mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
d61d0211ba
* BPA and BPN do not take a %cc register as a parameter * SLL/SRL/SRA{r,i}5 are there for a reason - they are ONLY 32-bit instructions * Likewise, SLL/SRL/SRAX{r,i}6 are only 64-bit * Added WRCCR{r,i} opcodes llvm-svn: 6655
741 lines
29 KiB
C++
741 lines
29 KiB
C++
//===-- SparcInstrInfo.cpp ------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SparcInternals.h"
|
|
#include "SparcInstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include <stdlib.h>
|
|
|
|
static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
|
|
static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Function GetConstantValueAsUnsignedInt
|
|
// Function GetConstantValueAsSignedInt
|
|
//
|
|
// Convenience functions to get the value of an integral constant, for an
|
|
// appropriate integer or non-integer type that can be held in a signed
|
|
// or unsigned integer respectively. The type of the argument must be
|
|
// the following:
|
|
// Signed or unsigned integer
|
|
// Boolean
|
|
// Pointer
|
|
//
|
|
// isValidConstant is set to true if a valid constant was found.
|
|
//---------------------------------------------------------------------------
|
|
|
|
static uint64_t
|
|
GetConstantValueAsUnsignedInt(const Value *V,
|
|
bool &isValidConstant)
|
|
{
|
|
isValidConstant = true;
|
|
|
|
if (isa<Constant>(V))
|
|
if (const ConstantBool *CB = dyn_cast<ConstantBool>(V))
|
|
return (int64_t)CB->getValue();
|
|
else if (const ConstantSInt *CS = dyn_cast<ConstantSInt>(V))
|
|
return (uint64_t)CS->getValue();
|
|
else if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
|
|
return CU->getValue();
|
|
|
|
isValidConstant = false;
|
|
return 0;
|
|
}
|
|
|
|
int64_t
|
|
GetConstantValueAsSignedInt(const Value *V, bool &isValidConstant)
|
|
{
|
|
uint64_t C = GetConstantValueAsUnsignedInt(V, isValidConstant);
|
|
if (isValidConstant) {
|
|
if (V->getType()->isSigned() || C < INT64_MAX) // safe to cast to signed
|
|
return (int64_t) C;
|
|
else
|
|
isValidConstant = false;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateSETUWConst
|
|
//
|
|
// Set a 32-bit unsigned constant in the register `dest', using
|
|
// SETHI, OR in the worst case. This function correctly emulates
|
|
// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false).
|
|
//
|
|
// The isSigned=true case is used to implement SETSW without duplicating code.
|
|
//
|
|
// Optimize some common cases:
|
|
// (1) Small value that fits in simm13 field of OR: don't need SETHI.
|
|
// (2) isSigned = true and C is a small negative signed value, i.e.,
|
|
// high bits are 1, and the remaining bits fit in simm13(OR).
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateSETUWConst(const TargetMachine& target, uint32_t C,
|
|
Instruction* dest, std::vector<MachineInstr*>& mvec,
|
|
bool isSigned = false)
|
|
{
|
|
MachineInstr *miSETHI = NULL, *miOR = NULL;
|
|
|
|
// In order to get efficient code, we should not generate the SETHI if
|
|
// all high bits are 1 (i.e., this is a small signed value that fits in
|
|
// the simm13 field of OR). So we check for and handle that case specially.
|
|
// NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
|
|
// In fact, sC == -sC, so we have to check for this explicitly.
|
|
int32_t sC = (int32_t) C;
|
|
bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
|
|
|
|
// Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
|
|
if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
|
|
miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
|
|
miSETHI->setOperandHi32(0);
|
|
mvec.push_back(miSETHI);
|
|
}
|
|
|
|
// Set the low 10 or 12 bits in dest. This is necessary if no SETHI
|
|
// was generated, or if the low 10 bits are non-zero.
