_subreg, insert_subreg, subreg_to_reg coalescing.
|
|
const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
|
|
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
if (mri_->getRegClass(DstReg) != RC)
|
|
return false;
|
|
} else if (!RC->contains(DstReg))
|
|
return false;
|
|
}
|
|
|
|
// If destination register has a sub-register index on it, make sure it mtches
|
|
// the instruction register class.
|
|
if (DstSubIdx) {
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (TID.getNumDefs() != 1)
|
|
return false;
|
|
const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
|
|
const TargetRegisterClass *DstSubRC =
|
|
DstRC->getSubRegisterRegClass(DstSubIdx);
|
|
const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
|
|
if (DefRC == DstRC)
|
|
DstSubIdx = 0;
|
|
else if (DefRC != DstSubRC)
|
|
return false;
|
|
}
|
|
|
|
RemoveCopyFlag(DstReg, CopyMI);
|
|
|
|
// If copy kills the source register, find the last use and propagate
|
|
// kill.
|
|
bool checkForDeadDef = false;
|
|
MachineBasicBlock *MBB = CopyMI->getParent();
|
|
if (SrcLR->end == CopyIdx.getDefIndex())
|
|
if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
|
|
checkForDeadDef = true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MII =
|
|
llvm::next(MachineBasicBlock::iterator(CopyMI));
|
|
tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
|
|
MachineInstr *NewMI = prior(MII);
|
|
|
|
if (checkForDeadDef) {
|
|
// PR4090 fix: Trim interval failed because there was no use of the
|
|
// source interval in this MBB. If the def is in this MBB too then we
|
|
// should mark it dead:
|
|
if (DefMI->getParent() == MBB) {
|
|
DefMI->addRegisterDead(SrcInt.reg, tri_);
|
|
SrcLR->end = SrcLR->start.getNextSlot();
|
|
}
|
|
}
|
|
|
|
// CopyMI may have implicit operands, transfer them over to the newly
|
|
// rematerialized instruction. And update implicit def interval valnos.
|
|
for (unsigned i = CopyMI->getDesc().getNumOperands(),
|
|
e = CopyMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = CopyMI->getOperand(i);
|
|
if (MO.isReg() && MO.isImplicit())
|
|
NewMI->addOperand(MO);
|
|
if (MO.isDef())
|
|
RemoveCopyFlag(MO.getReg(), CopyMI);
|
|
}
|
|
|
|
NewMI->copyImplicitOps(CopyMI);
|
|
li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
|
|
CopyMI->eraseFromParent();
|
|
ReMatCopies.insert(CopyMI);
|
|
ReMatDefs.insert(DefMI);
|
|
DEBUG(dbgs() << "Remat: " << *NewMI);
|
|
++NumReMats;
|
|
return true;
|
|
}
|
|
|
|
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
|
|
/// update the subregister number if it is not zero. If DstReg is a
|
|
/// physical register and the existing subregister number of the def / use
|
|
/// being updated is not zero, make sure to set it to the correct physical
|
|
/// subregister.
|
|
void
|
|
SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
|
|
bool DstIsPhys = CP.isPhys();
|
|
unsigned SrcReg = CP.getSrcReg();
|
|
unsigned DstReg = CP.getDstReg();
|
|
unsigned SubIdx = CP.getSubIdx();
|
|
|
|
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
|
|
MachineInstr *UseMI = I.skipInstruction();) {
|
|
// A PhysReg copy that won't be coalesced can perhaps be rematerialized
|
|
// instead.
|
|
if (DstIsPhys) {
|
|
if (UseMI->isCopy() &&
|
|
!UseMI->getOperand(1).getSubReg() &&
|
|
!UseMI->getOperand(0).getSubReg() &&
|
|
UseMI->getOperand(1).getReg() == SrcReg &&
|
|
UseMI->getOperand(0).getReg() != SrcReg &&
|
|
UseMI->getOperand(0).getReg() != DstReg &&
|
|
!JoinedCopies.count(UseMI) &&
|
|
ReMaterializeTrivialDef(li_->getInterval(SrcReg),
|
|
UseMI->getOperand(0).getReg(), 0, UseMI))
|
|
continue;
|
|
}
|
|
|
|
SmallVector<unsigned,8> Ops;
|
|
bool Reads, Writes;
|
|
tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
|
|
bool Kills = false, Deads = false;
|
|
|
|
// Replace SrcReg with DstReg in all UseMI operands.
