1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp
Jonas Hahnfeld 065a990766 Hide two unused debugging methods, NFCI.
GCC correctly moans that PlainCFGBuilder::isExternalDef(llvm::Value*) and
StackSafetyDataFlowAnalysis::verifyFixedPoint() are defined but not used
in Release builds. Hide them behind 'ifndef NDEBUG'.

llvm-svn: 355205
2019-03-01 17:15:21 +00:00

355 lines
14 KiB
C++

//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the construction of a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR. This construction comprises the following
/// components and steps:
//
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
/// in the plain CFG.
/// NOTE: At this point, there is a direct correspondence between all the
/// VPBasicBlocks created for the initial plain CFG and the incoming
/// BasicBlocks. However, this might change in the future.
///
//===----------------------------------------------------------------------===//
#include "VPlanHCFGBuilder.h"
#include "LoopVectorizationPlanner.h"
#include "llvm/Analysis/LoopIterator.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
namespace {
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
private:
// The outermost loop of the input loop nest considered for vectorization.
Loop *TheLoop;
// Loop Info analysis.
LoopInfo *LI;
// Vectorization plan that we are working on.
VPlan &Plan;
// Output Top Region.
VPRegionBlock *TopRegion = nullptr;
// Builder of the VPlan instruction-level representation.
VPBuilder VPIRBuilder;
// NOTE: The following maps are intentionally destroyed after the plain CFG
// construction because subsequent VPlan-to-VPlan transformation may
// invalidate them.
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
// Map incoming Value definitions to their newly-created VPValues.
DenseMap<Value *, VPValue *> IRDef2VPValue;
// Hold phi node's that need to be fixed once the plain CFG has been built.
SmallVector<PHINode *, 8> PhisToFix;
// Utility functions.
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
void fixPhiNodes();
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
#ifndef NDEBUG
bool isExternalDef(Value *Val);
#endif
VPValue *getOrCreateVPOperand(Value *IRVal);
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
public:
PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
: TheLoop(Lp), LI(LI), Plan(P) {}
// Build the plain CFG and return its Top Region.
VPRegionBlock *buildPlainCFG();
};
} // anonymous namespace
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
SmallVector<VPBlockBase *, 8> VPBBPreds;
// Collect VPBB predecessors.
for (BasicBlock *Pred : predecessors(BB))
VPBBPreds.push_back(getOrCreateVPBB(Pred));
VPBB->setPredecessors(VPBBPreds);
}
// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixPhiNodes() {
for (auto *Phi : PhisToFix) {
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
VPValue *VPVal = IRDef2VPValue[Phi];
assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
auto *VPPhi = cast<VPInstruction>(VPVal);
assert(VPPhi->getNumOperands() == 0 &&
"Expected VPInstruction with no operands.");
for (Value *Op : Phi->operands())
VPPhi->addOperand(getOrCreateVPOperand(Op));
}
}
// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
// existing one if it was already created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
auto BlockIt = BB2VPBB.find(BB);
if (BlockIt != BB2VPBB.end())
// Retrieve existing VPBB.
return BlockIt->second;
// Create new VPBB.
LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
BB2VPBB[BB] = VPBB;
VPBB->setParent(TopRegion);
return VPBB;
}
#ifndef NDEBUG
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
// outermost loop exits.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
// All the Values that are not Instructions are considered external
// definitions for now.
Instruction *Inst = dyn_cast<Instruction>(Val);
if (!Inst)
return true;
BasicBlock *InstParent = Inst->getParent();
assert(InstParent && "Expected instruction parent.");
// Check whether Instruction definition is in loop PH.
BasicBlock *PH = TheLoop->getLoopPreheader();
assert(PH && "Expected loop pre-header.");
if (InstParent == PH)
// Instruction definition is in outermost loop PH.
return false;
// Check whether Instruction definition is in the loop exit.
BasicBlock *Exit = TheLoop->getUniqueExitBlock();
assert(Exit && "Expected loop with single exit.");
if (InstParent == Exit) {
// Instruction definition is in outermost loop exit.
return false;
}
// Check whether Instruction definition is in loop body.
return !TheLoop->contains(Inst);
}
#endif
// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
auto VPValIt = IRDef2VPValue.find(IRVal);
if (VPValIt != IRDef2VPValue.end())
// Operand has an associated VPInstruction or VPValue that was previously
// created.
return VPValIt->second;
// Operand doesn't have a previously created VPInstruction/VPValue. This
// means that operand is:
// A) a definition external to VPlan,
// B) any other Value without specific representation in VPlan.
// For now, we use VPValue to represent A and B and classify both as external
// definitions. We may introduce specific VPValue subclasses for them in the
// future.
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
// A and B: Create VPValue and add it to the pool of external definitions and
// to the Value->VPValue map.
VPValue *NewVPVal = new VPValue(IRVal);
Plan.addExternalDef(NewVPVal);
IRDef2VPValue[IRVal] = NewVPVal;
return NewVPVal;
}
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
BasicBlock *BB) {
VPIRBuilder.setInsertPoint(VPBB);
for (Instruction &InstRef : *BB) {
Instruction *Inst = &InstRef;
// There shouldn't be any VPValue for Inst at this point. Otherwise, we
