1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/include/llvm/Support/YAMLTraits.h
Jonas Devlieghere ba9adaa9dd [YAML I/O] Fix bug in emission of empty sequence
Don't emit an output dash for an empty sequence. Take emitting a vector
of strings for example:

  std::vector<std::string> Strings = {"foo", "bar"};
  LLVM_YAML_IS_SEQUENCE_VECTOR(std::string)
  yout << Strings;

This emits the following YAML document.

  ---
  - foo
  - bar
  ...

When the vector is empty, this generates the following result:

  ---
  - []
  ...

Although this is valid YAML, it does not match what we meant to emit.
The result is a one-element sequence consisting of an empty list.
Indeed, if we were to try to read this again we get an error:

  YAML:2:4: error: not a mapping
  - []

The problem is the output dash before the empty list. The correct output
would be:

  ---
  []
  ...

This patch fixes that by not emitting the output dash for an empty
sequence.

Differential revision: https://reviews.llvm.org/D95280
2021-01-25 13:35:36 -08:00

2069 lines
69 KiB
C++

//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_YAMLTRAITS_H
#define LLVM_SUPPORT_YAMLTRAITS_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <new>
#include <string>
#include <system_error>
#include <type_traits>
#include <vector>
namespace llvm {
namespace yaml {
enum class NodeKind : uint8_t {
Scalar,
Map,
Sequence,
};
struct EmptyContext {};
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML mapping. For example:
///
/// struct MappingTraits<MyStruct> {
/// static void mapping(IO &io, MyStruct &s) {
/// io.mapRequired("name", s.name);
/// io.mapRequired("size", s.size);
/// io.mapOptional("age", s.age);
/// }
/// };
template<class T>
struct MappingTraits {
// Must provide:
// static void mapping(IO &io, T &fields);
// Optionally may provide:
// static std::string validate(IO &io, T &fields);
//
// The optional flow flag will cause generated YAML to use a flow mapping
// (e.g. { a: 0, b: 1 }):
// static const bool flow = true;
};
/// This class is similar to MappingTraits<T> but allows you to pass in
/// additional context for each map operation. For example:
///
/// struct MappingContextTraits<MyStruct, MyContext> {
/// static void mapping(IO &io, MyStruct &s, MyContext &c) {
/// io.mapRequired("name", s.name);
/// io.mapRequired("size", s.size);
/// io.mapOptional("age", s.age);
/// ++c.TimesMapped;
/// }
/// };
template <class T, class Context> struct MappingContextTraits {
// Must provide:
// static void mapping(IO &io, T &fields, Context &Ctx);
// Optionally may provide:
// static std::string validate(IO &io, T &fields, Context &Ctx);
//
// The optional flow flag will cause generated YAML to use a flow mapping
// (e.g. { a: 0, b: 1 }):
// static const bool flow = true;
};
/// This class should be specialized by any integral type that converts
/// to/from a YAML scalar where there is a one-to-one mapping between
/// in-memory values and a string in YAML. For example:
///
/// struct ScalarEnumerationTraits<Colors> {
/// static void enumeration(IO &io, Colors &value) {
/// io.enumCase(value, "red", cRed);
/// io.enumCase(value, "blue", cBlue);
/// io.enumCase(value, "green", cGreen);
/// }
/// };
template <typename T, typename Enable = void> struct ScalarEnumerationTraits {
// Must provide:
// static void enumeration(IO &io, T &value);
};
/// This class should be specialized by any integer type that is a union
/// of bit values and the YAML representation is a flow sequence of
/// strings. For example:
///
/// struct ScalarBitSetTraits<MyFlags> {
/// static void bitset(IO &io, MyFlags &value) {
/// io.bitSetCase(value, "big", flagBig);
/// io.bitSetCase(value, "flat", flagFlat);
/// io.bitSetCase(value, "round", flagRound);
/// }
/// };
template <typename T, typename Enable = void> struct ScalarBitSetTraits {
// Must provide:
// static void bitset(IO &io, T &value);
};
/// Describe which type of quotes should be used when quoting is necessary.
/// Some non-printable characters need to be double-quoted, while some others
/// are fine with simple-quoting, and some don't need any quoting.
enum class QuotingType { None, Single, Double };
/// This class should be specialized by type that requires custom conversion
/// to/from a yaml scalar. For example:
///
/// template<>
/// struct ScalarTraits<MyType> {
/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
/// // stream out custom formatting
/// out << llvm::format("%x", val);
/// }
/// static StringRef input(StringRef scalar, void*, MyType &value) {
/// // parse scalar and set `value`
/// // return empty string on success, or error string
/// return StringRef();
/// }
/// static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
/// };
template <typename T, typename Enable = void> struct ScalarTraits {
// Must provide:
//
// Function to write the value as a string:
// static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
//
// Function to convert a string to a value. Returns the empty
// StringRef on success or an error string if string is malformed:
// static StringRef input(StringRef scalar, void *ctxt, T &value);
//
// Function to determine if the value should be quoted.
// static QuotingType mustQuote(StringRef);
};
/// This class should be specialized by type that requires custom conversion
/// to/from a YAML literal block scalar. For example:
///
/// template <>
/// struct BlockScalarTraits<MyType> {
/// static void output(const MyType &Value, void*, llvm::raw_ostream &Out)
/// {
/// // stream out custom formatting
/// Out << Value;
/// }
/// static StringRef input(StringRef Scalar, void*, MyType &Value) {
/// // parse scalar and set `value`
/// // return empty string on success, or error string
/// return StringRef();
/// }
/// };
template <typename T>
struct BlockScalarTraits {
// Must provide:
//
// Function to write the value as a string:
// static void output(const T &Value, void *ctx, llvm::raw_ostream &Out);
//
// Function to convert a string to a value. Returns the empty
// StringRef on success or an error string if string is malformed:
// static StringRef input(StringRef Scalar, void *ctxt, T &Value);
//
// Optional:
// static StringRef inputTag(T &Val, std::string Tag)
// static void outputTag(const T &Val, raw_ostream &Out)
};
/// This class should be specialized by type that requires custom conversion
/// to/from a YAML scalar with optional tags. For example:
///
/// template <>
/// struct TaggedScalarTraits<MyType> {
/// static void output(const MyType &Value, void*, llvm::raw_ostream
/// &ScalarOut, llvm::raw_ostream &TagOut)
/// {
/// // stream out custom formatting including optional Tag
/// Out << Value;
/// }
/// static StringRef input(StringRef Scalar, StringRef Tag, void*, MyType
/// &Value) {
/// // parse scalar and set `value`
/// // return empty string on success, or error string
/// return StringRef();
/// }
/// static QuotingType mustQuote(const MyType &Value, StringRef) {
/// return QuotingType::Single;
/// }
/// };
template <typename T> struct TaggedScalarTraits {
// Must provide:
//
// Function to write the value and tag as strings:
// static void output(const T &Value, void *ctx, llvm::raw_ostream &ScalarOut,
// llvm::raw_ostream &TagOut);
//
// Function to convert a string to a value. Returns the empty
// StringRef on success or an error string if string is malformed:
// static StringRef input(StringRef Scalar, StringRef Tag, void *ctxt, T
// &Value);
//
// Function to determine if the value should be quoted.