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = UseMI->getOperand(Ops[i]);
|
|
Kills |= MO.isKill();
|
|
Deads |= MO.isDead();
|
|
|
|
if (DstIsPhys)
|
|
MO.substPhysReg(DstReg, *tri_);
|
|
else
|
|
MO.substVirtReg(DstReg, SubIdx, *tri_);
|
|
}
|
|
|
|
// This instruction is a copy that will be removed.
|
|
if (JoinedCopies.count(UseMI))
|
|
continue;
|
|
|
|
if (SubIdx) {
|
|
// If UseMI was a simple SrcReg def, make sure we didn't turn it into a
|
|
// read-modify-write of DstReg.
|
|
if (Deads)
|
|
UseMI->addRegisterDead(DstReg, tri_);
|
|
else if (!Reads && Writes)
|
|
UseMI->addRegisterDefined(DstReg, tri_);
|
|
|
|
// Kill flags apply to the whole physical register.
|
|
if (DstIsPhys && Kills)
|
|
UseMI->addRegisterKilled(DstReg, tri_);
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "\t\tupdated: ";
|
|
if (!UseMI->isDebugValue())
|
|
dbgs() << li_->getInstructionIndex(UseMI) << "\t";
|
|
dbgs() << *UseMI;
|
|
});
|
|
}
|
|
}
|
|
|
|
/// removeIntervalIfEmpty - Check if the live interval of a physical register
|
|
/// is empty, if so remove it and also remove the empty intervals of its
|
|
/// sub-registers. Return true if live interval is removed.
|
|
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
|
|
const TargetRegisterInfo *tri_) {
|
|
if (li.empty()) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(li.reg))
|
|
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
LiveInterval &sli = li_->getInterval(*SR);
|
|
if (sli.empty())
|
|
li_->removeInterval(*SR);
|
|
}
|
|
li_->removeInterval(li.reg);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
|
|
/// Return true if live interval is removed.
|
|
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
|
|
LiveInterval::iterator MLR =
|
|
li.FindLiveRangeContaining(CopyIdx.getDefIndex());
|
|
if (MLR == li.end())
|
|
return false; // Already removed by ShortenDeadCopySrcLiveRange.
|
|
SlotIndex RemoveStart = MLR->start;
|
|
SlotIndex RemoveEnd = MLR->end;
|
|
SlotIndex DefIdx = CopyIdx.getDefIndex();
|
|
// Remove the liverange that's defined by this.
|
|
if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
|
|
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
|
|
/// the val# it defines. If the live interval becomes empty, remove it as well.
|
|
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
|
|
MachineInstr *DefMI) {
|
|
SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
|
|
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
|
|
if (DefIdx != MLR->valno->def)
|
|
return false;
|
|
li.removeValNo(MLR->valno);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
|
|
const MachineInstr *CopyMI) {
|
|
SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
if (li_->hasInterval(DstReg)) {
|
|
LiveInterval &LI = li_->getInterval(DstReg);
|
|
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
|
|
if (LR->valno->def == DefIdx)
|
|
LR->valno->setCopy(0);
|
|
}
|
|
if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
|
|
return;
|
|
for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
|
|
if (!li_->hasInterval(*AS))
|
|
continue;
|
|
LiveInterval &LI = li_->getInterval(*AS);
|
|
if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
|
|
if (LR->valno->def == DefIdx)
|
|
LR->valno->setCopy(0);
|
|
}
|
|
}
|
|
|
|
/// PropagateDeadness - Propagate the dead marker to the instruction which
|
|
/// defines the val#.
|
|
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
|
|
SlotIndex &LRStart, LiveIntervals *li_,
|
|
const TargetRegisterInfo* tri_) {
|
|
MachineInstr *DefMI =
|
|
li_->getInstructionFromIndex(LRStart.getDefIndex());
|
|
if (DefMI && DefMI != CopyMI) {
|
|
int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
|
|
if (DeadIdx != -1)
|
|
DefMI->getOperand(DeadIdx).setIsDead();
|
|
else
|
|
DefMI->addOperand(MachineOperand::CreateReg(li.reg,
|
|
/*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
|
|
LRStart = LRStart.getNextSlot();
|
|
}
|
|
}
|
|
|
|
/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
|
|
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
|
|
/// ends the live range there. If there isn't another use, then this live range
|
|
/// is dead. Return true if live interval is removed.
|
|
bool
|
|
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
|
|
if (CopyIdx == SlotIndex()) {
|
|
// FIXME: special case: function live in. It can be a general case if the
|
|
// first instruction index starts at > 0 value.
|
|
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
|
|
// Live-in to the function but dead. Remove it from entry live-in set.
|
|
if (mf_->begin()->isLiveIn(li.reg))
|
|
mf_->begin()->removeLiveIn(li.reg);
|
|
if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx))
|
|
removeRange(li, LR->start, LR->end, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
LiveInterval::iterator LR =
|
|
li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
|
|
if (LR == li.end())
|
|
// Livein but defined by a phi.
|
|
return false;
|
|
|
|
SlotIndex RemoveStart = LR->start;
|
|
SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
|
|
if (LR->end > RemoveEnd)
|
|
// More uses past this copy? Nothing to do.
|
|
return false;
|
|
|
|
// If there is a last use in the same bb, we can't remove the live range.
|
|
// Shorten the live interval and return.
