mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
7043d25ccf
EVEX makes heavy use of the VEX.W bit to indicate 64-bit element vs 32-bit elements. Many of the VEX instructions were split into 2 versions with different masking granularity. The EVEX->VEX table generate can collapse the two versions if the VEX version uses is tagged as VEX_WIG. But if the VEX version is instead marked VEX.W==0 we can't combine them because we don't know if there is also a VEX version with VEX.W==1. This patch adds a new VEX_W1X tag that indicates the EVEX instruction encodes with VEX.W==1, but is safe to convert to a VEX instruction with VEX.W==0. This allows us to remove a bunch of manual EVEX->VEX table entries. We may want to look into splitting up the VEX_WPrefix field which would simplify the disassembler. llvm-svn: 335017
304 lines
11 KiB
C++
304 lines
11 KiB
C++
//===- utils/TableGen/X86EVEX2VEXTablesEmitter.cpp - X86 backend-*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This tablegen backend is responsible for emitting the X86 backend EVEX2VEX
|
|
/// compression tables.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class X86EVEX2VEXTablesEmitter {
|
|
CodeGenTarget Target;
|
|
|
|
// Hold all non-masked & non-broadcasted EVEX encoded instructions
|
|
std::vector<const CodeGenInstruction *> EVEXInsts;
|
|
// Hold all VEX encoded instructions. Divided into groups with same opcodes
|
|
// to make the search more efficient
|
|
std::map<uint64_t, std::vector<const CodeGenInstruction *>> VEXInsts;
|
|
|
|
typedef std::pair<const CodeGenInstruction *, const CodeGenInstruction *> Entry;
|
|
|
|
// Represent both compress tables
|
|
std::vector<Entry> EVEX2VEX128;
|
|
std::vector<Entry> EVEX2VEX256;
|
|
|
|
// Represents a manually added entry to the tables
|
|
struct ManualEntry {
|
|
const char *EVEXInstStr;
|
|
const char *VEXInstStr;
|
|
bool Is128Bit;
|
|
};
|
|
|
|
public:
|
|
X86EVEX2VEXTablesEmitter(RecordKeeper &R) : Target(R) {}
|
|
|
|
// run - Output X86 EVEX2VEX tables.
|
|
void run(raw_ostream &OS);
|
|
|
|
private:
|
|
// Prints the given table as a C++ array of type
|
|
// X86EvexToVexCompressTableEntry
|
|
void printTable(const std::vector<Entry> &Table, raw_ostream &OS);
|
|
};
|
|
|
|
void X86EVEX2VEXTablesEmitter::printTable(const std::vector<Entry> &Table,
|
|
raw_ostream &OS) {
|
|
StringRef Size = (Table == EVEX2VEX128) ? "128" : "256";
|
|
|
|
OS << "// X86 EVEX encoded instructions that have a VEX " << Size
|
|
<< " encoding\n"
|
|
<< "// (table format: <EVEX opcode, VEX-" << Size << " opcode>).\n"
|
|
<< "static const X86EvexToVexCompressTableEntry X86EvexToVex" << Size
|
|
<< "CompressTable[] = {\n"
|
|
<< " // EVEX scalar with corresponding VEX.\n";
|
|
|
|
// Print all entries added to the table
|
|
for (auto Pair : Table) {
|
|
OS << " { X86::" << Pair.first->TheDef->getName()
|
|
<< ", X86::" << Pair.second->TheDef->getName() << " },\n";
|
|
}
|
|
|
|
// Some VEX instructions were duplicated to multiple EVEX versions due the
|
|
// introduction of mask variants, and thus some of the EVEX versions have
|
|
// different encoding than the VEX instruction. In order to maximize the
|
|
// compression we add these entries manually.
|
|
static constexpr ManualEntry ManuallyAddedEntries[] = {
|
|
// EVEX-Inst VEX-Inst Is128-bit
|
|
{"VMOVDQU8Z128mr", "VMOVDQUmr", true},
|
|
{"VMOVDQU8Z128rm", "VMOVDQUrm", true},
|
|
{"VMOVDQU8Z128rr", "VMOVDQUrr", true},
|
|
{"VMOVDQU8Z128rr_REV", "VMOVDQUrr_REV", true},
|
|
{"VMOVDQU16Z128mr", "VMOVDQUmr", true},
|
|
{"VMOVDQU16Z128rm", "VMOVDQUrm", true},
|
|
{"VMOVDQU16Z128rr", "VMOVDQUrr", true},
|
|
{"VMOVDQU16Z128rr_REV", "VMOVDQUrr_REV", true},
|
|
{"VMOVDQU8Z256mr", "VMOVDQUYmr", false},
|
|
{"VMOVDQU8Z256rm", "VMOVDQUYrm", false},
|
|
{"VMOVDQU8Z256rr", "VMOVDQUYrr", false},
|
|
{"VMOVDQU8Z256rr_REV", "VMOVDQUYrr_REV", false},
|
|
{"VMOVDQU16Z256mr", "VMOVDQUYmr", false},
|
|
{"VMOVDQU16Z256rm", "VMOVDQUYrm", false},
|
|
{"VMOVDQU16Z256rr", "VMOVDQUYrr", false},
|
|
{"VMOVDQU16Z256rr_REV", "VMOVDQUYrr_REV", false},
|
|
|
|
// These will require some custom adjustment in the conversion pass.