// static QuotingType mustQuote(const T &Value, StringRef Scalar);
};
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML sequence. For example:
///
/// template<>
/// struct SequenceTraits<MyContainer> {
/// static size_t size(IO &io, MyContainer &seq) {
/// return seq.size();
/// }
/// static MyType& element(IO &, MyContainer &seq, size_t index) {
/// if ( index >= seq.size() )
/// seq.resize(index+1);
/// return seq[index];
/// }
/// };
template<typename T, typename EnableIf = void>
struct SequenceTraits {
// Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
//
// The following is option and will cause generated YAML to use
// a flow sequence (e.g. [a,b,c]).
// static const bool flow = true;
};
/// This class should be specialized by any type for which vectors of that
/// type need to be converted to/from a YAML sequence.
template<typename T, typename EnableIf = void>
struct SequenceElementTraits {
// Must provide:
// static const bool flow;
};
/// This class should be specialized by any type that needs to be converted
/// to/from a list of YAML documents.
template<typename T>
struct DocumentListTraits {
// Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
};
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML mapping in the case where the names of the keys are not known
/// in advance, e.g. a string map.
template <typename T>
struct CustomMappingTraits {
// static void inputOne(IO &io, StringRef key, T &elem);
// static void output(IO &io, T &elem);
};
/// This class should be specialized by any type that can be represented as
/// a scalar, map, or sequence, decided dynamically. For example:
///
/// typedef std::unique_ptr<MyBase> MyPoly;
///
/// template<>
/// struct PolymorphicTraits<MyPoly> {
/// static NodeKind getKind(const MyPoly &poly) {
/// return poly->getKind();
/// }
/// static MyScalar& getAsScalar(MyPoly &poly) {
/// if (!poly || !isa<MyScalar>(poly))
/// poly.reset(new MyScalar());
/// return *cast<MyScalar>(poly.get());
/// }
/// // ...
/// };
template <typename T> struct PolymorphicTraits {
// Must provide:
// static NodeKind getKind(const T &poly);
// static scalar_type &getAsScalar(T &poly);
// static map_type &getAsMap(T &poly);
// static sequence_type &getAsSequence(T &poly);
};
// Only used for better diagnostics of missing traits
template <typename T>
struct MissingTrait;
// Test if ScalarEnumerationTraits<T> is defined on type T.
template <class T>
struct has_ScalarEnumerationTraits
{
using Signature_enumeration = void (*)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_enumeration, &U::enumeration>*);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<ScalarEnumerationTraits<T>>(nullptr)) == 1);
};
// Test if ScalarBitSetTraits<T> is defined on type T.
template <class T>
struct has_ScalarBitSetTraits
{
using Signature_bitset = void (*)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_bitset, &U::bitset>*);
template <typename U>
static double test(...);
static bool const value = (sizeof(test<ScalarBitSetTraits<T>>(nullptr)) == 1);
};
// Test if ScalarTraits<T> is defined on type T.
template <class T>
struct has_ScalarTraits
{
using Signature_input = StringRef (*)(StringRef, void*, T&);
using Signature_output = void (*)(const T&, void*, raw_ostream&);
using Signature_mustQuote = QuotingType (*)(StringRef);
template <typename U>
static char test(SameType<Signature_input, &U::input> *,
SameType<Signature_output, &U::output> *,
SameType<Signature_mustQuote, &U::mustQuote> *);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
};
// Test if BlockScalarTraits<T> is defined on type T.
template <class T>
struct has_BlockScalarTraits
{
using Signature_input = StringRef (*)(StringRef, void *, T &);
using Signature_output = void (*)(const T &, void *, raw_ostream &);
template <typename U>
static char test(SameType<Signature_input, &U::input> *,
SameType<Signature_output, &U::output> *);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<BlockScalarTraits<T>>(nullptr, nullptr)) == 1);
};
// Test if TaggedScalarTraits<T> is defined on type T.
template <class T> struct has_TaggedScalarTraits {
using Signature_input = StringRef (*)(StringRef, StringRef, void *, T &);
using Signature_output = void (*)(const T &, void *, raw_ostream &,
raw_ostream &);
using Signature_mustQuote = QuotingType (*)(const T &, StringRef);
template <typename U>
static char test(SameType<Signature_input, &U::input> *,
SameType<Signature_output, &U::output> *,
SameType<Signature_mustQuote, &U::mustQuote> *);
template <typename U> static double test(...);
static bool const value =
(sizeof(test<TaggedScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
};
// Test if MappingContextTraits<T> is defined on type T.
template <class T, class Context> struct has_MappingTraits {
using Signature_mapping = void (*)(class IO &, T &, Context &);
template <typename U>
static char test(SameType<Signature_mapping, &U::mapping>*);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
};
// Test if MappingTraits<T> is defined on type T.
template <class T> struct has_MappingTraits<T, EmptyContext> {
using Signature_mapping = void (*)(class IO &, T &);
template <typename U>
static char test(SameType<Signature_mapping, &U::mapping> *);
template <typename U> static double test(...);
static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
};
// Test if MappingContextTraits<T>::validate() is defined on type T.
template <class T, class Context> struct has_MappingValidateTraits {
using Signature_validate = std::string (*)(class IO &, T &, Context &);
template <typename U>
static char test(SameType<Signature_validate, &U::validate>*);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
};
// Test if MappingTraits<T>::validate() is defined on type T.
template <class T> struct has_MappingValidateTraits<T, EmptyContext> {
using Signature_validate = std::string (*)(class IO &, T &);
template <typename U>
static char test(SameType<Signature_validate, &U::validate> *);
template <typename U> static double test(...);
static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
};
// Test if SequenceTraits<T> is defined on type T.
template <class T>
struct has_SequenceMethodTraits
{
using Signature_size = size_t (*)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_size, &U::size>*);
template <typename U>
static double test(...);
static bool const value = (sizeof(test<SequenceTraits<T>>(nullptr)) == 1);
};
// Test if CustomMappingTraits<T> is defined on type T.
template <class T>
struct has_CustomMappingTraits
{
using Signature_input = void (*)(IO &io, StringRef key, T &v);
template <typename U>
static char test(SameType<Signature_input, &U::inputOne>*);
template <typename U>
static double test(...);
static bool const value =
(sizeof(test<CustomMappingTraits<T>>(nullptr)) == 1);
};
// has_FlowTraits<int> will cause an error with some compilers because
// it subclasses int. Using this wrapper only instantiates the
// real has_FlowTraits only if the template type is a class.
template <typename T, bool Enabled = std::is_class<T>::value>
class has_FlowTraits
{
public:
static const bool value = false;
};
// Some older gcc compilers don't support straight forward tests
// for members, so test for ambiguity cause by the base and derived
// classes both defining the member.
template <class T>
struct has_FlowTraits<T, true>
{
struct Fallback { bool flow; };
struct Derived : T, Fallback { };
template<typename C>
static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
template<typename C>
static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(nullptr)) == 2;
};
// Test if SequenceTraits<T> is defined on type T
template<typename T>
struct has_SequenceTraits : public std::integral_constant<bool,
has_SequenceMethodTraits<T>::value > { };
// Test if DocumentListTraits<T> is defined on type T
template <class T>
struct has_DocumentListTraits
{
using Signature_size = size_t (*)(class IO &, T &);
template <typename U>
static char test(SameType<Signature_size, &U::size>*);
template <typename U>
static double test(...);
static bool const value = (sizeof(test<DocumentListTraits<T>>(nullptr))==1);
};
template <class T> struct has_PolymorphicTraits {
using Signature_getKind = NodeKind (*)(const T &);
template <typename U>
static char test(SameType<Signature_getKind, &U::getKind> *);
template <typename U> static double test(...);
static bool const value = (sizeof(test<PolymorphicTraits<T>>(nullptr)) == 1);
};
inline bool isNumeric(StringRef S) {
const static auto skipDigits = [](StringRef Input) {
return Input.drop_front(
std::min(Input.find_first_not_of("0123456789"), Input.size()));
};
// Make S.front() and S.drop_front().front() (if S.front() is [+-]) calls
// safe.
if (S.empty() || S.equals("+") || S.equals("-"))
return false;
if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN"))
return true;
// Infinity and decimal numbers can be prefixed with sign.
