mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
1fef2dd6b7
llvm-svn: 283004
713 lines
21 KiB
C++
713 lines
21 KiB
C++
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief This pass adds instructions to enable whole quad mode for pixel
|
|
/// shaders.
|
|
///
|
|
/// Whole quad mode is required for derivative computations, but it interferes
|
|
/// with shader side effects (stores and atomics). This pass is run on the
|
|
/// scheduled machine IR but before register coalescing, so that machine SSA is
|
|
/// available for analysis. It ensures that WQM is enabled when necessary, but
|
|
/// disabled around stores and atomics.
|
|
///
|
|
/// When necessary, this pass creates a function prolog
|
|
///
|
|
/// S_MOV_B64 LiveMask, EXEC
|
|
/// S_WQM_B64 EXEC, EXEC
|
|
///
|
|
/// to enter WQM at the top of the function and surrounds blocks of Exact
|
|
/// instructions by
|
|
///
|
|
/// S_AND_SAVEEXEC_B64 Tmp, LiveMask
|
|
/// ...
|
|
/// S_MOV_B64 EXEC, Tmp
|
|
///
|
|
/// In order to avoid excessive switching during sequences of Exact
|
|
/// instructions, the pass first analyzes which instructions must be run in WQM
|
|
/// (aka which instructions produce values that lead to derivative
|
|
/// computations).
|
|
///
|
|
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
|
|
///
|
|
/// There is room for improvement given better control flow analysis:
|
|
///
|
|
/// (1) at the top level (outside of control flow statements, and as long as
|
|
/// kill hasn't been used), one SGPR can be saved by recovering WQM from
|
|
/// the LiveMask (this is implemented for the entry block).
|
|
///
|
|
/// (2) when entire regions (e.g. if-else blocks or entire loops) only
|
|
/// consist of exact and don't-care instructions, the switch only has to
|
|
/// be done at the entry and exit points rather than potentially in each
|
|
/// block of the region.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "si-wqm"
|
|
|
|
namespace {
|
|
|
|
enum {
|
|
StateWQM = 0x1,
|
|
StateExact = 0x2,
|
|
};
|
|
|
|
struct PrintState {
|
|
public:
|
|
explicit PrintState(int State) : State(State) {}
|
|
|
|
int State;
|
|
};
|
|
|
|
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
|
|
if (PS.State & StateWQM)
|
|
OS << "WQM";
|
|
if (PS.State & StateExact) {
|
|
if (PS.State & StateWQM)
|
|
OS << '|';
|
|
OS << "Exact";
|
|
}
|
|
|
|
return OS;
|
|
}
|
|
|
|
struct InstrInfo {
|
|
char Needs = 0;
|
|
char OutNeeds = 0;
|
|
};
|
|
|
|
struct BlockInfo {
|
|
char Needs = 0;
|
|
char InNeeds = 0;
|
|
char OutNeeds = 0;
|
|
};
|
|
|
|
struct WorkItem {
|
|
MachineBasicBlock *MBB = nullptr;
|
|
MachineInstr *MI = nullptr;
|
|
|
|
WorkItem() {}
|
|
WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
|
|
WorkItem(MachineInstr *MI) : MI(MI) {}
|
|
};
|
|
|
|
class SIWholeQuadMode : public MachineFunctionPass {
|
|
private:
|
|
const SIInstrInfo *TII;
|
|
const SIRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI;
|
|
LiveIntervals *LIS;
|
|
|
|
DenseMap<const MachineInstr *, InstrInfo> Instructions;
|
|
DenseMap<MachineBasicBlock *, BlockInfo> Blocks;
|
|
SmallVector<MachineInstr *, 1> LiveMaskQueries;
|
|
|
|
void printInfo();
|
|
|
|
void markInstruction(MachineInstr &MI, char Flag,
|
|
std::vector<WorkItem> &Worklist);
|
|
void markUsesWQM(const MachineInstr &MI, std::vector<WorkItem> &Worklist);
|
|
char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
|
|
void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
|
|
void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
|
|
char analyzeFunction(MachineFunction &MF);
|
|
|
|
bool requiresCorrectState(const MachineInstr &MI) const;
|
|
|
|
MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator Before);
|
|
MachineBasicBlock::iterator
|
|
prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
|
|
MachineBasicBlock::iterator Last, bool PreferLast,
|
|
bool SaveSCC);
|
|
void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
|
|
unsigned SaveWQM, unsigned LiveMaskReg);
|
|
void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
|
|
unsigned SavedWQM);
|
|
void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);
