1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/include/llvm/CodeGen/TargetRegisterInfo.h
Zaara Syeda 72c84455d5 Re-commit: [MachineLICM] Add functions to MachineLICM to hoist invariant stores
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.

Differential Revision: https://reviews.llvm.org/D40196

llvm-svn: 328326
2018-03-23 15:28:15 +00:00

1188 lines
48 KiB
C++

//==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes an abstract interface used to get information about a
// target machines register file. This information is used for a variety of
// purposed, especially register allocation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
#define LLVM_CODEGEN_TARGETREGISTERINFO_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Printable.h"
#include <cassert>
#include <cstdint>
#include <functional>
namespace llvm {
class BitVector;
class LiveRegMatrix;
class MachineFunction;
class MachineInstr;
class RegScavenger;
class VirtRegMap;
class LiveIntervals;
class TargetRegisterClass {
public:
using iterator = const MCPhysReg *;
using const_iterator = const MCPhysReg *;
using sc_iterator = const TargetRegisterClass* const *;
// Instance variables filled by tablegen, do not use!
const MCRegisterClass *MC;
const uint32_t *SubClassMask;
const uint16_t *SuperRegIndices;
const LaneBitmask LaneMask;
/// Classes with a higher priority value are assigned first by register
/// allocators using a greedy heuristic. The value is in the range [0,63].
const uint8_t AllocationPriority;
/// Whether the class supports two (or more) disjunct subregister indices.
const bool HasDisjunctSubRegs;
/// Whether a combination of subregisters can cover every register in the
/// class. See also the CoveredBySubRegs description in Target.td.
const bool CoveredBySubRegs;
const sc_iterator SuperClasses;
ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
/// Return the register class ID number.
unsigned getID() const { return MC->getID(); }
/// begin/end - Return all of the registers in this class.
///
iterator begin() const { return MC->begin(); }
iterator end() const { return MC->end(); }
/// Return the number of registers in this class.
unsigned getNumRegs() const { return MC->getNumRegs(); }
iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
getRegisters() const {
return make_range(MC->begin(), MC->end());
}
/// Return the specified register in the class.
unsigned getRegister(unsigned i) const {
return MC->getRegister(i);
}
/// Return true if the specified register is included in this register class.
/// This does not include virtual registers.
bool contains(unsigned Reg) const {
return MC->contains(Reg);
}
/// Return true if both registers are in this class.
bool contains(unsigned Reg1, unsigned Reg2) const {
return MC->contains(Reg1, Reg2);
}
/// Return the cost of copying a value between two registers in this class.
/// A negative number means the register class is very expensive
/// to copy e.g. status flag register classes.
int getCopyCost() const { return MC->getCopyCost(); }
/// Return true if this register class may be used to create virtual
/// registers.
bool isAllocatable() const { return MC->isAllocatable(); }
/// Return true if the specified TargetRegisterClass
/// is a proper sub-class of this TargetRegisterClass.
bool hasSubClass(const TargetRegisterClass *RC) const {
return RC != this && hasSubClassEq(RC);
}
/// Returns true if RC is a sub-class of or equal to this class.
bool hasSubClassEq(const TargetRegisterClass *RC) const {
unsigned ID = RC->getID();
return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
}
/// Return true if the specified TargetRegisterClass is a
/// proper super-class of this TargetRegisterClass.
bool hasSuperClass(const TargetRegisterClass *RC) const {
return RC->hasSubClass(this);
}
/// Returns true if RC is a super-class of or equal to this class.
bool hasSuperClassEq(const TargetRegisterClass *RC) const {
return RC->hasSubClassEq(this);
}
/// Returns a bit vector of subclasses, including this one.
/// The vector is indexed by class IDs.
///
/// To use it, consider the returned array as a chunk of memory that
/// contains an array of bits of size NumRegClasses. Each 32-bit chunk
/// contains a bitset of the ID of the subclasses in big-endian style.
/// I.e., the representation of the memory from left to right at the
/// bit level looks like:
/// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
/// [ XXX NumRegClasses NumRegClasses - 1 ... ]
/// Where the number represents the class ID and XXX bits that
/// should be ignored.