StringRef Tail = (S.front() == '-' || S.front() == '+') ? S.drop_front() : S;
// Check for infinity first, because checking for hex and oct numbers is more
// expensive.
if (Tail.equals(".inf") || Tail.equals(".Inf") || Tail.equals(".INF"))
return true;
// Section 10.3.2 Tag Resolution
// YAML 1.2 Specification prohibits Base 8 and Base 16 numbers prefixed with
// [-+], so S should be used instead of Tail.
if (S.startswith("0o"))
return S.size() > 2 &&
S.drop_front(2).find_first_not_of("01234567") == StringRef::npos;
if (S.startswith("0x"))
return S.size() > 2 && S.drop_front(2).find_first_not_of(
"0123456789abcdefABCDEF") == StringRef::npos;
// Parse float: [-+]? (\. [0-9]+ | [0-9]+ (\. [0-9]* )?) ([eE] [-+]? [0-9]+)?
S = Tail;
// Handle cases when the number starts with '.' and hence needs at least one
// digit after dot (as opposed by number which has digits before the dot), but
// doesn't have one.
if (S.startswith(".") &&
(S.equals(".") ||
(S.size() > 1 && std::strchr("0123456789", S[1]) == nullptr)))
return false;
if (S.startswith("E") || S.startswith("e"))
return false;
enum ParseState {
Default,
FoundDot,
FoundExponent,
};
ParseState State = Default;
S = skipDigits(S);
// Accept decimal integer.
if (S.empty())
return true;
if (S.front() == '.') {
State = FoundDot;
S = S.drop_front();
} else if (S.front() == 'e' || S.front() == 'E') {
State = FoundExponent;
S = S.drop_front();
} else {
return false;
}
if (State == FoundDot) {
S = skipDigits(S);
if (S.empty())
return true;
if (S.front() == 'e' || S.front() == 'E') {
State = FoundExponent;
S = S.drop_front();
} else {
return false;
}
}
assert(State == FoundExponent && "Should have found exponent at this point.");
if (S.empty())
return false;
if (S.front() == '+' || S.front() == '-') {
S = S.drop_front();
if (S.empty())
return false;
}
return skipDigits(S).empty();
}
inline bool isNull(StringRef S) {
return S.equals("null") || S.equals("Null") || S.equals("NULL") ||
S.equals("~");
}
inline bool isBool(StringRef S) {
// FIXME: using parseBool is causing multiple tests to fail.
return S.equals("true") || S.equals("True") || S.equals("TRUE") ||
S.equals("false") || S.equals("False") || S.equals("FALSE");
}
// 5.1. Character Set
// The allowed character range explicitly excludes the C0 control block #x0-#x1F
// (except for TAB #x9, LF #xA, and CR #xD which are allowed), DEL #x7F, the C1
// control block #x80-#x9F (except for NEL #x85 which is allowed), the surrogate
// block #xD800-#xDFFF, #xFFFE, and #xFFFF.
inline QuotingType needsQuotes(StringRef S) {
if (S.empty())
return QuotingType::Single;
QuotingType MaxQuotingNeeded = QuotingType::None;
if (isSpace(static_cast<unsigned char>(S.front())) ||
isSpace(static_cast<unsigned char>(S.back())))
MaxQuotingNeeded = QuotingType::Single;
if (isNull(S))
MaxQuotingNeeded = QuotingType::Single;
if (isBool(S))
MaxQuotingNeeded = QuotingType::Single;
if (isNumeric(S))
MaxQuotingNeeded = QuotingType::Single;
// 7.3.3 Plain Style
// Plain scalars must not begin with most indicators, as this would cause
// ambiguity with other YAML constructs.
static constexpr char Indicators[] = R"(-?:\,[]{}#&*!|>'"%@`)";
if (S.find_first_of(Indicators) == 0)
MaxQuotingNeeded = QuotingType::Single;
for (unsigned char C : S) {
// Alphanum is safe.
if (isAlnum(C))
continue;
switch (C) {
// Safe scalar characters.
case '_':
case '-':
case '^':
case '.':
case ',':
case ' ':
// TAB (0x9) is allowed in unquoted strings.
case 0x9:
continue;
// LF(0xA) and CR(0xD) may delimit values and so require at least single
// quotes. LLVM YAML parser cannot handle single quoted multiline so use
// double quoting to produce valid YAML.
case 0xA:
case 0xD:
return QuotingType::Double;
// DEL (0x7F) are excluded from the allowed character range.
case 0x7F:
return QuotingType::Double;
// Forward slash is allowed to be unquoted, but we quote it anyway. We have
// many tests that use FileCheck against YAML output, and this output often
// contains paths. If we quote backslashes but not forward slashes then
// paths will come out either quoted or unquoted depending on which platform
// the test is run on, making FileCheck comparisons difficult.
case '/':
default: {
// C0 control block (0x0 - 0x1F) is excluded from the allowed character
// range.
if (C <= 0x1F)
return QuotingType::Double;
// Always double quote UTF-8.
if ((C & 0x80) != 0)
return QuotingType::Double;
// The character is not safe, at least simple quoting needed.