|
|
|
|
void lowerLiveMaskQueries(unsigned LiveMaskReg);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
SIWholeQuadMode() :
|
|
MachineFunctionPass(ID) { }
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "SI Whole Quad Mode"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace
|
|
|
|
char SIWholeQuadMode::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
|
|
false)
|
|
|
|
char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
|
|
|
|
FunctionPass *llvm::createSIWholeQuadModePass() {
|
|
return new SIWholeQuadMode;
|
|
}
|
|
|
|
void SIWholeQuadMode::printInfo() {
|
|
for (const auto &BII : Blocks) {
|
|
dbgs() << "\nBB#" << BII.first->getNumber() << ":\n"
|
|
<< " InNeeds = " << PrintState(BII.second.InNeeds)
|
|
<< ", Needs = " << PrintState(BII.second.Needs)
|
|
<< ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
|
|
|
|
for (const MachineInstr &MI : *BII.first) {
|
|
auto III = Instructions.find(&MI);
|
|
if (III == Instructions.end())
|
|
continue;
|
|
|
|
dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs)
|
|
<< ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
|
|
std::vector<WorkItem> &Worklist) {
|
|
InstrInfo &II = Instructions[&MI];
|
|
|
|
assert(Flag == StateWQM || Flag == StateExact);
|
|
|
|
// Ignore if the instruction is already marked. The typical case is that we
|
|
// mark an instruction WQM multiple times, but for atomics it can happen that
|
|
// Flag is StateWQM, but Needs is already set to StateExact. In this case,
|
|
// letting the atomic run in StateExact is correct as per the relevant specs.
|
|
if (II.Needs)
|
|
return;
|
|
|
|
II.Needs = Flag;
|
|
Worklist.push_back(&MI);
|
|
}
|
|
|
|
/// Mark all instructions defining the uses in \p MI as WQM.
|
|
void SIWholeQuadMode::markUsesWQM(const MachineInstr &MI,
|
|
std::vector<WorkItem> &Worklist) {
|
|
for (const MachineOperand &Use : MI.uses()) {
|
|
if (!Use.isReg() || !Use.isUse())
|
|
continue;
|
|
|
|
unsigned Reg = Use.getReg();
|
|
|
|
// Handle physical registers that we need to track; this is mostly relevant
|
|
// for VCC, which can appear as the (implicit) input of a uniform branch,
|
|
// e.g. when a loop counter is stored in a VGPR.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
if (Reg == AMDGPU::EXEC)
|
|
continue;
|
|
|
|
for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
|
|
LiveRange &LR = LIS->getRegUnit(*RegUnit);
|
|
const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
|
|
if (!Value)
|
|
continue;
|
|
|
|
// Since we're in machine SSA, we do not need to track physical
|
|
// registers across basic blocks.
|
|
if (Value->isPHIDef())
|
|
continue;
|
|
|
|
markInstruction(*LIS->getInstructionFromIndex(Value->def), StateWQM,
|
|
Worklist);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
|
|
markInstruction(DefMI, StateWQM, Worklist);
|
|
}
|
|
}
|
|
|
|
// Scan instructions to determine which ones require an Exact execmask and
|
|
// which ones seed WQM requirements.
|
|
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
|
|
std::vector<WorkItem> &Worklist) {
|
|
char GlobalFlags = 0;
|
|
bool WQMOutputs = MF.getFunction()->hasFnAttribute("amdgpu-ps-wqm-outputs");
|
|
|
|
for (auto BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) {
|
|
MachineBasicBlock &MBB = *BI;
|
|
|
|
for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
|
|
MachineInstr &MI = *II;
|
|
unsigned Opcode = MI.getOpcode();
|
|
char Flags = 0;
|
|
|
|
if (TII->isDS(Opcode)) {
|
|
Flags = StateWQM;
|
|
} else if (TII->isWQM(Opcode)) {
|
|
// Sampling instructions don't need to produce results for all pixels
|
|
// in a quad, they just require all inputs of a quad to have been
|
|
// computed for derivatives.
|
|
markUsesWQM(MI, Worklist);
|
|
GlobalFlags |= StateWQM;
|
|
continue;
|
|
} else if (TII->isDisableWQM(MI)) {
|
|
Flags = StateExact;
|
|
} else {
|
|
if (Opcode == AMDGPU::SI_PS_LIVE) {
|
|
LiveMaskQueries.push_back(&MI);
|
|
} else if (WQMOutputs) {
|
|
// The function is in machine SSA form, which means that physical
|
|
// VGPRs correspond to shader inputs and outputs. Inputs are
|
|
// only used, outputs are only defined.