|
|
if (miSETHI==NULL || C & MAXLO) {
|
|
if (miSETHI) {
|
|
// unsigned value with high-order bits set using SETHI
|
|
miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
|
|
miOR->setOperandLo32(1);
|
|
} else {
|
|
// unsigned or small signed value that fits in simm13 field of OR
|
|
assert(smallNegValue || (C & ~MAXSIMM) == 0);
|
|
miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()
|
|
.getZeroRegNum())
|
|
.addSImm(sC).addRegDef(dest);
|
|
}
|
|
mvec.push_back(miOR);
|
|
}
|
|
|
|
assert((miSETHI || miOR) && "Oops, no code was generated!");
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateSETSWConst
|
|
//
|
|
// Set a 32-bit signed constant in the register `dest', with sign-extension
|
|
// to 64 bits. This uses SETHI, OR, SRA in the worst case.
|
|
// This function correctly emulates the SETSW pseudo-op for SPARC v9.
|
|
//
|
|
// Optimize the same cases as SETUWConst, plus:
|
|
// (1) SRA is not needed for positive or small negative values.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateSETSWConst(const TargetMachine& target, int32_t C,
|
|
Instruction* dest, std::vector<MachineInstr*>& mvec)
|
|
{
|
|
// Set the low 32 bits of dest
|
|
CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
|
|
|
|
// Sign-extend to the high 32 bits if needed.
|
|
// NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
|
|
if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
|
|
mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateSETXConst
|
|
//
|
|
// Set a 64-bit signed or unsigned constant in the register `dest'.
|
|
// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between.
|
|
// This function correctly emulates the SETX pseudo-op for SPARC v9.
|
|
//
|
|
// Optimize the same cases as SETUWConst for each 32 bit word.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateSETXConst(const TargetMachine& target, uint64_t C,
|
|
Instruction* tmpReg, Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec)
|
|
{
|
|
assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
|
|
|
|
MachineInstr* MI;
|
|
|
|
// Code to set the upper 32 bits of the value in register `tmpReg'
|
|
CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
|
|
|
|
// Shift tmpReg left by 32 bits
|
|
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
|
|
.addRegDef(tmpReg));
|
|
|
|
// Code to set the low 32 bits of the value in register `dest'
|
|
CreateSETUWConst(target, C, dest, mvec);
|
|
|
|
// dest = OR(tmpReg, dest)
|
|
mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateSETUWLabel
|
|
//
|
|
// Set a 32-bit constant (given by a symbolic label) in the register `dest'.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateSETUWLabel(const TargetMachine& target, Value* val,
|
|
Instruction* dest, std::vector<MachineInstr*>& mvec)
|
|
{
|
|
MachineInstr* MI;
|
|
|
|
// Set the high 22 bits in dest
|
|
MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
|
|
MI->setOperandHi32(0);
|
|
mvec.push_back(MI);
|
|
|
|
// Set the low 10 bits in dest
|
|
MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
|
|
MI->setOperandLo32(1);
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateSETXLabel
|
|
//
|
|
// Set a 64-bit constant (given by a symbolic label) in the register `dest'.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateSETXLabel(const TargetMachine& target,
|
|
Value* val, Instruction* tmpReg, Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec)
|
|
{
|
|
assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
|
|
"I only know about constant values and global addresses");
|
|
|
|
MachineInstr* MI;
|
|
|
|
MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
|
|
MI->setOperandHi64(0);
|
|
mvec.push_back(MI);
|
|
|
|
MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
|
|
MI->setOperandLo64(1);
|
|
mvec.push_back(MI);
|
|
|
|
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
|
|
.addRegDef(tmpReg));
|
|
MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
|
|
MI->setOperandHi32(0);
|
|
mvec.push_back(MI);
|
|
|
|
MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
|
|
mvec.push_back(MI);
|
|
|
|
MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
|
|
MI->setOperandLo32(1);
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateUIntSetInstruction
|
|
//
|
|
// Create code to Set an unsigned constant in the register `dest'.
|
|
// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed.
|
|
// CreateSETSWConst is an optimization for the case that the unsigned value
|
|
// has all ones in the 33 high bits (so that sign-extension sets them all).