MaxQuotingNeeded = QuotingType::Single;
}
}
}
return MaxQuotingNeeded;
}
template <typename T, typename Context>
struct missingTraits
: public std::integral_constant<bool,
!has_ScalarEnumerationTraits<T>::value &&
!has_ScalarBitSetTraits<T>::value &&
!has_ScalarTraits<T>::value &&
!has_BlockScalarTraits<T>::value &&
!has_TaggedScalarTraits<T>::value &&
!has_MappingTraits<T, Context>::value &&
!has_SequenceTraits<T>::value &&
!has_CustomMappingTraits<T>::value &&
!has_DocumentListTraits<T>::value &&
!has_PolymorphicTraits<T>::value> {};
template <typename T, typename Context>
struct validatedMappingTraits
: public std::integral_constant<
bool, has_MappingTraits<T, Context>::value &&
has_MappingValidateTraits<T, Context>::value> {};
template <typename T, typename Context>
struct unvalidatedMappingTraits
: public std::integral_constant<
bool, has_MappingTraits<T, Context>::value &&
!has_MappingValidateTraits<T, Context>::value> {};
// Base class for Input and Output.
class IO {
public:
IO(void *Ctxt = nullptr);
virtual ~IO();
virtual bool outputting() const = 0;
virtual unsigned beginSequence() = 0;
virtual bool preflightElement(unsigned, void *&) = 0;
virtual void postflightElement(void*) = 0;
virtual void endSequence() = 0;
virtual bool canElideEmptySequence() = 0;
virtual unsigned beginFlowSequence() = 0;
virtual bool preflightFlowElement(unsigned, void *&) = 0;
virtual void postflightFlowElement(void*) = 0;
virtual void endFlowSequence() = 0;
virtual bool mapTag(StringRef Tag, bool Default=false) = 0;
virtual void beginMapping() = 0;
virtual void endMapping() = 0;
virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
virtual void postflightKey(void*) = 0;
virtual std::vector<StringRef> keys() = 0;
virtual void beginFlowMapping() = 0;
virtual void endFlowMapping() = 0;
virtual void beginEnumScalar() = 0;
virtual bool matchEnumScalar(const char*, bool) = 0;
virtual bool matchEnumFallback() = 0;
virtual void endEnumScalar() = 0;
virtual bool beginBitSetScalar(bool &) = 0;
virtual bool bitSetMatch(const char*, bool) = 0;
virtual void endBitSetScalar() = 0;
virtual void scalarString(StringRef &, QuotingType) = 0;
virtual void blockScalarString(StringRef &) = 0;
virtual void scalarTag(std::string &) = 0;
virtual NodeKind getNodeKind() = 0;
virtual void setError(const Twine &) = 0;
virtual void setAllowUnknownKeys(bool Allow);
template <typename T>
void enumCase(T &Val, const char* Str, const T ConstVal) {
if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) {
Val = ConstVal;
}
}
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T>
void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) {
Val = ConstVal;
}
}
template <typename FBT, typename T>
void enumFallback(T &Val) {
if (matchEnumFallback()) {
EmptyContext Context;
// FIXME: Force integral conversion to allow strong typedefs to convert.
FBT Res = static_cast<typename FBT::BaseType>(Val);
yamlize(*this, Res, true, Context);
Val = static_cast<T>(static_cast<typename FBT::BaseType>(Res));
}
}
template <typename T>
void bitSetCase(T &Val, const char* Str, const T ConstVal) {
if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
Val = static_cast<T>(Val | ConstVal);
}
}
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T>
void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
Val = static_cast<T>(Val | ConstVal);
}
}
template <typename T>
void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) {
if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
Val = Val | ConstVal;
}
template <typename T>
void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal,
uint32_t Mask) {
if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
Val = Val | ConstVal;
}
void *getContext() const;
void setContext(void *);
template <typename T> void mapRequired(const char *Key, T &Val) {
EmptyContext Ctx;
this->processKey(Key, Val, true, Ctx);
}
template <typename T, typename Context>
void mapRequired(const char *Key, T &Val, Context &Ctx) {
this->processKey(Key, Val, true, Ctx);
}
template <typename T> void mapOptional(const char *Key, T &Val) {
EmptyContext Ctx;
mapOptionalWithContext(Key, Val, Ctx);
}
template <typename T, typename DefaultT>
void mapOptional(const char *Key, T &Val, const DefaultT &Default) {
EmptyContext Ctx;
mapOptionalWithContext(Key, Val, Default, Ctx);
}
template <typename T, typename Context>
std::enable_if_t<has_SequenceTraits<T>::value, void>
mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
// omit key/value instead of outputting empty sequence
if (this->canElideEmptySequence() && !(Val.begin() != Val.end()))
return;
this->processKey(Key, Val, false, Ctx);
}
template <typename T, typename Context>
void mapOptionalWithContext(const char *Key, Optional<T> &Val, Context &Ctx) {
this->processKeyWithDefault(Key, Val, Optional<T>(), /*Required=*/false,
Ctx);
}
template <typename T, typename Context>
std::enable_if_t<!has_SequenceTraits<T>::value, void>
mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
this->processKey(Key, Val, false, Ctx);
}
template <typename T, typename Context, typename DefaultT>
void mapOptionalWithContext(const char *Key, T &Val, const DefaultT &Default,
Context &Ctx) {
static_assert(std::is_convertible<DefaultT, T>::value,
"Default type must be implicitly convertible to value type!");
this->processKeyWithDefault(Key, Val, static_cast<const T &>(Default),
false, Ctx);
}
private:
template <typename T, typename Context>
void processKeyWithDefault(const char *Key, Optional<T> &Val,
const Optional<T> &DefaultValue, bool Required,
Context &Ctx);
template <typename T, typename Context>
void processKeyWithDefault(const char *Key, T &Val, const T &DefaultValue,
bool Required, Context &Ctx) {
void *SaveInfo;
bool UseDefault;
const bool sameAsDefault = outputting() && Val == DefaultValue;
if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
SaveInfo) ) {
yamlize(*this, Val, Required, Ctx);
this->postflightKey(SaveInfo);
}
else {
if ( UseDefault )
Val = DefaultValue;
}
}
template <typename T, typename Context>
void processKey(const char *Key, T &Val, bool Required, Context &Ctx) {
void *SaveInfo;
bool UseDefault;
if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
yamlize(*this, Val, Required, Ctx);
this->postflightKey(SaveInfo);
}
}
private:
void *Ctxt;
};
namespace detail {
template <typename T, typename Context>
void doMapping(IO &io, T &Val, Context &Ctx) {
MappingContextTraits<T, Context>::mapping(io, Val, Ctx);
}
template <typename T> void doMapping(IO &io, T &Val, EmptyContext &Ctx) {
MappingTraits<T>::mapping(io, Val);
}
} // end namespace detail
template <typename T>
std::enable_if_t<has_ScalarEnumerationTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
io.beginEnumScalar();
ScalarEnumerationTraits<T>::enumeration(io, Val);
io.endEnumScalar();
}
template <typename T>
std::enable_if_t<has_ScalarBitSetTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
bool DoClear;
if ( io.beginBitSetScalar(DoClear) ) {
if ( DoClear )
Val = T();
ScalarBitSetTraits<T>::bitset(io, Val);
io.endBitSetScalar();
}
}
template <typename T>
std::enable_if_t<has_ScalarTraits<T>::value, void> yamlize(IO &io, T &Val, bool,
EmptyContext &Ctx) {
if ( io.outputting() ) {
std::string Storage;
raw_string_ostream Buffer(Storage);
ScalarTraits<T>::output(Val, io.getContext(), Buffer);
StringRef Str = Buffer.str();
io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
}
else {
StringRef Str;
io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
if ( !Result.empty() ) {
io.setError(Twine(Result));
}
}
}
template <typename T>
std::enable_if_t<has_BlockScalarTraits<T>::value, void>
yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) {
if (YamlIO.outputting()) {
std::string Storage;
raw_string_ostream Buffer(Storage);
BlockScalarTraits<T>::output(Val, YamlIO.getContext(), Buffer);
StringRef Str = Buffer.str();
YamlIO.blockScalarString(Str);
} else {
StringRef Str;
YamlIO.blockScalarString(Str);
StringRef Result =
BlockScalarTraits<T>::input(Str, YamlIO.getContext(), Val);
if (!Result.empty())
YamlIO.setError(Twine(Result));
}
}
template <typename T>
std::enable_if_t<has_TaggedScalarTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
if (io.outputting()) {
std::string ScalarStorage, TagStorage;
raw_string_ostream ScalarBuffer(ScalarStorage), TagBuffer(TagStorage);
TaggedScalarTraits<T>::output(Val, io.getContext(), ScalarBuffer,
TagBuffer);
io.scalarTag(TagBuffer.str());