|
|
for (const MachineOperand &MO : MI.defs()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (!TRI->isVirtualRegister(Reg) &&
|
|
TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) {
|
|
Flags = StateWQM;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Flags)
|
|
continue;
|
|
}
|
|
|
|
markInstruction(MI, Flags, Worklist);
|
|
GlobalFlags |= Flags;
|
|
}
|
|
}
|
|
|
|
return GlobalFlags;
|
|
}
|
|
|
|
void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
|
|
std::vector<WorkItem>& Worklist) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
|
|
BlockInfo &BI = Blocks[MBB];
|
|
|
|
// Control flow-type instructions and stores to temporary memory that are
|
|
// followed by WQM computations must themselves be in WQM.
|
|
if ((II.OutNeeds & StateWQM) && !II.Needs &&
|
|
(MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
|
|
Instructions[&MI].Needs = StateWQM;
|
|
II.Needs = StateWQM;
|
|
}
|
|
|
|
// Propagate to block level
|
|
BI.Needs |= II.Needs;
|
|
if ((BI.InNeeds | II.Needs) != BI.InNeeds) {
|
|
BI.InNeeds |= II.Needs;
|
|
Worklist.push_back(MBB);
|
|
}
|
|
|
|
// Propagate backwards within block
|
|
if (MachineInstr *PrevMI = MI.getPrevNode()) {
|
|
char InNeeds = II.Needs | II.OutNeeds;
|
|
if (!PrevMI->isPHI()) {
|
|
InstrInfo &PrevII = Instructions[PrevMI];
|
|
if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
|
|
PrevII.OutNeeds |= InNeeds;
|
|
Worklist.push_back(PrevMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Propagate WQM flag to instruction inputs
|
|
assert(II.Needs != (StateWQM | StateExact));
|
|
|
|
if (II.Needs == StateWQM)
|
|
markUsesWQM(MI, Worklist);
|
|
}
|
|
|
|
void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
|
|
std::vector<WorkItem>& Worklist) {
|
|
BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
|
|
|
|
// Propagate through instructions
|
|
if (!MBB.empty()) {
|
|
MachineInstr *LastMI = &*MBB.rbegin();
|
|
InstrInfo &LastII = Instructions[LastMI];
|
|
if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
|
|
LastII.OutNeeds |= BI.OutNeeds;
|
|
Worklist.push_back(LastMI);
|
|
}
|
|
}
|
|
|
|
// Predecessor blocks must provide for our WQM/Exact needs.
|
|
for (MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
BlockInfo &PredBI = Blocks[Pred];
|
|
if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
|
|
continue;
|
|
|
|
PredBI.OutNeeds |= BI.InNeeds;
|
|
PredBI.InNeeds |= BI.InNeeds;
|
|
Worklist.push_back(Pred);
|
|
}
|
|
|
|
// All successors must be prepared to accept the same set of WQM/Exact data.
|
|
for (MachineBasicBlock *Succ : MBB.successors()) {
|
|
BlockInfo &SuccBI = Blocks[Succ];
|
|
if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
|
|
continue;
|
|
|
|
SuccBI.InNeeds |= BI.OutNeeds;
|
|
Worklist.push_back(Succ);
|
|
}
|
|
}
|
|
|
|
char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
|
|
std::vector<WorkItem> Worklist;
|
|
char GlobalFlags = scanInstructions(MF, Worklist);
|
|
|
|
while (!Worklist.empty()) {
|
|
WorkItem WI = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (WI.MI)
|
|
propagateInstruction(*WI.MI, Worklist);
|
|
else
|
|
propagateBlock(*WI.MBB, Worklist);
|
|
}
|
|
|
|
return GlobalFlags;
|
|
}
|
|
|
|
/// Whether \p MI really requires the exec state computed during analysis.
|
|
///
|
|
/// Scalar instructions must occasionally be marked WQM for correct propagation
|
|
/// (e.g. thread masks leading up to branches), but when it comes to actual
|
|
/// execution, they don't care about EXEC.
|
|
bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const {
|
|
if (MI.isTerminator())
|
|
return true;
|
|
|
|
// Skip instructions that are not affected by EXEC
|
|
if (TII->isScalarUnit(MI))
|
|
return false;
|
|
|
|
// Generic instructions such as COPY will either disappear by register
|
|
// coalescing or be lowered to SALU or VALU instructions.