|
|
MachineBasicBlock *CopyMBB = CopyMI->getParent();
|
|
if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
|
|
return false;
|
|
|
|
// There are other kills of the val#. Nothing to do.
|
|
if (!li.isOnlyLROfValNo(LR))
|
|
return false;
|
|
|
|
MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
|
|
if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
|
|
// If the live range starts in another mbb and the copy mbb is not a fall
|
|
// through mbb, then we can only cut the range from the beginning of the
|
|
// copy mbb.
|
|
RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
|
|
|
|
if (LR->valno->def == RemoveStart) {
|
|
// If the def MI defines the val# and this copy is the only kill of the
|
|
// val#, then propagate the dead marker.
|
|
PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
|
|
++numDeadValNo;
|
|
}
|
|
|
|
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
|
|
/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
|
|
/// two virtual registers from different register classes.
|
|
bool
|
|
SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
|
|
unsigned DstReg,
|
|
const TargetRegisterClass *SrcRC,
|
|
const TargetRegisterClass *DstRC,
|
|
const TargetRegisterClass *NewRC) {
|
|
unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
|
|
// This heuristics is good enough in practice, but it's obviously not *right*.
|
|
// 4 is a magic number that works well enough for x86, ARM, etc. It filter
|
|
// out all but the most restrictive register classes.
|
|
if (NewRCCount > 4 ||
|
|
// Early exit if the function is fairly small, coalesce aggressively if
|
|
// that's the case. For really special register classes with 3 or
|
|
// fewer registers, be a bit more careful.
|
|
(li_->getFuncInstructionCount() / NewRCCount) < 8)
|
|
return true;
|
|
LiveInterval &SrcInt = li_->getInterval(SrcReg);
|
|
LiveInterval &DstInt = li_->getInterval(DstReg);
|
|
unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
|
|
unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
|
|
if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
|
|
return true;
|
|
// Estimate *register use density*. If it doubles or more, abort.
|
|
unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
|
|
mri_->use_nodbg_end());
|
|
unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
|
|
mri_->use_nodbg_end());
|
|
unsigned NewUses = SrcUses + DstUses;
|
|
unsigned NewSize = SrcSize + DstSize;
|
|
if (SrcRC != NewRC && SrcSize > NewRCCount) {
|
|
unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
|
|
if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
|
|
return false;
|
|
}
|
|
if (DstRC != NewRC && DstSize > NewRCCount) {
|
|
unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
|
|
if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
|
|
/// which are the src/dst of the copy instruction CopyMI. This returns true
|
|
/// if the copy was successfully coalesced away. If it is not currently
|
|
/// possible to coalesce this interval, but it may be possible if other
|
|
/// things get coalesced, then it returns true by reference in 'Again'.
|
|
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
|
|
MachineInstr *CopyMI = TheCopy.MI;
|
|
|
|
Again = false;
|
|
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
|
|
return false; // Already done.
|
|
|
|
DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
|
|
|
|
CoalescerPair CP(*tii_, *tri_);
|
|
if (!CP.setRegisters(CopyMI)) {
|
|
DEBUG(dbgs() << "\tNot coalescable.\n");
|
|
return false;
|
|
}
|
|
|
|
// If they are already joined we continue.
|
|
if (CP.getSrcReg() == CP.getDstReg()) {
|
|
DEBUG(dbgs() << "\tCopy already coalesced.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
if (DisablePhysicalJoin && CP.isPhys()) {
|
|
DEBUG(dbgs() << "\tPhysical joins disabled.\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << "\tConsidering merging %reg" << CP.getSrcReg());
|
|
|
|
// Enforce policies.
|
|
if (CP.isPhys()) {
|
|
DEBUG(dbgs() <<" with physreg %" << tri_->getName(CP.getDstReg()) << "\n");
|
|
// Only coalesce to allocatable physreg.
|
|
if (!li_->isAllocatable(CP.getDstReg())) {
|
|
DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
} else {
|
|
DEBUG({
|
|
dbgs() << " with reg%" << CP.getDstReg();
|
|
if (CP.getSubIdx())
|
|
dbgs() << ":" << tri_->getSubRegIndexName(CP.getSubIdx());
|
|
dbgs() << " to " << CP.getNewRC()->getName() << "\n";
|
|
});
|
|
|
|
// Avoid constraining virtual register regclass too much.
|
|
if (CP.isCrossClass()) {
|
|
if (DisableCrossClassJoin) {
|
|
DEBUG(dbgs() << "\tCross-class joins disabled.\n");
|
|
return false;
|
|
}
|
|
if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
|
|
mri_->getRegClass(CP.getSrcReg()),
|
|
mri_->getRegClass(CP.getDstReg()),
|
|
CP.getNewRC())) {
|
|
DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
|
|
<< CP.getNewRC()->getName() << ".\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// When possible, let DstReg be the larger interval.