StringRef ScalarStr = ScalarBuffer.str();
io.scalarString(ScalarStr,
TaggedScalarTraits<T>::mustQuote(Val, ScalarStr));
} else {
std::string Tag;
io.scalarTag(Tag);
StringRef Str;
io.scalarString(Str, QuotingType::None);
StringRef Result =
TaggedScalarTraits<T>::input(Str, Tag, io.getContext(), Val);
if (!Result.empty()) {
io.setError(Twine(Result));
}
}
}
template <typename T, typename Context>
std::enable_if_t<validatedMappingTraits<T, Context>::value, void>
yamlize(IO &io, T &Val, bool, Context &Ctx) {
if (has_FlowTraits<MappingTraits<T>>::value)
io.beginFlowMapping();
else
io.beginMapping();
if (io.outputting()) {
std::string Err = MappingTraits<T>::validate(io, Val);
if (!Err.empty()) {
errs() << Err << "\n";
assert(Err.empty() && "invalid struct trying to be written as yaml");
}
}
detail::doMapping(io, Val, Ctx);
if (!io.outputting()) {
std::string Err = MappingTraits<T>::validate(io, Val);
if (!Err.empty())
io.setError(Err);
}
if (has_FlowTraits<MappingTraits<T>>::value)
io.endFlowMapping();
else
io.endMapping();
}
template <typename T, typename Context>
std::enable_if_t<unvalidatedMappingTraits<T, Context>::value, void>
yamlize(IO &io, T &Val, bool, Context &Ctx) {
if (has_FlowTraits<MappingTraits<T>>::value) {
io.beginFlowMapping();
detail::doMapping(io, Val, Ctx);
io.endFlowMapping();
} else {
io.beginMapping();
detail::doMapping(io, Val, Ctx);
io.endMapping();
}
}
template <typename T>
std::enable_if_t<has_CustomMappingTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
if ( io.outputting() ) {
io.beginMapping();
CustomMappingTraits<T>::output(io, Val);
io.endMapping();
} else {
io.beginMapping();
for (StringRef key : io.keys())
CustomMappingTraits<T>::inputOne(io, key, Val);
io.endMapping();
}
}
template <typename T>
std::enable_if_t<has_PolymorphicTraits<T>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val)
: io.getNodeKind()) {
case NodeKind::Scalar:
return yamlize(io, PolymorphicTraits<T>::getAsScalar(Val), true, Ctx);
case NodeKind::Map:
return yamlize(io, PolymorphicTraits<T>::getAsMap(Val), true, Ctx);
case NodeKind::Sequence:
return yamlize(io, PolymorphicTraits<T>::getAsSequence(Val), true, Ctx);
}
}
template <typename T>
std::enable_if_t<missingTraits<T, EmptyContext>::value, void>
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
}
template <typename T, typename Context>
std::enable_if_t<has_SequenceTraits<T>::value, void>
yamlize(IO &io, T &Seq, bool, Context &Ctx) {
if ( has_FlowTraits< SequenceTraits<T>>::value ) {
unsigned incnt = io.beginFlowSequence();
unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
for(unsigned i=0; i < count; ++i) {
void *SaveInfo;
if ( io.preflightFlowElement(i, SaveInfo) ) {
yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
io.postflightFlowElement(SaveInfo);
}
}
io.endFlowSequence();
}
else {
unsigned incnt = io.beginSequence();
unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
for(unsigned i=0; i < count; ++i) {
void *SaveInfo;
if ( io.preflightElement(i, SaveInfo) ) {
yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
io.postflightElement(SaveInfo);
}
}
io.endSequence();
}
}
template<>
struct ScalarTraits<bool> {
static void output(const bool &, void* , raw_ostream &);
static StringRef input(StringRef, void *, bool &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<StringRef> {
static void output(const StringRef &, void *, raw_ostream &);
static StringRef input(StringRef, void *, StringRef &);
static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
};
template<>
struct ScalarTraits<std::string> {
static void output(const std::string &, void *, raw_ostream &);
static StringRef input(StringRef, void *, std::string &);
static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
};
template<>
struct ScalarTraits<uint8_t> {
static void output(const uint8_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, uint8_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<uint16_t> {
static void output(const uint16_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, uint16_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<uint32_t> {
static void output(const uint32_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, uint32_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<uint64_t> {
static void output(const uint64_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, uint64_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<int8_t> {
static void output(const int8_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, int8_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<int16_t> {
static void output(const int16_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, int16_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<int32_t> {
static void output(const int32_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, int32_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<int64_t> {
static void output(const int64_t &, void *, raw_ostream &);
static StringRef input(StringRef, void *, int64_t &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<float> {
static void output(const float &, void *, raw_ostream &);
static StringRef input(StringRef, void *, float &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<double> {
static void output(const double &, void *, raw_ostream &);
static StringRef input(StringRef, void *, double &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
// For endian types, we use existing scalar Traits class for the underlying
// type. This way endian aware types are supported whenever the traits are
// defined for the underlying type.
template <typename value_type, support::endianness endian, size_t alignment>
struct ScalarTraits<support::detail::packed_endian_specific_integral<
value_type, endian, alignment>,
std::enable_if_t<has_ScalarTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
static void output(const endian_type &E, void *Ctx, raw_ostream &Stream) {
ScalarTraits<value_type>::output(static_cast<value_type>(E), Ctx, Stream);
}
static StringRef input(StringRef Str, void *Ctx, endian_type &E) {
value_type V;
auto R = ScalarTraits<value_type>::input(Str, Ctx, V);
E = static_cast<endian_type>(V);
return R;
}
static QuotingType mustQuote(StringRef Str) {
return ScalarTraits<value_type>::mustQuote(Str);
}
};
template <typename value_type, support::endianness endian, size_t alignment>
struct ScalarEnumerationTraits<
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>,
std::enable_if_t<has_ScalarEnumerationTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
static void enumeration(IO &io, endian_type &E) {
value_type V = E;
ScalarEnumerationTraits<value_type>::enumeration(io, V);
E = V;
}
};
template <typename value_type, support::endianness endian, size_t alignment>
struct ScalarBitSetTraits<
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>,
std::enable_if_t<has_ScalarBitSetTraits<value_type>::value>> {
using endian_type =
support::detail::packed_endian_specific_integral<value_type, endian,
alignment>;
static void bitset(IO &io, endian_type &E) {
value_type V = E;
ScalarBitSetTraits<value_type>::bitset(io, V);
E = V;
}
};
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal>
struct MappingNormalization {
MappingNormalization(IO &i_o, TFinal &Obj)
: io(i_o), BufPtr(nullptr), Result(Obj) {
if ( io.outputting() ) {
BufPtr = new (&Buffer) TNorm(io, Obj);
}
else {
BufPtr = new (&Buffer) TNorm(io);
}
}
~MappingNormalization() {
if ( ! io.outputting() ) {
Result = BufPtr->denormalize(io);
}
BufPtr->~TNorm();
}
TNorm* operator->() { return BufPtr; }
private:
using Storage = AlignedCharArrayUnion<TNorm>;
Storage Buffer;
IO &io;
TNorm *BufPtr;
TFinal &Result;
};
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal>
struct MappingNormalizationHeap {
MappingNormalizationHeap(IO &i_o, TFinal &Obj, BumpPtrAllocator *allocator)
: io(i_o), Result(Obj) {
if ( io.outputting() ) {
BufPtr = new (&Buffer) TNorm(io, Obj);
}
else if (allocator) {
BufPtr = allocator->Allocate<TNorm>();
new (BufPtr) TNorm(io);
} else {
BufPtr = new TNorm(io);
}
}
~MappingNormalizationHeap() {
if ( io.outputting() ) {
BufPtr->~TNorm();
}
else {
Result = BufPtr->denormalize(io);
}
}
TNorm* operator->() { return BufPtr; }
private:
using Storage = AlignedCharArrayUnion<TNorm>;
Storage Buffer;
IO &io;
TNorm *BufPtr = nullptr;
TFinal &Result;
};
///
/// The Input class is used to parse a yaml document into in-memory structs
/// and vectors.