|
|
if (MI.isTransient()) {
|
|
if (MI.getNumExplicitOperands() >= 1) {
|
|
const MachineOperand &Op = MI.getOperand(0);
|
|
if (Op.isReg()) {
|
|
if (TRI->isSGPRReg(*MRI, Op.getReg())) {
|
|
// SGPR instructions are not affected by EXEC
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator Before) {
|
|
unsigned SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
|
|
MachineInstr *Save =
|
|
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
|
|
.addReg(AMDGPU::SCC);
|
|
MachineInstr *Restore =
|
|
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
|
|
.addReg(SaveReg);
|
|
|
|
LIS->InsertMachineInstrInMaps(*Save);
|
|
LIS->InsertMachineInstrInMaps(*Restore);
|
|
LIS->createAndComputeVirtRegInterval(SaveReg);
|
|
|
|
return Restore;
|
|
}
|
|
|
|
// Return an iterator in the (inclusive) range [First, Last] at which
|
|
// instructions can be safely inserted, keeping in mind that some of the
|
|
// instructions we want to add necessarily clobber SCC.
|
|
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
|
|
MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
|
|
if (!SaveSCC)
|
|
return PreferLast ? Last : First;
|
|
|
|
LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
|
|
auto MBBE = MBB.end();
|
|
SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
|
|
: LIS->getMBBEndIdx(&MBB);
|
|
SlotIndex LastIdx =
|
|
Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
|
|
SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
|
|
const LiveRange::Segment *S;
|
|
|
|
for (;;) {
|
|
S = LR.getSegmentContaining(Idx);
|
|
if (!S)
|
|
break;
|
|
|
|
if (PreferLast) {
|
|
SlotIndex Next = S->start.getBaseIndex();
|
|
if (Next < FirstIdx)
|
|
break;
|
|
Idx = Next;
|
|
} else {
|
|
SlotIndex Next = S->end.getNextIndex().getBaseIndex();
|
|
if (Next > LastIdx)
|
|
break;
|
|
Idx = Next;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator MBBI;
|
|
|
|
if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
|
|
MBBI = MI;
|
|
else {
|
|
assert(Idx == LIS->getMBBEndIdx(&MBB));
|
|
MBBI = MBB.end();
|
|
}
|
|
|
|
if (S)
|
|
MBBI = saveSCC(MBB, MBBI);
|
|
|
|
return MBBI;
|
|
}
|
|
|
|
void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator Before,
|
|
unsigned SaveWQM, unsigned LiveMaskReg) {
|
|
MachineInstr *MI;
|
|
|
|
if (SaveWQM) {
|
|
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
|
|
SaveWQM)
|
|
.addReg(LiveMaskReg);
|
|
} else {
|
|
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64),
|
|
AMDGPU::EXEC)
|
|
.addReg(AMDGPU::EXEC)
|
|
.addReg(LiveMaskReg);
|
|
}
|
|
|
|
LIS->InsertMachineInstrInMaps(*MI);
|
|
}
|
|
|
|
void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator Before,
|
|
unsigned SavedWQM) {
|
|
MachineInstr *MI;
|
|
|
|
if (SavedWQM) {
|
|
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC)
|
|
.addReg(SavedWQM);
|
|
} else {
|
|
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
|
|
AMDGPU::EXEC)
|
|
.addReg(AMDGPU::EXEC);
|
|
}
|
|
|
|
LIS->InsertMachineInstrInMaps(*MI);
|
|
}
|
|
|
|
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
|
|
bool isEntry) {
|
|
auto BII = Blocks.find(&MBB);
|
|
if (BII == Blocks.end())
|
|
return;
|
|
|
|
const BlockInfo &BI = BII->second;
|
|
|
|
if (!(BI.InNeeds & StateWQM))
|
|
return;
|
|
|
|
// This is a non-entry block that is WQM throughout, so no need to do
|
|
// anything.