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateUIntSetInstruction(const TargetMachine& target,
|
|
uint64_t C, Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
static const uint64_t lo32 = (uint32_t) ~0;
|
|
if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
|
|
CreateSETUWConst(target, (uint32_t) C, dest, mvec);
|
|
else if ((C & ~lo32) == ~lo32 && (C & (1 << 31))) {
|
|
// All high 33 (not 32) bits are 1s: sign-extension will take care
|
|
// of high 32 bits, so use the sequence for signed int
|
|
CreateSETSWConst(target, (int32_t) C, dest, mvec);
|
|
} else if (C > lo32) {
|
|
// C does not fit in 32 bits
|
|
TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
|
|
CreateSETXConst(target, C, tmpReg, dest, mvec);
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Function: CreateIntSetInstruction
|
|
//
|
|
// Create code to Set a signed constant in the register `dest'.
|
|
// Really the same as CreateUIntSetInstruction.
|
|
//----------------------------------------------------------------------------
|
|
|
|
static inline void
|
|
CreateIntSetInstruction(const TargetMachine& target,
|
|
int64_t C, Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Create a table of LLVM opcode -> max. immediate constant likely to
|
|
// be usable for that operation.
|
|
//---------------------------------------------------------------------------
|
|
|
|
// Entry == 0 ==> no immediate constant field exists at all.
|
|
// Entry > 0 ==> abs(immediate constant) <= Entry
|
|
//
|
|
std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd);
|
|
|
|
static int
|
|
MaxConstantForInstr(unsigned llvmOpCode)
|
|
{
|
|
int modelOpCode = -1;
|
|
|
|
if (llvmOpCode >= Instruction::BinaryOpsBegin &&
|
|
llvmOpCode < Instruction::BinaryOpsEnd)
|
|
modelOpCode = V9::ADDi;
|
|
else
|
|
switch(llvmOpCode) {
|
|
case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
|
|
|
|
case Instruction::Malloc:
|
|
case Instruction::Alloca:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHINode:
|
|
case Instruction::Cast:
|
|
case Instruction::Call: modelOpCode = V9::ADDi; break;
|
|
|
|
case Instruction::Shl:
|
|
case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
|
|
|
|
default: break;
|
|
};
|
|
|
|
return (modelOpCode < 0)? 0: SparcMachineInstrDesc[modelOpCode].maxImmedConst;
|
|
}
|
|
|
|
static void
|
|
InitializeMaxConstantsTable()
|
|
{
|
|
unsigned op;
|
|
assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd &&
|
|
"assignments below will be illegal!");
|
|
for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
|
|
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
|
for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
|
|
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
|
for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
|
|
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
|
for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
|
|
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcInstrInfo
|
|
//
|
|
// Purpose:
|
|
// Information about individual instructions.
|
|
// Most information is stored in the SparcMachineInstrDesc array above.
|
|
// Other information is computed on demand, and most such functions
|
|
// default to member functions in base class TargetInstrInfo.
|
|
//---------------------------------------------------------------------------
|
|
|
|
/*ctor*/
|
|
UltraSparcInstrInfo::UltraSparcInstrInfo()
|
|
: TargetInstrInfo(SparcMachineInstrDesc,
|
|
/*descSize = */ V9::NUM_TOTAL_OPCODES,
|
|
/*numRealOpCodes = */ V9::NUM_REAL_OPCODES)
|
|
{
|
|
InitializeMaxConstantsTable();
|
|
}
|
|
|
|
bool
|
|
UltraSparcInstrInfo::ConstantMayNotFitInImmedField(const Constant* CV,
|
|
const Instruction* I) const
|
|
{
|
|
if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
|
|
return true;
|
|
|
|
if (isa<ConstantPointerNull>(CV)) // can always use %g0
|
|
return false;
|
|
|
|
if (const ConstantUInt* U = dyn_cast<ConstantUInt>(CV))
|
|
/* Large unsigned longs may really just be small negative signed longs */
|
|
return (labs((int64_t) U->getValue()) > MaxConstantsTable[I->getOpcode()]);
|
|
|
|
if (const ConstantSInt* S = dyn_cast<ConstantSInt>(CV))
|
|
return (labs(S->getValue()) > MaxConstantsTable[I->getOpcode()]);
|
|
|
|
if (isa<ConstantBool>(CV))
|
|
return (1 > MaxConstantsTable[I->getOpcode()]);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Create an instruction sequence to put the constant `val' into
|
|
// the virtual register `dest'. `val' may be a Constant or a
|
|
// GlobalValue, viz., the constant address of a global variable or function.