///
/// It works by using YAMLParser to do a syntax parse of the entire yaml
/// document, then the Input class builds a graph of HNodes which wraps
/// each yaml Node. The extra layer is buffering. The low level yaml
/// parser only lets you look at each node once. The buffering layer lets
/// you search and interate multiple times. This is necessary because
/// the mapRequired() method calls may not be in the same order
/// as the keys in the document.
///
class Input : public IO {
public:
// Construct a yaml Input object from a StringRef and optional
// user-data. The DiagHandler can be specified to provide
// alternative error reporting.
Input(StringRef InputContent,
void *Ctxt = nullptr,
SourceMgr::DiagHandlerTy DiagHandler = nullptr,
void *DiagHandlerCtxt = nullptr);
Input(MemoryBufferRef Input,
void *Ctxt = nullptr,
SourceMgr::DiagHandlerTy DiagHandler = nullptr,
void *DiagHandlerCtxt = nullptr);
~Input() override;
// Check if there was an syntax or semantic error during parsing.
std::error_code error();
private:
bool outputting() const override;
bool mapTag(StringRef, bool) override;
void beginMapping() override;
void endMapping() override;
bool preflightKey(const char *, bool, bool, bool &, void *&) override;
void postflightKey(void *) override;
std::vector<StringRef> keys() override;
void beginFlowMapping() override;
void endFlowMapping() override;
unsigned beginSequence() override;
void endSequence() override;
bool preflightElement(unsigned index, void *&) override;
void postflightElement(void *) override;
unsigned beginFlowSequence() override;
bool preflightFlowElement(unsigned , void *&) override;
void postflightFlowElement(void *) override;
void endFlowSequence() override;
void beginEnumScalar() override;
bool matchEnumScalar(const char*, bool) override;
bool matchEnumFallback() override;
void endEnumScalar() override;
bool beginBitSetScalar(bool &) override;
bool bitSetMatch(const char *, bool ) override;
void endBitSetScalar() override;
void scalarString(StringRef &, QuotingType) override;
void blockScalarString(StringRef &) override;
void scalarTag(std::string &) override;
NodeKind getNodeKind() override;
void setError(const Twine &message) override;
bool canElideEmptySequence() override;
class HNode {
virtual void anchor();
public:
HNode(Node *n) : _node(n) { }
virtual ~HNode() = default;
static bool classof(const HNode *) { return true; }
Node *_node;
};
class EmptyHNode : public HNode {
void anchor() override;
public:
EmptyHNode(Node *n) : HNode(n) { }
static bool classof(const HNode *n) { return NullNode::classof(n->_node); }
static bool classof(const EmptyHNode *) { return true; }
};
class ScalarHNode : public HNode {
void anchor() override;
public:
ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
StringRef value() const { return _value; }
static bool classof(const HNode *n) {
return ScalarNode::classof(n->_node) ||
BlockScalarNode::classof(n->_node);
}
static bool classof(const ScalarHNode *) { return true; }
protected:
StringRef _value;
};
class MapHNode : public HNode {
void anchor() override;
public:
MapHNode(Node *n) : HNode(n) { }
static bool classof(const HNode *n) {
return MappingNode::classof(n->_node);
}
static bool classof(const MapHNode *) { return true; }
using NameToNodeAndLoc =
StringMap<std::pair<std::unique_ptr<HNode>, SMRange>>;
NameToNodeAndLoc Mapping;
SmallVector<std::string, 6> ValidKeys;
};
class SequenceHNode : public HNode {
void anchor() override;
public:
SequenceHNode(Node *n) : HNode(n) { }
static bool classof(const HNode *n) {
return SequenceNode::classof(n->_node);
}
static bool classof(const SequenceHNode *) { return true; }
std::vector<std::unique_ptr<HNode>> Entries;
};
std::unique_ptr<Input::HNode> createHNodes(Node *node);
void setError(HNode *hnode, const Twine &message);
void setError(Node *node, const Twine &message);
void setError(const SMRange &Range, const Twine &message);
void reportWarning(HNode *hnode, const Twine &message);
void reportWarning(Node *hnode, const Twine &message);
void reportWarning(const SMRange &Range, const Twine &message);
public:
// These are only used by operator>>. They could be private
// if those templated things could be made friends.
bool setCurrentDocument();
bool nextDocument();
/// Returns the current node that's being parsed by the YAML Parser.
const Node *getCurrentNode() const;
void setAllowUnknownKeys(bool Allow) override;
private:
SourceMgr SrcMgr; // must be before Strm
std::unique_ptr<llvm::yaml::Stream> Strm;
std::unique_ptr<HNode> TopNode;
std::error_code EC;
BumpPtrAllocator StringAllocator;
document_iterator DocIterator;
std::vector<bool> BitValuesUsed;
HNode *CurrentNode = nullptr;
bool ScalarMatchFound = false;
bool AllowUnknownKeys = false;
};
///
/// The Output class is used to generate a yaml document from in-memory structs
/// and vectors.
///
class Output : public IO {
public:
Output(raw_ostream &, void *Ctxt = nullptr, int WrapColumn = 70);
~Output() override;
/// Set whether or not to output optional values which are equal
/// to the default value. By default, when outputting if you attempt
/// to write a value that is equal to the default, the value gets ignored.