|
|
if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
|
|
li_->getInterval(CP.getDstReg()).ranges.size())
|
|
CP.flip();
|
|
}
|
|
|
|
// We need to be careful about coalescing a source physical register with a
|
|
// virtual register. Once the coalescing is done, it cannot be broken and
|
|
// these are not spillable! If the destination interval uses are far away,
|
|
// think twice about coalescing them!
|
|
// FIXME: Why are we skipping this test for partial copies?
|
|
// CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
|
|
if (!CP.isPartial() && CP.isPhys()) {
|
|
LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
|
|
|
|
// Don't join with physregs that have a ridiculous number of live
|
|
// ranges. The data structure performance is really bad when that
|
|
// happens.
|
|
if (li_->hasInterval(CP.getDstReg()) &&
|
|
li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
|
|
++numAborts;
|
|
DEBUG(dbgs()
|
|
<< "\tPhysical register live interval too complicated, abort!\n");
|
|
return false;
|
|
}
|
|
|
|
const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
|
|
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
|
|
unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
|
|
if (Length > Threshold &&
|
|
std::distance(mri_->use_nodbg_begin(CP.getSrcReg()),
|
|
mri_->use_nodbg_end()) * Threshold < Length) {
|
|
// Before giving up coalescing, if definition of source is defined by
|
|
// trivial computation, try rematerializing it.
|
|
if (!CP.isFlipped() &&
|
|
ReMaterializeTrivialDef(JoinVInt, CP.getDstReg(), 0, CopyMI))
|
|
return true;
|
|
|
|
++numAborts;
|
|
DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Okay, attempt to join these two intervals. On failure, this returns false.
|
|
// Otherwise, if one of the intervals being joined is a physreg, this method
|
|
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
|
|
// been modified, so we can use this information below to update aliases.
|
|
if (!JoinIntervals(CP)) {
|
|
// Coalescing failed.
|
|
|
|
// If definition of source is defined by trivial computation, try
|
|
// rematerializing it.
|
|
if (!CP.isFlipped() &&
|
|
ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()),
|
|
CP.getDstReg(), 0, CopyMI))
|
|
return true;
|
|
|
|
// If we can eliminate the copy without merging the live ranges, do so now.
|
|
if (!CP.isPartial()) {
|
|
if (AdjustCopiesBackFrom(CP, CopyMI) ||
|
|
RemoveCopyByCommutingDef(CP, CopyMI)) {
|
|
JoinedCopies.insert(CopyMI);
|
|
DEBUG(dbgs() << "\tTrivial!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we are unable to join the intervals.
|
|
DEBUG(dbgs() << "\tInterference!\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
|
|
// Coalescing to a virtual register that is of a sub-register class of the
|
|
// other. Make sure the resulting register is set to the right register class.
|
|
if (CP.isCrossClass()) {
|
|
++numCrossRCs;
|
|
mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
|
|
}
|
|
|
|
// Remember to delete the copy instruction.
|
|
JoinedCopies.insert(CopyMI);
|
|
|
|
UpdateRegDefsUses(CP);
|
|
|
|
// If we have extended the live range of a physical register, make sure we
|
|
// update live-in lists as well.
|
|
if (CP.isPhys()) {
|
|
SmallVector<MachineBasicBlock*, 16> BlockSeq;
|
|
// JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
|
|
// ranges for this, and they are preserved.
|
|
LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
|
|
for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
|
|
I != E; ++I ) {
|
|
li_->findLiveInMBBs(I->start, I->end, BlockSeq);
|
|
for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
|
|
MachineBasicBlock &block = *BlockSeq[idx];
|
|
if (!block.isLiveIn(CP.getDstReg()))
|
|
block.addLiveIn(CP.getDstReg());
|
|
}
|
|
BlockSeq.clear();
|
|
}
|
|
}
|
|
|
|
// SrcReg is guarateed to be the register whose live interval that is
|
|
// being merged.
|
|
li_->removeInterval(CP.getSrcReg());
|
|
|
|
// Update regalloc hint.
|
|
tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
|
|
|
|
DEBUG({
|
|
LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
|
|
dbgs() << "\tJoined. Result = ";
|
|
DstInt.print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
++numJoins;
|
|
return true;
|
|
}
|
|
|
|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
|
|
/// compute what the resultant value numbers for each value in the input two
|
|
/// ranges will be. This is complicated by copies between the two which can
|
|
/// and will commonly cause multiple value numbers to be merged into one.
|
|
///
|
|
/// VN is the value number that we're trying to resolve. InstDefiningValue
|
|
/// keeps track of the new InstDefiningValue assignment for the result
|
|
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
|
|
/// whether a value in this or other is a copy from the opposite set.
|
|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
|
|
/// already been assigned.
|
|
///
|
|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
|
|
/// contains the value number the copy is from.