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
|
// Any stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target,
|
|
Function* F,
|
|
Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
|
|
"I only know about constant values and global addresses");
|
|
|
|
// Use a "set" instruction for known constants or symbolic constants (labels)
|
|
// that can go in an integer reg.
|
|
// We have to use a "load" instruction for all other constants,
|
|
// in particular, floating point constants.
|
|
//
|
|
const Type* valType = val->getType();
|
|
|
|
// Unfortunate special case: a ConstantPointerRef is just a
|
|
// reference to GlobalValue.
|
|
if (isa<ConstantPointerRef>(val))
|
|
val = cast<ConstantPointerRef>(val)->getValue();
|
|
|
|
if (isa<GlobalValue>(val)) {
|
|
TmpInstruction* tmpReg =
|
|
new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
|
|
CreateSETXLabel(target, val, tmpReg, dest, mvec);
|
|
} else if (valType->isIntegral()) {
|
|
bool isValidConstant;
|
|
unsigned opSize = target.getTargetData().getTypeSize(val->getType());
|
|
unsigned destSize = target.getTargetData().getTypeSize(dest->getType());
|
|
|
|
if (! dest->getType()->isSigned()) {
|
|
uint64_t C = GetConstantValueAsUnsignedInt(val, isValidConstant);
|
|
assert(isValidConstant && "Unrecognized constant");
|
|
|
|
if (opSize > destSize || (val->getType()->isSigned() && destSize < 8)) {
|
|
// operand is larger than dest,
|
|
// OR both are equal but smaller than the full register size
|
|
// AND operand is signed, so it may have extra sign bits:
|
|
// mask high bits
|
|
C = C & ((1U << 8*destSize) - 1);
|
|
}
|
|
CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
|
|
} else {
|
|
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
|
|
assert(isValidConstant && "Unrecognized constant");
|
|
|
|
if (opSize > destSize)
|
|
// operand is larger than dest: mask high bits
|
|
C = C & ((1U << 8*destSize) - 1);
|
|
|
|
if (opSize > destSize ||
|
|
(opSize == destSize && !val->getType()->isSigned()))
|
|
// sign-extend from destSize to 64 bits
|
|
C = ((C & (1U << (8*destSize - 1)))
|
|
? C | ~((1U << 8*destSize) - 1)
|
|
: C);
|
|
|
|
CreateIntSetInstruction(target, C, dest, mvec, mcfi);
|
|
}
|
|
} else {
|
|
// Make an instruction sequence to load the constant, viz:
|
|
// SETX <addr-of-constant>, tmpReg, addrReg
|
|
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
|
|
|
|
// First, create a tmp register to be used by the SETX sequence.
|
|
TmpInstruction* tmpReg =
|
|
new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
|
|
|
|
// Create another TmpInstruction for the address register
|
|
TmpInstruction* addrReg =
|
|
new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
|
|
|
|
// Put the address (a symbolic name) into a register
|
|
CreateSETXLabel(target, val, tmpReg, addrReg, mvec);
|
|
|
|
// Generate the load instruction
|
|
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
|
|
unsigned Opcode = ChooseLoadInstruction(val->getType());
|
|
Opcode = convertOpcodeFromRegToImm(Opcode);
|
|
mvec.push_back(BuildMI(Opcode, 3).addReg(addrReg).
|
|
addSImm(zeroOffset).addRegDef(dest));
|
|
|
|
// Make sure constant is emitted to constant pool in assembly code.
|
|
MachineFunction::get(F).getInfo()->addToConstantPool(cast<Constant>(val));
|
|
}
|
|
}
|
|
|
|
|
|
// Create an instruction sequence to copy an integer register `val'
|
|
// to a floating point register `dest' by copying to memory and back.
|
|
// val must be an integral type. dest must be a Float or Double.