///
/// See the implementation of hasSubClassEq for an example of how it
/// can be used.
const uint32_t *getSubClassMask() const {
return SubClassMask;
}
/// Returns a 0-terminated list of sub-register indices that project some
/// super-register class into this register class. The list has an entry for
/// each Idx such that:
///
/// There exists SuperRC where:
/// For all Reg in SuperRC:
/// this->contains(Reg:Idx)
const uint16_t *getSuperRegIndices() const {
return SuperRegIndices;
}
/// Returns a NULL-terminated list of super-classes. The
/// classes are ordered by ID which is also a topological ordering from large
/// to small classes. The list does NOT include the current class.
sc_iterator getSuperClasses() const {
return SuperClasses;
}
/// Return true if this TargetRegisterClass is a subset
/// class of at least one other TargetRegisterClass.
bool isASubClass() const {
return SuperClasses[0] != nullptr;
}
/// Returns the preferred order for allocating registers from this register
/// class in MF. The raw order comes directly from the .td file and may
/// include reserved registers that are not allocatable.
/// Register allocators should also make sure to allocate
/// callee-saved registers only after all the volatiles are used. The
/// RegisterClassInfo class provides filtered allocation orders with
/// callee-saved registers moved to the end.
///
/// The MachineFunction argument can be used to tune the allocatable
/// registers based on the characteristics of the function, subtarget, or
/// other criteria.
///
/// By default, this method returns all registers in the class.
ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
}
/// Returns the combination of all lane masks of register in this class.
/// The lane masks of the registers are the combination of all lane masks
/// of their subregisters. Returns 1 if there are no subregisters.
LaneBitmask getLaneMask() const {
return LaneMask;
}
};
/// Extra information, not in MCRegisterDesc, about registers.
/// These are used by codegen, not by MC.
struct TargetRegisterInfoDesc {
unsigned CostPerUse; // Extra cost of instructions using register.
bool inAllocatableClass; // Register belongs to an allocatable regclass.
};
/// Each TargetRegisterClass has a per register weight, and weight
/// limit which must be less than the limits of its pressure sets.
struct RegClassWeight {
unsigned RegWeight;
unsigned WeightLimit;
};
/// TargetRegisterInfo base class - We assume that the target defines a static
/// array of TargetRegisterDesc objects that represent all of the machine
/// registers that the target has. As such, we simply have to track a pointer
/// to this array so that we can turn register number into a register
/// descriptor.
///
class TargetRegisterInfo : public MCRegisterInfo {
public:
using regclass_iterator = const TargetRegisterClass * const *;
using vt_iterator = const MVT::SimpleValueType *;
struct RegClassInfo {
unsigned RegSize, SpillSize, SpillAlignment;
vt_iterator VTList;
};
private:
const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
const char *const *SubRegIndexNames; // Names of subreg indexes.
// Pointer to array of lane masks, one per sub-reg index.
const LaneBitmask *SubRegIndexLaneMasks;
regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
LaneBitmask CoveringLanes;
const RegClassInfo *const RCInfos;
unsigned HwMode;
protected:
TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RegClassBegin,
regclass_iterator RegClassEnd,
const char *const *SRINames,
const LaneBitmask *SRILaneMasks,
LaneBitmask CoveringLanes,
const RegClassInfo *const RSI,
unsigned Mode = 0);
virtual ~TargetRegisterInfo();
public:
// Register numbers can represent physical registers, virtual registers, and
// sometimes stack slots. The unsigned values are divided into these ranges:
//
// 0 Not a register, can be used as a sentinel.
// [1;2^30) Physical registers assigned by TableGen.
// [2^30;2^31) Stack slots. (Rarely used.)
// [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
//
// Further sentinels can be allocated from the small negative integers.
// DenseMapInfo<unsigned> uses -1u and -2u.
/// isStackSlot - Sometimes it is useful the be able to store a non-negative
/// frame index in a variable that normally holds a register. isStackSlot()
/// returns true if Reg is in the range used for stack slots.
///
/// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
/// slots, so if a variable may contains a stack slot, always check
/// isStackSlot() first.
///
static bool isStackSlot(unsigned Reg) {
return int(Reg) >= (1 << 30);
}
/// Compute the frame index from a register value representing a stack slot.
static int stackSlot2Index(unsigned Reg) {
assert(isStackSlot(Reg) && "Not a stack slot");
return int(Reg - (1u << 30));
}
/// Convert a non-negative frame index to a stack slot register value.
static unsigned index2StackSlot(int FI) {
assert(FI >= 0 && "Cannot hold a negative frame index.");
return FI + (1u << 30);
}
/// Return true if the specified register number is in
/// the physical register namespace.
static bool isPhysicalRegister(unsigned Reg) {
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
return int(Reg) > 0;
}
/// Return true if the specified register number is in
/// the virtual register namespace.
static bool isVirtualRegister(unsigned Reg) {
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
return int(Reg) < 0;
}
/// Convert a virtual register number to a 0-based index.
/// The first virtual register in a function will get the index 0.
static unsigned virtReg2Index(unsigned Reg) {
assert(isVirtualRegister(Reg) && "Not a virtual register");
return Reg & ~(1u << 31);
}
/// Convert a 0-based index to a virtual register number.