|
|
///
|
|
static unsigned ComputeUltimateVN(VNInfo *VNI,
|
|
SmallVector<VNInfo*, 16> &NewVNInfo,
|
|
DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
|
|
DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
|
|
SmallVector<int, 16> &ThisValNoAssignments,
|
|
SmallVector<int, 16> &OtherValNoAssignments) {
|
|
unsigned VN = VNI->id;
|
|
|
|
// If the VN has already been computed, just return it.
|
|
if (ThisValNoAssignments[VN] >= 0)
|
|
return ThisValNoAssignments[VN];
|
|
assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
|
|
|
|
// If this val is not a copy from the other val, then it must be a new value
|
|
// number in the destination.
|
|
DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
|
|
if (I == ThisFromOther.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
}
|
|
VNInfo *OtherValNo = I->second;
|
|
|
|
// Otherwise, this *is* a copy from the RHS. If the other side has already
|
|
// been computed, return it.
|
|
if (OtherValNoAssignments[OtherValNo->id] >= 0)
|
|
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
|
|
|
|
// Mark this value number as currently being computed, then ask what the
|
|
// ultimate value # of the other value is.
|
|
ThisValNoAssignments[VN] = -2;
|
|
unsigned UltimateVN =
|
|
ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
|
|
OtherValNoAssignments, ThisValNoAssignments);
|
|
return ThisValNoAssignments[VN] = UltimateVN;
|
|
}
|
|
|
|
/// JoinIntervals - Attempt to join these two intervals. On failure, this
|
|
/// returns false.
|
|
bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
|
|
LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
|
|
DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
|
|
|
|
// If a live interval is a physical register, check for interference with any
|
|
// aliases. The interference check implemented here is a bit more conservative
|
|
// than the full interfeence check below. We allow overlapping live ranges
|
|
// only when one is a copy of the other.
|
|
if (CP.isPhys()) {
|
|
for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
|
|
if (!li_->hasInterval(*AS))
|
|
continue;
|
|
const LiveInterval &LHS = li_->getInterval(*AS);
|
|
LiveInterval::const_iterator LI = LHS.begin();
|
|
for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
|
|
RI != RE; ++RI) {
|
|
LI = std::lower_bound(LI, LHS.end(), RI->start);
|
|
// Does LHS have an overlapping live range starting before RI?
|
|
if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
|
|
(RI->start != RI->valno->def ||
|
|
!CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterference from alias: ";
|
|
LHS.print(dbgs(), tri_);
|
|
dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
// Check that LHS ranges beginning in this range are copies.
|
|
for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
|
|
if (LI->start != LI->valno->def ||
|
|
!CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterference from alias: ";
|
|
LHS.print(dbgs(), tri_);
|
|
dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the final value assignment, assuming that the live ranges can be
|
|
// coalesced.
|
|
SmallVector<int, 16> LHSValNoAssignments;
|
|
SmallVector<int, 16> RHSValNoAssignments;
|
|
DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
|
|
DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
|
|
SmallVector<VNInfo*, 16> NewVNInfo;
|
|
|
|
LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
|
|
DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
|
|
|
|
// Loop over the value numbers of the LHS, seeing if any are defined from
|
|
// the RHS.
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// Never join with a register that has EarlyClobber redefs.
|
|
if (VNI->hasRedefByEC())
|
|
return false;
|
|
|
|
// DstReg is known to be a register in the LHS interval. If the src is
|
|
// from the RHS interval, we can use its value #.
|
|
if (!CP.isCoalescable(VNI->getCopy()))
|
|
continue;
|
|
|
|
// Figure out the value # from the RHS.
|
|
LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
|
|
// The copy could be to an aliased physreg.
|
|
if (!lr) continue;
|
|
LHSValsDefinedFromRHS[VNI] = lr->valno;
|
|
}
|
|
|
|
// Loop over the value numbers of the RHS, seeing if any are defined from
|
|
// the LHS.
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// Never join with a register that has EarlyClobber redefs.
|
|
if (VNI->hasRedefByEC())
|
|
return false;
|
|
|
|
// DstReg is known to be a register in the RHS interval. If the src is
|
|
// from the LHS interval, we can use its value #.
|
|
if (!CP.isCoalescable(VNI->getCopy()))
|
|
continue;
|
|
|
|
// Figure out the value # from the LHS.
|
|
LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
|
|
// The copy could be to an aliased physreg.
|
|
if (!lr) continue;
|
|
RHSValsDefinedFromLHS[VNI] = lr->valno;
|
|
}
|
|
|
|
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
|
|
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
|
|
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
|
|
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
|
|
continue;
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
|
|
LHSValNoAssignments, RHSValNoAssignments);
|
|
}
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
|
|
continue;
|
|
// If this value number isn't a copy from the LHS, it's a new number.
|
|
if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
continue;
|
|
}
|
|
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
|
|
RHSValNoAssignments, LHSValNoAssignments);
|
|
}
|
|
|
|
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
|
|
// interval lists to see if these intervals are coalescable.