|
|
if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact)
|
|
return;
|
|
|
|
DEBUG(dbgs() << "\nProcessing block BB#" << MBB.getNumber() << ":\n");
|
|
|
|
unsigned SavedWQMReg = 0;
|
|
bool WQMFromExec = isEntry;
|
|
char State = isEntry ? StateExact : StateWQM;
|
|
|
|
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
|
|
if (isEntry)
|
|
++II; // Skip the instruction that saves LiveMask
|
|
|
|
MachineBasicBlock::iterator First = IE;
|
|
for (;;) {
|
|
MachineBasicBlock::iterator Next = II;
|
|
char Needs = 0;
|
|
char OutNeeds = 0;
|
|
|
|
if (First == IE)
|
|
First = II;
|
|
|
|
if (II != IE) {
|
|
MachineInstr &MI = *II;
|
|
|
|
if (requiresCorrectState(MI)) {
|
|
auto III = Instructions.find(&MI);
|
|
if (III != Instructions.end()) {
|
|
Needs = III->second.Needs;
|
|
OutNeeds = III->second.OutNeeds;
|
|
}
|
|
}
|
|
|
|
if (MI.isTerminator() && !Needs && OutNeeds == StateExact)
|
|
Needs = StateExact;
|
|
|
|
if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
|
|
MI.getOperand(3).setImm(1);
|
|
|
|
++Next;
|
|
} else {
|
|
// End of basic block
|
|
if (BI.OutNeeds & StateWQM)
|
|
Needs = StateWQM;
|
|
else if (BI.OutNeeds == StateExact)
|
|
Needs = StateExact;
|
|
}
|
|
|
|
if (Needs) {
|
|
if (Needs != State) {
|
|
MachineBasicBlock::iterator Before =
|
|
prepareInsertion(MBB, First, II, Needs == StateWQM,
|
|
Needs == StateExact || WQMFromExec);
|
|
|
|
if (Needs == StateExact) {
|
|
if (!WQMFromExec && (OutNeeds & StateWQM))
|
|
SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
|
|
toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
|
|
} else {
|
|
assert(WQMFromExec == (SavedWQMReg == 0));
|
|
|
|
toWQM(MBB, Before, SavedWQMReg);
|
|
|
|
if (SavedWQMReg) {
|
|
LIS->createAndComputeVirtRegInterval(SavedWQMReg);
|
|
SavedWQMReg = 0;
|
|
}
|
|
}
|
|
|
|
State = Needs;
|
|
}
|
|
|
|
First = IE;
|
|
}
|
|
|
|
if (II == IE)
|
|
break;
|
|
II = Next;
|
|
}
|
|
}
|
|
|
|
void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
|
|
for (MachineInstr *MI : LiveMaskQueries) {
|
|
const DebugLoc &DL = MI->getDebugLoc();
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
MachineInstr *Copy =
|
|
BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
|
|
.addReg(LiveMaskReg);
|
|
|
|
LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
|
|
if (MF.getFunction()->getCallingConv() != CallingConv::AMDGPU_PS)
|
|
return false;
|
|
|
|
Instructions.clear();
|
|
Blocks.clear();
|
|
LiveMaskQueries.clear();
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
|
|
TII = ST.getInstrInfo();
|
|
TRI = &TII->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
|
|
char GlobalFlags = analyzeFunction(MF);
|
|
if (!(GlobalFlags & StateWQM)) {
|
|
lowerLiveMaskQueries(AMDGPU::EXEC);
|
|
return !LiveMaskQueries.empty();
|
|
}
|
|
|
|
// Store a copy of the original live mask when required
|
|
unsigned LiveMaskReg = 0;
|
|
{
|
|
MachineBasicBlock &Entry = MF.front();
|
|
MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
|
|
|
|
if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
|
|
LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(),
|
|
TII->get(AMDGPU::COPY), LiveMaskReg)
|
|
.addReg(AMDGPU::EXEC);
|
|
LIS->InsertMachineInstrInMaps(*MI);
|
|
}
|
|
|
|
if (GlobalFlags == StateWQM) {
|
|
// For a shader that needs only WQM, we can just set it once.
|
|
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
|
|
AMDGPU::EXEC)
|
|
.addReg(AMDGPU::EXEC);
|
|
|
|
lowerLiveMaskQueries(LiveMaskReg);
|
|
// EntryMI may become invalid here
|
|
return true;
|
|
}
|
|
}
|
|
|
|
DEBUG(printInfo());
|
|
|
|
lowerLiveMaskQueries(LiveMaskReg);
|
|
|
|
// Handle the general case
|
|
for (auto BII : Blocks)
|
|
processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());
|
|
|
|
// Physical registers like SCC aren't tracked by default anyway, so just
|
|
// removing the ranges we computed is the simplest option for maintaining
|
|
// the analysis results.
|
|
LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
|
|
|
|
return true;
|
|
}
|