/// Sometimes, it is useful to be able to see these in the resulting YAML
/// anyway.
void setWriteDefaultValues(bool Write) { WriteDefaultValues = Write; }
bool outputting() const override;
bool mapTag(StringRef, bool) override;
void beginMapping() override;
void endMapping() override;
bool preflightKey(const char *key, bool, bool, bool &, void *&) override;
void postflightKey(void *) override;
std::vector<StringRef> keys() override;
void beginFlowMapping() override;
void endFlowMapping() override;
unsigned beginSequence() override;
void endSequence() override;
bool preflightElement(unsigned, void *&) override;
void postflightElement(void *) override;
unsigned beginFlowSequence() override;
bool preflightFlowElement(unsigned, void *&) override;
void postflightFlowElement(void *) override;
void endFlowSequence() override;
void beginEnumScalar() override;
bool matchEnumScalar(const char*, bool) override;
bool matchEnumFallback() override;
void endEnumScalar() override;
bool beginBitSetScalar(bool &) override;
bool bitSetMatch(const char *, bool ) override;
void endBitSetScalar() override;
void scalarString(StringRef &, QuotingType) override;
void blockScalarString(StringRef &) override;
void scalarTag(std::string &) override;
NodeKind getNodeKind() override;
void setError(const Twine &message) override;
bool canElideEmptySequence() override;
// These are only used by operator<<. They could be private
// if that templated operator could be made a friend.
void beginDocuments();
bool preflightDocument(unsigned);
void postflightDocument();
void endDocuments();
private:
void output(StringRef s);
void outputUpToEndOfLine(StringRef s);
void newLineCheck(bool EmptySequence = false);
void outputNewLine();
void paddedKey(StringRef key);
void flowKey(StringRef Key);
enum InState {
inSeqFirstElement,
inSeqOtherElement,
inFlowSeqFirstElement,
inFlowSeqOtherElement,
inMapFirstKey,
inMapOtherKey,
inFlowMapFirstKey,
inFlowMapOtherKey
};
static bool inSeqAnyElement(InState State);
static bool inFlowSeqAnyElement(InState State);
static bool inMapAnyKey(InState State);
static bool inFlowMapAnyKey(InState State);
raw_ostream &Out;
int WrapColumn;
SmallVector<InState, 8> StateStack;
int Column = 0;
int ColumnAtFlowStart = 0;
int ColumnAtMapFlowStart = 0;
bool NeedBitValueComma = false;
bool NeedFlowSequenceComma = false;
bool EnumerationMatchFound = false;
bool WriteDefaultValues = false;
StringRef Padding;
StringRef PaddingBeforeContainer;
};
template <typename T, typename Context>
void IO::processKeyWithDefault(const char *Key, Optional<T> &Val,
const Optional<T> &DefaultValue, bool Required,
Context &Ctx) {
assert(DefaultValue.hasValue() == false &&
"Optional<T> shouldn't have a value!");
void *SaveInfo;
bool UseDefault = true;
const bool sameAsDefault = outputting() && !Val.hasValue();
if (!outputting() && !Val.hasValue())
Val = T();
if (Val.hasValue() &&
this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo)) {
// When reading an Optional<X> key from a YAML description, we allow the
// special "<none>" value, which can be used to specify that no value was
// requested, i.e. the DefaultValue will be assigned. The DefaultValue is
// usually None.
bool IsNone = false;
if (!outputting())
if (auto *Node = dyn_cast<ScalarNode>(((Input *)this)->getCurrentNode()))
// We use rtrim to ignore possible white spaces that might exist when a
// comment is present on the same line.
IsNone = Node->getRawValue().rtrim(' ') == "<none>";
if (IsNone)
Val = DefaultValue;
else
yamlize(*this, Val.getValue(), Required, Ctx);
this->postflightKey(SaveInfo);
} else {
if (UseDefault)
Val = DefaultValue;
}
}
/// YAML I/O does conversion based on types. But often native data types
/// are just a typedef of built in intergral types (e.g. int). But the C++
/// type matching system sees through the typedef and all the typedefed types
/// look like a built in type. This will cause the generic YAML I/O conversion
/// to be used. To provide better control over the YAML conversion, you can
/// use this macro instead of typedef. It will create a class with one field
/// and automatic conversion operators to and from the base type.
/// Based on BOOST_STRONG_TYPEDEF
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \
struct _type { \
_type() = default; \
_type(const _base v) : value(v) {} \
_type(const _type &v) = default; \
_type &operator=(const _type &rhs) = default; \
_type &operator=(const _base &rhs) { value = rhs; return *this; } \
operator const _base & () const { return value; } \
bool operator==(const _type &rhs) const { return value == rhs.value; } \
bool operator==(const _base &rhs) const { return value == rhs; } \
bool operator<(const _type &rhs) const { return value < rhs.value; } \
_base value; \
using BaseType = _base; \
};
///
/// Use these types instead of uintXX_t in any mapping to have
/// its yaml output formatted as hexadecimal.
///
LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)
LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32)
LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)
template<>
struct ScalarTraits<Hex8> {
static void output(const Hex8 &, void *, raw_ostream &);
static StringRef input(StringRef, void *, Hex8 &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<Hex16> {
static void output(const Hex16 &, void *, raw_ostream &);
static StringRef input(StringRef, void *, Hex16 &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<Hex32> {
static void output(const Hex32 &, void *, raw_ostream &);
static StringRef input(StringRef, void *, Hex32 &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template<>
struct ScalarTraits<Hex64> {
static void output(const Hex64 &, void *, raw_ostream &);
static StringRef input(StringRef, void *, Hex64 &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template <> struct ScalarTraits<VersionTuple> {
static void output(const VersionTuple &Value, void *, llvm::raw_ostream &Out);
static StringRef input(StringRef, void *, VersionTuple &);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
// Define non-member operator>> so that Input can stream in a document list.
template <typename T>
inline std::enable_if_t<has_DocumentListTraits<T>::value, Input &>
operator>>(Input &yin, T &docList) {
int i = 0;
EmptyContext Ctx;
while ( yin.setCurrentDocument() ) {
yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true, Ctx);
if ( yin.error() )
return yin;
yin.nextDocument();
++i;
}
return yin;
}
// Define non-member operator>> so that Input can stream in a map as a document.
template <typename T>
inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Input &>
operator>>(Input &yin, T &docMap) {
EmptyContext Ctx;
yin.setCurrentDocument();
yamlize(yin, docMap, true, Ctx);
return yin;
}
// Define non-member operator>> so that Input can stream in a sequence as
// a document.
template <typename T>
inline std::enable_if_t<has_SequenceTraits<T>::value, Input &>
operator>>(Input &yin, T &docSeq) {
EmptyContext Ctx;
if (yin.setCurrentDocument())
yamlize(yin, docSeq, true, Ctx);
return yin;
}
// Define non-member operator>> so that Input can stream in a block scalar.
template <typename T>
inline std::enable_if_t<has_BlockScalarTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
yamlize(In, Val, true, Ctx);
return In;
}
// Define non-member operator>> so that Input can stream in a string map.
template <typename T>
inline std::enable_if_t<has_CustomMappingTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
yamlize(In, Val, true, Ctx);
return In;
}
// Define non-member operator>> so that Input can stream in a polymorphic type.
template <typename T>
inline std::enable_if_t<has_PolymorphicTraits<T>::value, Input &>
operator>>(Input &In, T &Val) {
EmptyContext Ctx;
if (In.setCurrentDocument())
yamlize(In, Val, true, Ctx);
return In;
}
// Provide better error message about types missing a trait specialization
template <typename T>
inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Input &>
operator>>(Input &yin, T &docSeq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yin;
}
// Define non-member operator<< so that Output can stream out document list.