|
|
LiveInterval::const_iterator I = LHS.begin();
|
|
LiveInterval::const_iterator IE = LHS.end();
|
|
LiveInterval::const_iterator J = RHS.begin();
|
|
LiveInterval::const_iterator JE = RHS.end();
|
|
|
|
// Skip ahead until the first place of potential sharing.
|
|
if (I != IE && J != JE) {
|
|
if (I->start < J->start) {
|
|
I = std::upper_bound(I, IE, J->start);
|
|
if (I != LHS.begin()) --I;
|
|
} else if (J->start < I->start) {
|
|
J = std::upper_bound(J, JE, I->start);
|
|
if (J != RHS.begin()) --J;
|
|
}
|
|
}
|
|
|
|
while (I != IE && J != JE) {
|
|
// Determine if these two live ranges overlap.
|
|
bool Overlaps;
|
|
if (I->start < J->start) {
|
|
Overlaps = I->end > J->start;
|
|
} else {
|
|
Overlaps = J->end > I->start;
|
|
}
|
|
|
|
// If so, check value # info to determine if they are really different.
|
|
if (Overlaps) {
|
|
// If the live range overlap will map to the same value number in the
|
|
// result liverange, we can still coalesce them. If not, we can't.
|
|
if (LHSValNoAssignments[I->valno->id] !=
|
|
RHSValNoAssignments[J->valno->id])
|
|
return false;
|
|
// If it's re-defined by an early clobber somewhere in the live range,
|
|
// then conservatively abort coalescing.
|
|
if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
|
|
return false;
|
|
}
|
|
|
|
if (I->end < J->end)
|
|
++I;
|
|
else
|
|
++J;
|
|
}
|
|
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
|
|
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned LHSValID = LHSValNoAssignments[VNI->id];
|
|
if (VNI->hasPHIKill())
|
|
NewVNInfo[LHSValID]->setHasPHIKill(true);
|
|
}
|
|
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
|
|
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned RHSValID = RHSValNoAssignments[VNI->id];
|
|
if (VNI->hasPHIKill())
|
|
NewVNInfo[RHSValID]->setHasPHIKill(true);
|
|
}
|
|
|
|
if (LHSValNoAssignments.empty())
|
|
LHSValNoAssignments.push_back(-1);
|
|
if (RHSValNoAssignments.empty())
|
|
RHSValNoAssignments.push_back(-1);
|
|
|
|
// If we get here, we know that we can coalesce the live ranges. Ask the
|
|
// intervals to coalesce themselves now.
|
|
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
|
|
mri_);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// DepthMBBCompare - Comparison predicate that sort first based on the loop
|
|
// depth of the basic block (the unsigned), and then on the MBB number.
|
|
struct DepthMBBCompare {
|
|
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
|
|
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
|
|
// Deeper loops first
|
|
if (LHS.first != RHS.first)
|
|
return LHS.first > RHS.first;
|
|
|
|
// Prefer blocks that are more connected in the CFG. This takes care of
|
|
// the most difficult copies first while intervals are short.
|
|
unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
|
|
unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
|
|
if (cl != cr)
|
|
return cl > cr;
|
|
|
|
// As a last resort, sort by block number.
|
|
return LHS.second->getNumber() < RHS.second->getNumber();
|
|
}
|
|
};
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
|
|
std::vector<CopyRec> &TryAgain) {
|
|
DEBUG(dbgs() << MBB->getName() << ":\n");
|
|
|
|
std::vector<CopyRec> VirtCopies;
|
|
std::vector<CopyRec> PhysCopies;
|
|
std::vector<CopyRec> ImpDefCopies;
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E;) {
|
|
MachineInstr *Inst = MII++;
|
|
|
|
// If this isn't a copy nor a extract_subreg, we can't join intervals.
|
|
unsigned SrcReg, DstReg;
|
|
if (Inst->isCopy()) {
|
|
DstReg = Inst->getOperand(0).getReg();
|
|
SrcReg = Inst->getOperand(1).getReg();
|
|
} else if (Inst->isSubregToReg()) {
|
|
DstReg = Inst->getOperand(0).getReg();
|
|
SrcReg = Inst->getOperand(2).getReg();
|
|
} else
|
|
continue;
|
|
|
|
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
|
|
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
|
|
ImpDefCopies.push_back(CopyRec(Inst, 0));
|
|
else if (SrcIsPhys || DstIsPhys)
|
|
PhysCopies.push_back(CopyRec(Inst, 0));
|
|
else
|
|
VirtCopies.push_back(CopyRec(Inst, 0));
|
|
}
|
|
|
|
// Try coalescing implicit copies and insert_subreg <undef> first,
|
|
// followed by copies to / from physical registers, then finally copies
|
|
// from virtual registers to virtual registers.
|
|
for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = ImpDefCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = PhysCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = VirtCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::joinIntervals() {
|
|
DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
|
|
|
|
std::vector<CopyRec> TryAgainList;
|
|
if (loopInfo->empty()) {
|
|
// If there are no loops in the function, join intervals in function order.