|
|
{"VALIGNDZ128rri", "VPALIGNRrri", true},
|
|
{"VALIGNQZ128rri", "VPALIGNRrri", true},
|
|
{"VALIGNDZ128rmi", "VPALIGNRrmi", true},
|
|
{"VALIGNQZ128rmi", "VPALIGNRrmi", true},
|
|
{"VSHUFF32X4Z256rmi", "VPERM2F128rm", false},
|
|
{"VSHUFF32X4Z256rri", "VPERM2F128rr", false},
|
|
{"VSHUFF64X2Z256rmi", "VPERM2F128rm", false},
|
|
{"VSHUFF64X2Z256rri", "VPERM2F128rr", false},
|
|
{"VSHUFI32X4Z256rmi", "VPERM2I128rm", false},
|
|
{"VSHUFI32X4Z256rri", "VPERM2I128rr", false},
|
|
{"VSHUFI64X2Z256rmi", "VPERM2I128rm", false},
|
|
{"VSHUFI64X2Z256rri", "VPERM2I128rr", false},
|
|
};
|
|
|
|
// Print the manually added entries
|
|
for (const ManualEntry &Entry : ManuallyAddedEntries) {
|
|
if ((Table == EVEX2VEX128 && Entry.Is128Bit) ||
|
|
(Table == EVEX2VEX256 && !Entry.Is128Bit)) {
|
|
OS << " { X86::" << Entry.EVEXInstStr << ", X86::" << Entry.VEXInstStr
|
|
<< " },\n";
|
|
}
|
|
}
|
|
|
|
OS << "};\n\n";
|
|
}
|
|
|
|
// Return true if the 2 BitsInits are equal
|
|
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
|
|
if (B1->getNumBits() != B2->getNumBits())
|
|
PrintFatalError("Comparing two BitsInits with different sizes!");
|
|
|
|
for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
|
|
if (BitInit *Bit1 = dyn_cast<BitInit>(B1->getBit(i))) {
|
|
if (BitInit *Bit2 = dyn_cast<BitInit>(B2->getBit(i))) {
|
|
if (Bit1->getValue() != Bit2->getValue())
|
|
return false;
|
|
} else
|
|
PrintFatalError("Invalid BitsInit bit");
|
|
} else
|
|
PrintFatalError("Invalid BitsInit bit");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Calculates the integer value residing BitsInit object
|
|
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
|
|
uint64_t Value = 0;
|
|
for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
|
|
if (BitInit *Bit = dyn_cast<BitInit>(B->getBit(i)))
|
|
Value |= uint64_t(Bit->getValue()) << i;
|
|
else
|
|
PrintFatalError("Invalid VectSize bit");
|
|
}
|
|
return Value;
|
|
}
|
|
|
|
// Function object - Operator() returns true if the given VEX instruction
|
|
// matches the EVEX instruction of this object.
|
|
class IsMatch {
|
|
const CodeGenInstruction *EVEXInst;
|
|
|
|
public:
|
|
IsMatch(const CodeGenInstruction *EVEXInst) : EVEXInst(EVEXInst) {}
|
|
|
|
bool operator()(const CodeGenInstruction *VEXInst) {
|
|
Record *RecE = EVEXInst->TheDef;
|
|
Record *RecV = VEXInst->TheDef;
|
|
uint64_t EVEX_W =
|
|
getValueFromBitsInit(RecE->getValueAsBitsInit("VEX_WPrefix"));
|
|
uint64_t VEX_W =
|
|
getValueFromBitsInit(RecV->getValueAsBitsInit("VEX_WPrefix"));
|
|
|
|
if (RecV->getValueAsDef("OpEnc")->getName().str() != "EncVEX" ||
|
|
// VEX/EVEX fields
|
|
RecV->getValueAsDef("OpPrefix") != RecE->getValueAsDef("OpPrefix") ||
|
|
RecV->getValueAsDef("OpMap") != RecE->getValueAsDef("OpMap") ||
|
|
RecV->getValueAsBit("hasVEX_4V") != RecE->getValueAsBit("hasVEX_4V") ||
|
|
!equalBitsInits(RecV->getValueAsBitsInit("EVEX_LL"),
|
|
RecE->getValueAsBitsInit("EVEX_LL")) ||
|
|
// Match is allowed if either is VEX_WIG, or they match, or EVEX
|
|
// is VEX_W1X and VEX is VEX_W0.
|
|
(!(EVEX_W == 2 || VEX_W == 2 || EVEX_W == VEX_W ||
|
|
(EVEX_W == 3 && VEX_W == 0))) ||
|
|
// Instruction's format
|
|
RecV->getValueAsDef("Form") != RecE->getValueAsDef("Form") ||
|
|
RecV->getValueAsBit("isAsmParserOnly") !=
|
|
RecE->getValueAsBit("isAsmParserOnly"))
|
|
return false;
|
|
|
|
// This is needed for instructions with intrinsic version (_Int).