template <typename T>
inline std::enable_if_t<has_DocumentListTraits<T>::value, Output &>
operator<<(Output &yout, T &docList) {
EmptyContext Ctx;
yout.beginDocuments();
const size_t count = DocumentListTraits<T>::size(yout, docList);
for(size_t i=0; i < count; ++i) {
if ( yout.preflightDocument(i) ) {
yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true,
Ctx);
yout.postflightDocument();
}
}
yout.endDocuments();
return yout;
}
// Define non-member operator<< so that Output can stream out a map.
template <typename T>
inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Output &>
operator<<(Output &yout, T &map) {
EmptyContext Ctx;
yout.beginDocuments();
if ( yout.preflightDocument(0) ) {
yamlize(yout, map, true, Ctx);
yout.postflightDocument();
}
yout.endDocuments();
return yout;
}
// Define non-member operator<< so that Output can stream out a sequence.
template <typename T>
inline std::enable_if_t<has_SequenceTraits<T>::value, Output &>
operator<<(Output &yout, T &seq) {
EmptyContext Ctx;
yout.beginDocuments();
if ( yout.preflightDocument(0) ) {
yamlize(yout, seq, true, Ctx);
yout.postflightDocument();
}
yout.endDocuments();
return yout;
}
// Define non-member operator<< so that Output can stream out a block scalar.
template <typename T>
inline std::enable_if_t<has_BlockScalarTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
if (Out.preflightDocument(0)) {
yamlize(Out, Val, true, Ctx);
Out.postflightDocument();
}
Out.endDocuments();
return Out;
}
// Define non-member operator<< so that Output can stream out a string map.
template <typename T>
inline std::enable_if_t<has_CustomMappingTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
if (Out.preflightDocument(0)) {
yamlize(Out, Val, true, Ctx);
Out.postflightDocument();
}
Out.endDocuments();
return Out;
}
// Define non-member operator<< so that Output can stream out a polymorphic
// type.
template <typename T>
inline std::enable_if_t<has_PolymorphicTraits<T>::value, Output &>
operator<<(Output &Out, T &Val) {
EmptyContext Ctx;
Out.beginDocuments();
if (Out.preflightDocument(0)) {
// FIXME: The parser does not support explicit documents terminated with a
// plain scalar; the end-marker is included as part of the scalar token.
assert(PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && "plain scalar documents are not supported");
yamlize(Out, Val, true, Ctx);
Out.postflightDocument();
}
Out.endDocuments();
return Out;
}
// Provide better error message about types missing a trait specialization
template <typename T>
inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Output &>
operator<<(Output &yout, T &seq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yout;
}
template <bool B> struct IsFlowSequenceBase {};
template <> struct IsFlowSequenceBase<true> { static const bool flow = true; };
template <typename T, bool Flow>
struct SequenceTraitsImpl : IsFlowSequenceBase<Flow> {
private:
using type = typename T::value_type;
public:
static size_t size(IO &io, T &seq) { return seq.size(); }
static type &element(IO &io, T &seq, size_t index) {
if (index >= seq.size())
seq.resize(index + 1);
return seq[index];
}
};
// Simple helper to check an expression can be used as a bool-valued template
// argument.
template <bool> struct CheckIsBool { static const bool value = true; };
// If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have
// SequenceTraits that do the obvious thing.
template <typename T>
struct SequenceTraits<
std::vector<T>,
std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {};
template <typename T, unsigned N>
struct SequenceTraits<
SmallVector<T, N>,
std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {};
template <typename T>
struct SequenceTraits<
SmallVectorImpl<T>,
std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
: SequenceTraitsImpl<SmallVectorImpl<T>, SequenceElementTraits<T>::flow> {};
// Sequences of fundamental types use flow formatting.
template <typename T>
struct SequenceElementTraits<T,
std::enable_if_t<std::is_fundamental<T>::value>> {
static const bool flow = true;
};
// Sequences of strings use block formatting.
template<> struct SequenceElementTraits<std::string> {
static const bool flow = false;
};
template<> struct SequenceElementTraits<StringRef> {
static const bool flow = false;
};
template<> struct SequenceElementTraits<std::pair<std::string, std::string>> {
static const bool flow = false;
};
/// Implementation of CustomMappingTraits for std::map<std::string, T>.
template <typename T> struct StdMapStringCustomMappingTraitsImpl {
using map_type = std::map<std::string, T>;
static void inputOne(IO &io, StringRef key, map_type &v) {
io.mapRequired(key.str().c_str(), v[std::string(key)]);
}
static void output(IO &io, map_type &v) {
for (auto &p : v)
io.mapRequired(p.first.c_str(), p.second);
}
};
} // end namespace yaml
} // end namespace llvm
#define LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(TYPE, FLOW) \
namespace llvm { \
namespace yaml { \
static_assert( \
!std::is_fundamental<TYPE>::value && \
!std::is_same<TYPE, std::string>::value && \
!std::is_same<TYPE, llvm::StringRef>::value, \
"only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"); \
template <> struct SequenceElementTraits<TYPE> { \
static const bool flow = FLOW; \
}; \
} \
}
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML sequence.
#define LLVM_YAML_IS_SEQUENCE_VECTOR(type) \
LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, false)
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML flow sequence.
#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type) \
LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, true)
#define LLVM_YAML_DECLARE_MAPPING_TRAITS(Type) \
namespace llvm { \
namespace yaml { \
template <> struct MappingTraits<Type> { \
static void mapping(IO &IO, Type &Obj); \
}; \
} \
}
#define LLVM_YAML_DECLARE_ENUM_TRAITS(Type) \
namespace llvm { \
namespace yaml { \
template <> struct ScalarEnumerationTraits<Type> { \
static void enumeration(IO &io, Type &Value); \
}; \
} \
}
#define LLVM_YAML_DECLARE_BITSET_TRAITS(Type) \
namespace llvm { \
namespace yaml { \
template <> struct ScalarBitSetTraits<Type> { \
static void bitset(IO &IO, Type &Options); \
}; \
} \
}
#define LLVM_YAML_DECLARE_SCALAR_TRAITS(Type, MustQuote) \
namespace llvm { \
namespace yaml { \
template <> struct ScalarTraits<Type> { \
static void output(const Type &Value, void *ctx, raw_ostream &Out); \
static StringRef input(StringRef Scalar, void *ctxt, Type &Value); \
static QuotingType mustQuote(StringRef) { return MustQuote; } \
}; \
} \
}
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML document list.
#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \
namespace llvm { \
namespace yaml { \
template <unsigned N> \
struct DocumentListTraits<SmallVector<_type, N>> \
: public SequenceTraitsImpl<SmallVector<_type, N>, false> {}; \
template <> \
struct DocumentListTraits<std::vector<_type>> \
: public SequenceTraitsImpl<std::vector<_type>, false> {}; \
} \
}
/// Utility for declaring that std::map<std::string, _type> should be considered
/// a YAML map.
#define LLVM_YAML_IS_STRING_MAP(_type) \
namespace llvm { \
namespace yaml { \
template <> \
struct CustomMappingTraits<std::map<std::string, _type>> \
: public StdMapStringCustomMappingTraitsImpl<_type> {}; \
} \
}
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex32)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex16)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex8)
#endif // LLVM_SUPPORT_YAMLTRAITS_H