/// This is the inverse operation of VirtReg2IndexFunctor below.
static unsigned index2VirtReg(unsigned Index) {
return Index | (1u << 31);
}
/// Return the size in bits of a register from class RC.
unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
return getRegClassInfo(RC).RegSize;
}
/// Return the size in bytes of the stack slot allocated to hold a spilled
/// copy of a register from class RC.
unsigned getSpillSize(const TargetRegisterClass &RC) const {
return getRegClassInfo(RC).SpillSize / 8;
}
/// Return the minimum required alignment in bytes for a spill slot for
/// a register of this class.
unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
return getRegClassInfo(RC).SpillAlignment / 8;
}
/// Return true if the given TargetRegisterClass has the ValueType T.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
if (MVT(*I) == T)
return true;
return false;
}
/// Loop over all of the value types that can be represented by values
/// in the given register class.
vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
return getRegClassInfo(RC).VTList;
}
vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
vt_iterator I = legalclasstypes_begin(RC);
while (*I != MVT::Other)
++I;
return I;
}
/// Returns the Register Class of a physical register of the given type,
/// picking the most sub register class of the right type that contains this
/// physreg.
const TargetRegisterClass *
getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
/// Return the maximal subclass of the given register class that is
/// allocatable or NULL.
const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass *RC) const;
/// Returns a bitset indexed by register number indicating if a register is
/// allocatable or not. If a register class is specified, returns the subset
/// for the class.
BitVector getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC = nullptr) const;
/// Return the additional cost of using this register instead
/// of other registers in its class.
unsigned getCostPerUse(unsigned RegNo) const {
return InfoDesc[RegNo].CostPerUse;
}
/// Return true if the register is in the allocation of any register class.
bool isInAllocatableClass(unsigned RegNo) const {
return InfoDesc[RegNo].inAllocatableClass;
}
/// Return the human-readable symbolic target-specific
/// name for the specified SubRegIndex.
const char *getSubRegIndexName(unsigned SubIdx) const {
assert(SubIdx && SubIdx < getNumSubRegIndices() &&
"This is not a subregister index");
return SubRegIndexNames[SubIdx-1];
}
/// Return a bitmask representing the parts of a register that are covered by
/// SubIdx \see LaneBitmask.
///
/// SubIdx == 0 is allowed, it has the lane mask ~0u.
LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
return SubRegIndexLaneMasks[SubIdx];
}
/// The lane masks returned by getSubRegIndexLaneMask() above can only be
/// used to determine if sub-registers overlap - they can't be used to
/// determine if a set of sub-registers completely cover another
/// sub-register.
///
/// The X86 general purpose registers have two lanes corresponding to the
/// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
/// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
/// sub_32bit sub-register.
///
/// On the other hand, the ARM NEON lanes fully cover their registers: The
/// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
/// This is related to the CoveredBySubRegs property on register definitions.
///
/// This function returns a bit mask of lanes that completely cover their
/// sub-registers. More precisely, given:
///
/// Covering = getCoveringLanes();
/// MaskA = getSubRegIndexLaneMask(SubA);
/// MaskB = getSubRegIndexLaneMask(SubB);
///
/// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
/// SubB.
LaneBitmask getCoveringLanes() const { return CoveringLanes; }
/// Returns true if the two registers are equal or alias each other.
/// The registers may be virtual registers.
bool regsOverlap(unsigned regA, unsigned regB) const {
if (regA == regB) return true;
if (isVirtualRegister(regA) || isVirtualRegister(regB))
return false;
// Regunits are numerically ordered. Find a common unit.
MCRegUnitIterator RUA(regA, this);
MCRegUnitIterator RUB(regB, this);
do {
if (*RUA == *RUB) return true;
if (*RUA < *RUB) ++RUA;
else ++RUB;
} while (RUA.isValid() && RUB.isValid());
return false;
}
/// Returns true if Reg contains RegUnit.
bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
if (*Units == RegUnit)
return true;
return false;
}
/// Returns the original SrcReg unless it is the target of a copy-like
/// operation, in which case we chain backwards through all such operations
/// to the ultimate source register. If a physical register is encountered,
/// we stop the search.
virtual unsigned lookThruCopyLike(unsigned SrcReg,
const MachineRegisterInfo *MRI) const;
/// Return a null-terminated list of all of the callee-saved registers on
/// this target. The register should be in the order of desired callee-save
/// stack frame offset. The first register is closest to the incoming stack
/// pointer if stack grows down, and vice versa.
/// Notice: This function does not take into account disabled CSRs.