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
|
// Any stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target,
|
|
Function* F,
|
|
Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
|
|
&& "Source type must be integral (integer or bool) or pointer");
|
|
assert(dest->getType()->isFloatingPoint()
|
|
&& "Dest type must be float/double");
|
|
|
|
// Get a stack slot to use for the copy
|
|
int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
|
|
|
|
// Get the size of the source value being copied.
|
|
size_t srcSize = target.getTargetData().getTypeSize(val->getType());
|
|
|
|
// Store instruction stores `val' to [%fp+offset].
|
|
// The store and load opCodes are based on the size of the source value.
|
|
// If the value is smaller than 32 bits, we must sign- or zero-extend it
|
|
// to 32 bits since the load-float will load 32 bits.
|
|
// Note that the store instruction is the same for signed and unsigned ints.
|
|
const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
|
|
Value* storeVal = val;
|
|
if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
|
|
// sign- or zero-extend respectively
|
|
storeVal = new TmpInstruction(mcfi, storeType, val);
|
|
if (val->getType()->isSigned())
|
|
CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
|
|
mvec, mcfi);
|
|
else
|
|
CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
|
|
mvec, mcfi);
|
|
}
|
|
|
|
unsigned FPReg = target.getRegInfo().getFramePointer();
|
|
unsigned StoreOpcode = ChooseStoreInstruction(storeType);
|
|
StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
|
|
mvec.push_back(BuildMI(StoreOpcode, 3)
|
|
.addReg(storeVal).addMReg(FPReg).addSImm(offset));
|
|
|
|
// Load instruction loads [%fp+offset] to `dest'.
|
|
// The type of the load opCode is the floating point type that matches the
|
|
// stored type in size:
|
|
// On SparcV9: float for int or smaller, double for long.
|
|
//
|
|
const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
|
|
unsigned LoadOpcode = ChooseLoadInstruction(loadType);
|
|
LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
|
|
mvec.push_back(BuildMI(LoadOpcode, 3)
|
|
.addMReg(FPReg).addSImm(offset).addRegDef(dest));
|
|
}
|
|
|
|
// Similarly, create an instruction sequence to copy an FP register
|
|
// `val' to an integer register `dest' by copying to memory and back.
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi.
|
|
// Temporary stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target,
|
|
Function* F,
|
|
Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
const Type* opTy = val->getType();
|
|
const Type* destTy = dest->getType();
|
|
|
|
assert(opTy->isFloatingPoint() && "Source type must be float/double");
|
|
assert((destTy->isIntegral() || isa<PointerType>(destTy))
|
|
&& "Dest type must be integer, bool or pointer");
|
|
|
|
// FIXME: For now, we allocate permanent space because the stack frame
|
|
// manager does not allow locals to be allocated (e.g., for alloca) after
|
|
// a temp is allocated!
|
|
//
|
|
int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
|
|
|
|
unsigned FPReg = target.getRegInfo().getFramePointer();
|
|
|
|
// Store instruction stores `val' to [%fp+offset].
|
|
// The store opCode is based only the source value being copied.
|
|
//
|
|
unsigned StoreOpcode = ChooseStoreInstruction(opTy);
|
|
StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
|
|
mvec.push_back(BuildMI(StoreOpcode, 3)
|
|
.addReg(val).addMReg(FPReg).addSImm(offset));
|
|
|
|
// Load instruction loads [%fp+offset] to `dest'.
|
|
// The type of the load opCode is the integer type that matches the
|
|
// source type in size:
|
|
// On SparcV9: int for float, long for double.