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
|
I != E; ++I)
|
|
CopyCoalesceInMBB(I, TryAgainList);
|
|
} else {
|
|
// Otherwise, join intervals in inner loops before other intervals.
|
|
// Unfortunately we can't just iterate over loop hierarchy here because
|
|
// there may be more MBB's than BB's. Collect MBB's for sorting.
|
|
|
|
// Join intervals in the function prolog first. We want to join physical
|
|
// registers with virtual registers before the intervals got too long.
|
|
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
|
|
MachineBasicBlock *MBB = I;
|
|
MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
|
|
}
|
|
|
|
// Sort by loop depth.
|
|
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
|
|
|
|
// Finally, join intervals in loop nest order.
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
|
|
CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
|
|
}
|
|
|
|
// Joining intervals can allow other intervals to be joined. Iteratively join
|
|
// until we make no progress.
|
|
bool ProgressMade = true;
|
|
while (ProgressMade) {
|
|
ProgressMade = false;
|
|
|
|
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = TryAgainList[i];
|
|
if (!TheCopy.MI)
|
|
continue;
|
|
|
|
bool Again = false;
|
|
bool Success = JoinCopy(TheCopy, Again);
|
|
if (Success || !Again) {
|
|
TheCopy.MI = 0; // Mark this one as done.
|
|
ProgressMade = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return true if the two specified registers belong to different register
|
|
/// classes. The registers may be either phys or virt regs.
|
|
bool
|
|
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
|
|
unsigned RegB) const {
|
|
// Get the register classes for the first reg.
|
|
if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
|
|
"Shouldn't consider two physregs!");
|
|
return !mri_->getRegClass(RegB)->contains(RegA);
|
|
}
|
|
|
|
// Compare against the regclass for the second reg.
|
|
const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
|
|
if (TargetRegisterInfo::isVirtualRegister(RegB)) {
|
|
const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
|
|
return RegClassA != RegClassB;
|
|
}
|
|
return !RegClassA->contains(RegB);
|
|
}
|
|
|
|
/// lastRegisterUse - Returns the last (non-debug) use of the specific register
|
|
/// between cycles Start and End or NULL if there are no uses.
|
|
MachineOperand *
|
|
SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
|
|
SlotIndex End,
|
|
unsigned Reg,
|
|
SlotIndex &UseIdx) const{
|
|
UseIdx = SlotIndex();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
MachineOperand *LastUse = NULL;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
|
|
E = mri_->use_nodbg_end(); I != E; ++I) {
|
|
MachineOperand &Use = I.getOperand();
|
|
MachineInstr *UseMI = Use.getParent();
|
|
if (UseMI->isIdentityCopy())
|
|
continue;
|
|
SlotIndex Idx = li_->getInstructionIndex(UseMI);
|
|
// FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
|
|
// that compares higher than any other interval.
|
|
if (Idx >= Start && Idx < End && Idx >= UseIdx) {
|
|
LastUse = &Use;
|
|
UseIdx = Idx.getUseIndex();
|
|
}
|
|
}
|
|
return LastUse;
|
|
}
|
|
|
|
SlotIndex s = Start;
|
|
SlotIndex e = End.getPrevSlot().getBaseIndex();
|
|
while (e >= s) {
|
|
// Skip deleted instructions
|
|
MachineInstr *MI = li_->getInstructionFromIndex(e);
|
|
while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
|
|
e = e.getPrevIndex();
|
|
MI = li_->getInstructionFromIndex(e);
|
|
}
|
|
if (e < s || MI == NULL)
|
|
return NULL;
|
|
|
|
// Ignore identity copies.
|
|
if (!MI->isIdentityCopy())
|
|
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
|
|
MachineOperand &Use = MI->getOperand(i);
|
|
if (Use.isReg() && Use.isUse() && Use.getReg() &&
|
|
tri_->regsOverlap(Use.getReg(), Reg)) {
|
|
UseIdx = e.getUseIndex();
|
|
return &Use;
|
|
}
|
|
}
|
|
|
|
e = e.getPrevIndex();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::releaseMemory() {
|
|
JoinedCopies.clear();
|
|
ReMatCopies.clear();
|
|
ReMatDefs.clear();
|
|
}
|
|
|
|
bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
mri_ = &fn.getRegInfo();
|
|
tm_ = &fn.getTarget();
|
|
tri_ = tm_->getRegisterInfo();
|
|
tii_ = tm_->getInstrInfo();
|
|
li_ = &getAnalysis<LiveIntervals>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
loopInfo = &getAnalysis<MachineLoopInfo>();
|
|
|
|
DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n');
|
|
|
|
for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
|
|
E = tri_->regclass_end(); I != E; ++I)
|
|
allocatableRCRegs_.insert(std::make_pair(*I,
|
|
tri_->getAllocatableSet(fn, *I)));
|
|
|
|
// Join (coalesce) intervals if requested.