|
|
// Where the only difference is the size of the operands.
|
|
// For example: VUCOMISDZrm and Int_VUCOMISDrm
|
|
// Also for instructions that their EVEX version was upgraded to work with
|
|
// k-registers. For example VPCMPEQBrm (xmm output register) and
|
|
// VPCMPEQBZ128rm (k register output register).
|
|
for (unsigned i = 0, e = EVEXInst->Operands.size(); i < e; i++) {
|
|
Record *OpRec1 = EVEXInst->Operands[i].Rec;
|
|
Record *OpRec2 = VEXInst->Operands[i].Rec;
|
|
|
|
if (OpRec1 == OpRec2)
|
|
continue;
|
|
|
|
if (isRegisterOperand(OpRec1) && isRegisterOperand(OpRec2)) {
|
|
if (getRegOperandSize(OpRec1) != getRegOperandSize(OpRec2))
|
|
return false;
|
|
} else if (isMemoryOperand(OpRec1) && isMemoryOperand(OpRec2)) {
|
|
return false;
|
|
} else if (isImmediateOperand(OpRec1) && isImmediateOperand(OpRec2)) {
|
|
if (OpRec1->getValueAsDef("Type") != OpRec2->getValueAsDef("Type"))
|
|
return false;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
static inline bool isRegisterOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("RegisterClass") ||
|
|
Rec->isSubClassOf("RegisterOperand");
|
|
}
|
|
|
|
static inline bool isMemoryOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("Operand") &&
|
|
Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
|
|
}
|
|
|
|
static inline bool isImmediateOperand(const Record *Rec) {
|
|
return Rec->isSubClassOf("Operand") &&
|
|
Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
|
|
}
|
|
|
|
static inline unsigned int getRegOperandSize(const Record *RegRec) {
|
|
if (RegRec->isSubClassOf("RegisterClass"))
|
|
return RegRec->getValueAsInt("Alignment");
|
|
if (RegRec->isSubClassOf("RegisterOperand"))
|
|
return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");
|
|
|
|
llvm_unreachable("Register operand's size not known!");
|
|
}
|
|
};
|
|
|
|
void X86EVEX2VEXTablesEmitter::run(raw_ostream &OS) {
|
|
emitSourceFileHeader("X86 EVEX2VEX tables", OS);
|
|
|
|
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
for (const CodeGenInstruction *Inst : NumberedInstructions) {
|
|
// Filter non-X86 instructions.
|
|
if (!Inst->TheDef->isSubClassOf("X86Inst"))
|
|
continue;
|
|
|
|
// Add VEX encoded instructions to one of VEXInsts vectors according to
|
|
// it's opcode.
|
|
if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncVEX") {
|
|
uint64_t Opcode = getValueFromBitsInit(Inst->TheDef->
|
|
getValueAsBitsInit("Opcode"));
|
|
VEXInsts[Opcode].push_back(Inst);
|
|
}
|
|
// Add relevant EVEX encoded instructions to EVEXInsts
|
|
else if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncEVEX" &&
|
|
!Inst->TheDef->getValueAsBit("hasEVEX_K") &&
|
|
!Inst->TheDef->getValueAsBit("hasEVEX_B") &&
|
|
getValueFromBitsInit(Inst->TheDef->
|
|
getValueAsBitsInit("EVEX_LL")) != 2 &&
|
|
!Inst->TheDef->getValueAsBit("notEVEX2VEXConvertible"))
|
|
EVEXInsts.push_back(Inst);
|
|
}
|
|
|
|
for (const CodeGenInstruction *EVEXInst : EVEXInsts) {
|
|
uint64_t Opcode = getValueFromBitsInit(EVEXInst->TheDef->
|
|
getValueAsBitsInit("Opcode"));
|
|
// For each EVEX instruction look for a VEX match in the appropriate vector
|
|
// (instructions with the same opcode) using function object IsMatch.
|
|
auto Match = llvm::find_if(VEXInsts[Opcode], IsMatch(EVEXInst));
|
|
if (Match != VEXInsts[Opcode].end()) {
|
|
const CodeGenInstruction *VEXInst = *Match;
|
|
|
|
// In case a match is found add new entry to the appropriate table
|
|
switch (getValueFromBitsInit(
|
|
EVEXInst->TheDef->getValueAsBitsInit("EVEX_LL"))) {
|
|
case 0:
|
|
EVEX2VEX128.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,0}
|
|
break;
|
|
case 1:
|
|
EVEX2VEX256.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,1}
|
|
break;
|
|
default:
|
|
llvm_unreachable("Instruction's size not fit for the mapping!");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print both tables
|
|
printTable(EVEX2VEX128, OS);
|
|
printTable(EVEX2VEX256, OS);
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
void EmitX86EVEX2VEXTables(RecordKeeper &RK, raw_ostream &OS) {
|
|
X86EVEX2VEXTablesEmitter(RK).run(OS);
|
|
}
|
|
}
|