|
|
// Note that we *must* use signed loads even for unsigned dest types, to
|
|
// ensure correct sign-extension for UByte, UShort or UInt:
|
|
//
|
|
const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
|
|
unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
|
|
LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
|
|
mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
|
|
.addSImm(offset).addRegDef(dest));
|
|
}
|
|
|
|
|
|
// Create instruction(s) to copy src to dest, for arbitrary types
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
|
// Any stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target,
|
|
Function *F,
|
|
Value* src,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
bool loadConstantToReg = false;
|
|
|
|
const Type* resultType = dest->getType();
|
|
|
|
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
|
|
if (opCode == V9::INVALID_OPCODE) {
|
|
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
|
|
return;
|
|
}
|
|
|
|
// if `src' is a constant that doesn't fit in the immed field or if it is
|
|
// a global variable (i.e., a constant address), generate a load
|
|
// instruction instead of an add
|
|
//
|
|
if (isa<Constant>(src)) {
|
|
unsigned int machineRegNum;
|
|
int64_t immedValue;
|
|
MachineOperand::MachineOperandType opType =
|
|
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
|
|
machineRegNum, immedValue);
|
|
|
|
if (opType == MachineOperand::MO_VirtualRegister)
|
|
loadConstantToReg = true;
|
|
}
|
|
else if (isa<GlobalValue>(src))
|
|
loadConstantToReg = true;
|
|
|
|
if (loadConstantToReg) {
|
|
// `src' is constant and cannot fit in immed field for the ADD
|
|
// Insert instructions to "load" the constant into a register
|
|
target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest,
|
|
mvec, mcfi);
|
|
} else {
|
|
// Create a reg-to-reg copy instruction for the given type:
|
|
// -- For FP values, create a FMOVS or FMOVD instruction
|
|
// -- For non-FP values, create an add-with-0 instruction (opCode as above)
|
|
// Make `src' the second operand, in case it is a small constant!
|
|
//
|
|
MachineInstr* MI;
|
|
if (resultType->isFloatingPoint())
|
|
MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
|
|
.addReg(src).addRegDef(dest));
|
|
else {
|
|
const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
|
|
MI = (BuildMI(opCode, 3)
|
|
.addSImm((int64_t) 0).addReg(src).addRegDef(dest));
|
|
}
|
|
mvec.push_back(MI);
|
|
}
|
|
}
|
|
|
|
|
|
// Helper function for sign-extension and zero-extension.
|
|
// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL.
|
|
inline void
|
|
CreateBitExtensionInstructions(bool signExtend,
|
|
const TargetMachine& target,
|
|
Function* F,
|
|
Value* srcVal,
|
|
Value* destVal,
|
|
unsigned int numLowBits,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
MachineInstr* M;
|
|
|
|
assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
|
|
|
|
if (numLowBits < 32) {
|
|
// SLL is needed since operand size is < 32 bits.
|
|
TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
|
|
srcVal, destVal, "make32");
|
|
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
|
|
.addZImm(32-numLowBits).addRegDef(tmpI));
|
|
srcVal = tmpI;
|
|
}
|
|
|
|
mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
|
|
.addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
|
|
}
|
|
|
|
|
|
// Create instruction sequence to produce a sign-extended register value
|
|
// from an arbitrary-sized integer value (sized in bits, not bytes).
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
|
// Any stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateSignExtensionInstructions(
|
|
const TargetMachine& target,
|
|
Function* F,
|
|
Value* srcVal,
|
|
Value* destVal,
|
|
unsigned int numLowBits,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
|
|
destVal, numLowBits, mvec, mcfi);
|
|
}
|
|
|
|
|
|
// Create instruction sequence to produce a zero-extended register value
|
|
// from an arbitrary-sized integer value (sized in bits, not bytes).
|
|
// For SPARC v9, we sign-extend the given operand using SLL; SRL.
|
|
// The generated instructions are returned in `mvec'.
|
|
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
|
// Any stack space required is allocated via MachineFunction.
|
|
//
|
|
void
|
|
UltraSparcInstrInfo::CreateZeroExtensionInstructions(
|
|
const TargetMachine& target,
|
|
Function* F,
|
|
Value* srcVal,
|
|
Value* destVal,
|
|
unsigned int numLowBits,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi) const
|
|
{
|
|
CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
|
|
destVal, numLowBits, mvec, mcfi);
|
|
}
|