|
|
if (EnableJoining) {
|
|
joinIntervals();
|
|
DEBUG({
|
|
dbgs() << "********** INTERVALS POST JOINING **********\n";
|
|
for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
|
|
I != E; ++I){
|
|
I->second->print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
}
|
|
});
|
|
}
|
|
|
|
// Perform a final pass over the instructions and compute spill weights
|
|
// and remove identity moves.
|
|
SmallVector<unsigned, 4> DeadDefs;
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
MachineBasicBlock* mbb = mbbi;
|
|
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
|
|
mii != mie; ) {
|
|
MachineInstr *MI = mii;
|
|
if (JoinedCopies.count(MI)) {
|
|
// Delete all coalesced copies.
|
|
bool DoDelete = true;
|
|
assert(MI->isCopyLike() && "Unrecognized copy instruction");
|
|
unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
|
|
MI->getNumOperands() > 2)
|
|
// Do not delete extract_subreg, insert_subreg of physical
|
|
// registers unless the definition is dead. e.g.
|
|
// %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
|
|
// or else the scavenger may complain. LowerSubregs will
|
|
// delete them later.
|
|
DoDelete = false;
|
|
|
|
if (MI->allDefsAreDead()) {
|
|
LiveInterval &li = li_->getInterval(SrcReg);
|
|
if (!ShortenDeadCopySrcLiveRange(li, MI))
|
|
ShortenDeadCopyLiveRange(li, MI);
|
|
DoDelete = true;
|
|
}
|
|
if (!DoDelete) {
|
|
// We need the instruction to adjust liveness, so make it a KILL.
|
|
if (MI->isSubregToReg()) {
|
|
MI->RemoveOperand(3);
|
|
MI->RemoveOperand(1);
|
|
}
|
|
MI->setDesc(tii_->get(TargetOpcode::KILL));
|
|
mii = llvm::next(mii);
|
|
} else {
|
|
li_->RemoveMachineInstrFromMaps(MI);
|
|
mii = mbbi->erase(mii);
|
|
++numPeep;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Now check if this is a remat'ed def instruction which is now dead.
|
|
if (ReMatDefs.count(MI)) {
|
|
bool isDead = true;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
DeadDefs.push_back(Reg);
|
|
if (MO.isDead())
|
|
continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
|
|
!mri_->use_nodbg_empty(Reg)) {
|
|
isDead = false;
|
|
break;
|
|
}
|
|
}
|
|
if (isDead) {
|
|
while (!DeadDefs.empty()) {
|
|
unsigned DeadDef = DeadDefs.back();
|
|
DeadDefs.pop_back();
|
|
RemoveDeadDef(li_->getInterval(DeadDef), MI);
|
|
}
|
|
li_->RemoveMachineInstrFromMaps(mii);
|
|
mii = mbbi->erase(mii);
|
|
continue;
|
|
} else
|
|
DeadDefs.clear();
|
|
}
|
|
|
|
// If the move will be an identity move delete it
|
|
if (MI->isIdentityCopy()) {
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
if (li_->hasInterval(SrcReg)) {
|
|
LiveInterval &RegInt = li_->getInterval(SrcReg);
|
|
// If def of this move instruction is dead, remove its live range
|
|
// from the destination register's live interval.
|
|
if (MI->allDefsAreDead()) {
|
|
if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
|
|
ShortenDeadCopyLiveRange(RegInt, MI);
|
|
}
|
|
}
|
|
li_->RemoveMachineInstrFromMaps(MI);
|
|
mii = mbbi->erase(mii);
|
|
++numPeep;
|
|
continue;
|
|
}
|
|
|
|
++mii;
|
|
|
|
// Check for now unnecessary kill flags.
|
|
if (li_->isNotInMIMap(MI)) continue;
|
|
SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isKill()) continue;
|
|
unsigned reg = MO.getReg();
|
|
if (!reg || !li_->hasInterval(reg)) continue;
|
|
if (!li_->getInterval(reg).killedAt(DefIdx)) {
|
|
MO.setIsKill(false);
|
|
continue;
|
|
}
|
|
// When leaving a kill flag on a physreg, check if any subregs should
|
|
// remain alive.
|
|
if (!TargetRegisterInfo::isPhysicalRegister(reg))
|
|
continue;
|
|
for (const unsigned *SR = tri_->getSubRegisters(reg);
|
|
unsigned S = *SR; ++SR)
|
|
if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
|
|
MI->addRegisterDefined(S, tri_);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
|
|
li_->print(O, m);
|
|
}
|
|
|
|
RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
|
|
return new SimpleRegisterCoalescing();
|
|
}
|
|
|
|
// Make sure that anything that uses RegisterCoalescer pulls in this file...
|
|
DEFINING_FILE_FOR(SimpleRegisterCoalescing)
|