// visited Inst when we shouldn't, breaking the RPO traversal order.
assert(!IRDef2VPValue.count(Inst) &&
"Instruction shouldn't have been visited.");
if (auto *Br = dyn_cast<BranchInst>(Inst)) {
// Branch instruction is not explicitly represented in VPlan but we need
// to represent its condition bit when it's conditional.
if (Br->isConditional())
getOrCreateVPOperand(Br->getCondition());
// Skip the rest of the Instruction processing for Branch instructions.
continue;
}
VPInstruction *NewVPInst;
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
// Phi node's operands may have not been visited at this point. We create
// an empty VPInstruction that we will fix once the whole plain CFG has
// been built.
NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
Inst->getOpcode(), {} /*No operands*/, Inst));
PhisToFix.push_back(Phi);
} else {
// Translate LLVM-IR operands into VPValue operands and set them in the
// new VPInstruction.
SmallVector<VPValue *, 4> VPOperands;
for (Value *Op : Inst->operands())
VPOperands.push_back(getOrCreateVPOperand(Op));
// Build VPInstruction for any arbitraty Instruction without specific
// representation in VPlan.
NewVPInst = cast<VPInstruction>(
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
}
IRDef2VPValue[Inst] = NewVPInst;
}
}
// Main interface to build the plain CFG.
VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
// 1. Create the Top Region. It will be the parent of all VPBBs.
TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
// 2. Scan the body of the loop in a topological order to visit each basic
// block after having visited its predecessor basic blocks. Create a VPBB for
// each BB and link it to its successor and predecessor VPBBs. Note that
// predecessors must be set in the same order as they are in the incomming IR.
// Otherwise, there might be problems with existing phi nodes and algorithm
// based on predecessors traversal.
// Loop PH needs to be explicitly visited since it's not taken into account by
// LoopBlocksDFS.
BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
"Unexpected loop preheader");
VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
// Create empty VPBB for Loop H so that we can link PH->H.
VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
// Preheader's predecessors will be set during the loop RPO traversal below.
PreheaderVPBB->setOneSuccessor(HeaderVPBB);
LoopBlocksRPO RPO(TheLoop);
RPO.perform(LI);
for (BasicBlock *BB : RPO) {
// Create or retrieve the VPBasicBlock for this BB and create its
// VPInstructions.
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
createVPInstructionsForVPBB(VPBB, BB);
// Set VPBB successors. We create empty VPBBs for successors if they don't
// exist already. Recipes will be created when the successor is visited
// during the RPO traversal.
Instruction *TI = BB->getTerminator();
assert(TI && "Terminator expected.");
unsigned NumSuccs = TI->getNumSuccessors();
if (NumSuccs == 1) {
VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
assert(SuccVPBB && "VPBB Successor not found.");
VPBB->setOneSuccessor(SuccVPBB);
} else if (NumSuccs == 2) {
VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
assert(SuccVPBB0 && "Successor 0 not found.");
VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
assert(SuccVPBB1 && "Successor 1 not found.");
// Get VPBB's condition bit.
assert(isa<BranchInst>(TI) && "Unsupported terminator!");
auto *Br = cast<BranchInst>(TI);
Value *BrCond = Br->getCondition();
// Look up the branch condition to get the corresponding VPValue
// representing the condition bit in VPlan (which may be in another VPBB).
assert(IRDef2VPValue.count(BrCond) &&
"Missing condition bit in IRDef2VPValue!");
VPValue *VPCondBit = IRDef2VPValue[BrCond];
// Link successors using condition bit.
VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
} else
llvm_unreachable("Number of successors not supported.");
// Set VPBB predecessors in the same order as they are in the incoming BB.
setVPBBPredsFromBB(VPBB, BB);
}
// 3. Process outermost loop exit. We created an empty VPBB for the loop
// single exit BB during the RPO traversal of the loop body but Instructions
// weren't visited because it's not part of the the loop.
BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
assert(LoopExitBB && "Loops with multiple exits are not supported.");
VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
// Loop exit was already set as successor of the loop exiting BB.
// We only set its predecessor VPBB now.
setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
// 4. The whole CFG has been built at this point so all the input Values must
// have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
// VPlan operands.
fixPhiNodes();
// 5. Final Top Region setup. Set outermost loop pre-header and single exit as
// Top Region entry and exit.
TopRegion->setEntry(PreheaderVPBB);
TopRegion->setExit(LoopExitVPBB);
return TopRegion;
}
VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
return PCFGBuilder.buildPlainCFG();
}
// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG() {
// Build Top Region enclosing the plain CFG and set it as VPlan entry.
VPRegionBlock *TopRegion = buildPlainCFG();
Plan.setEntry(TopRegion);
LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
Verifier.verifyHierarchicalCFG(TopRegion);
// Compute plain CFG dom tree for VPLInfo.
VPDomTree.recalculate(*TopRegion);
LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
VPDomTree.print(dbgs()));
// Compute VPLInfo and keep it in Plan.
VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
VPLInfo.analyze(VPDomTree);
LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
VPLInfo.print(dbgs()));
}