/// In most cases you will want to use instead the function
/// getCalleeSavedRegs that is implemented in MachineRegisterInfo.
virtual const MCPhysReg*
getCalleeSavedRegs(const MachineFunction *MF) const = 0;
/// Return a mask of call-preserved registers for the given calling convention
/// on the current function. The mask should include all call-preserved
/// aliases. This is used by the register allocator to determine which
/// registers can be live across a call.
///
/// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
/// A set bit indicates that all bits of the corresponding register are
/// preserved across the function call. The bit mask is expected to be
/// sub-register complete, i.e. if A is preserved, so are all its
/// sub-registers.
///
/// Bits are numbered from the LSB, so the bit for physical register Reg can
/// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
///
/// A NULL pointer means that no register mask will be used, and call
/// instructions should use implicit-def operands to indicate call clobbered
/// registers.
///
virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID) const {
// The default mask clobbers everything. All targets should override.
return nullptr;
}
/// Return a register mask that clobbers everything.
virtual const uint32_t *getNoPreservedMask() const {
llvm_unreachable("target does not provide no preserved mask");
}
/// Return true if all bits that are set in mask \p mask0 are also set in
/// \p mask1.
bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
/// Return all the call-preserved register masks defined for this target.
virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
virtual ArrayRef<const char *> getRegMaskNames() const = 0;
/// Returns a bitset indexed by physical register number indicating if a
/// register is a special register that has particular uses and should be
/// considered unavailable at all times, e.g. stack pointer, return address.
/// A reserved register:
/// - is not allocatable
/// - is considered always live
/// - is ignored by liveness tracking
/// It is often necessary to reserve the super registers of a reserved
/// register as well, to avoid them getting allocated indirectly. You may use
/// markSuperRegs() and checkAllSuperRegsMarked() in this case.
virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
/// Returns true if PhysReg is unallocatable and constant throughout the
/// function. Used by MachineRegisterInfo::isConstantPhysReg().
virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
/// Physical registers that may be modified within a function but are
/// guaranteed to be restored before any uses. This is useful for targets that
/// have call sequences where a GOT register may be updated by the caller
/// prior to a call and is guaranteed to be restored (also by the caller)
/// after the call.
virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
const MachineFunction &MF) const {
return false;
}
/// Prior to adding the live-out mask to a stackmap or patchpoint
/// instruction, provide the target the opportunity to adjust it (mainly to
/// remove pseudo-registers that should be ignored).
virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
/// Return a super-register of the specified register
/// Reg so its sub-register of index SubIdx is Reg.
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
const TargetRegisterClass *RC) const {
return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
}
/// Return a subclass of the specified register
/// class A so that each register in it has a sub-register of the
/// specified sub-register index which is in the specified register class B.
///
/// TableGen will synthesize missing A sub-classes.
virtual const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B, unsigned Idx) const;
// For a copy-like instruction that defines a register of class DefRC with
// subreg index DefSubReg, reading from another source with class SrcRC and
// subregister SrcSubReg return true if this is a preferable copy
// instruction or an earlier use should be used.
virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const;
/// Returns the largest legal sub-class of RC that
/// supports the sub-register index Idx.
/// If no such sub-class exists, return NULL.
/// If all registers in RC already have an Idx sub-register, return RC.
///
/// TableGen generates a version of this function that is good enough in most
/// cases. Targets can override if they have constraints that TableGen
/// doesn't understand. For example, the x86 sub_8bit sub-register index is
/// supported by the full GR32 register class in 64-bit mode, but only by the
/// GR32_ABCD regiister class in 32-bit mode.
///
/// TableGen will synthesize missing RC sub-classes.
virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
assert(Idx == 0 && "Target has no sub-registers");
return RC;
}
/// Return the subregister index you get from composing
/// two subregister indices.
///
/// The special null sub-register index composes as the identity.
///
/// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
/// returns c. Note that composeSubRegIndices does not tell you about illegal
/// compositions. If R does not have a subreg a, or R:a does not have a subreg
/// b, composeSubRegIndices doesn't tell you.
///
/// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
/// ssub_0:S0 - ssub_3:S3 subregs.
/// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
unsigned composeSubRegIndices(unsigned a, unsigned b) const {
if (!a) return b;
if (!b) return a;
return composeSubRegIndicesImpl(a, b);
}
/// Transforms a LaneMask computed for one subregister to the lanemask that
/// would have been computed when composing the subsubregisters with IdxA
/// first. @sa composeSubRegIndices()
LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
LaneBitmask Mask) const {
if (!IdxA)
return Mask;
return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
}
/// Transform a lanemask given for a virtual register to the corresponding
/// lanemask before using subregister with index \p IdxA.
/// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
/// valie lane mask (no invalid bits set) the following holds:
/// X0 = composeSubRegIndexLaneMask(Idx, Mask)
/// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
/// => X1 == Mask
LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
LaneBitmask LaneMask) const {
if (!IdxA)
return LaneMask;
return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
}
/// Debugging helper: dump register in human readable form to dbgs() stream.
static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
const TargetRegisterInfo* TRI = nullptr);
protected:
/// Overridden by TableGen in targets that have sub-registers.
virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
llvm_unreachable("Target has no sub-registers");
}
/// Overridden by TableGen in targets that have sub-registers.
virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
llvm_unreachable("Target has no sub-registers");
}
virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
LaneBitmask) const {
llvm_unreachable("Target has no sub-registers");
}
public:
/// Find a common super-register class if it exists.
///
/// Find a register class, SuperRC and two sub-register indices, PreA and
/// PreB, such that:
///
/// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
///
/// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
///
/// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
///
/// SuperRC will be chosen such that no super-class of SuperRC satisfies the
/// requirements, and there is no register class with a smaller spill size
/// that satisfies the requirements.
///
/// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
///
/// Either of the PreA and PreB sub-register indices may be returned as 0. In
/// that case, the returned register class will be a sub-class of the
/// corresponding argument register class.
///
/// The function returns NULL if no register class can be found.
const TargetRegisterClass*
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
const TargetRegisterClass *RCB, unsigned SubB,
unsigned &PreA, unsigned &PreB) const;
//===--------------------------------------------------------------------===//
// Register Class Information
//
protected:
const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
}
public:
/// Register class iterators
regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_iterator regclass_end() const { return RegClassEnd; }
iterator_range<regclass_iterator> regclasses() const {
return make_range(regclass_begin(), regclass_end());
}
unsigned getNumRegClasses() const {
return (unsigned)(regclass_end()-regclass_begin());
}
/// Returns the register class associated with the enumeration value.
/// See class MCOperandInfo.
const TargetRegisterClass *getRegClass(unsigned i) const {
assert(i < getNumRegClasses() && "Register Class ID out of range");
return RegClassBegin[i];
}
/// Returns the name of the register class.
const char *getRegClassName(const TargetRegisterClass *Class) const {
return MCRegisterInfo::getRegClassName(Class->MC);
}
/// Find the largest common subclass of A and B.
/// Return NULL if there is no common subclass.
/// The common subclass should contain
/// simple value type SVT if it is not the Any type.
const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
const MVT::SimpleValueType SVT =
MVT::SimpleValueType::Any) const;
/// Returns a TargetRegisterClass used for pointer values.
/// If a target supports multiple different pointer register classes,
/// kind specifies which one is indicated.
virtual const TargetRegisterClass *
getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
llvm_unreachable("Target didn't implement getPointerRegClass!");
}
/// Returns a legal register class to copy a register in the specified class
/// to or from. If it is possible to copy the register directly without using
/// a cross register class copy, return the specified RC. Returns NULL if it
/// is not possible to copy between two registers of the specified class.
virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass *RC) const {
return RC;
}
/// Returns the largest super class of RC that is legal to use in the current
/// sub-target and has the same spill size.
/// The returned register class can be used to create virtual registers which
/// means that all its registers can be copied and spilled.
virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &) const {
/// The default implementation is very conservative and doesn't allow the
/// register allocator to inflate register classes.
return RC;
}
/// Return the register pressure "high water mark" for the specific register
/// class. The scheduler is in high register pressure mode (for the specific
/// register class) if it goes over the limit.
///
/// Note: this is the old register pressure model that relies on a manually
/// specified representative register class per value type.
virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
return 0;
}
/// Return a heuristic for the machine scheduler to compare the profitability
/// of increasing one register pressure set versus another. The scheduler
/// will prefer increasing the register pressure of the set which returns
/// the largest value for this function.
virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
unsigned PSetID) const {
return PSetID;
}
/// Get the weight in units of pressure for this register class.
virtual const RegClassWeight &getRegClassWeight(
const TargetRegisterClass *RC) const = 0;
/// Returns size in bits of a phys/virtual/generic register.
unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
/// Get the weight in units of pressure for this register unit.
virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
/// Get the number of dimensions of register pressure.
virtual unsigned getNumRegPressureSets() const = 0;
/// Get the name of this register unit pressure set.
virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
/// Get the register unit pressure limit for this dimension.
/// This limit must be adjusted dynamically for reserved registers.
virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const = 0;
/// Get the dimensions of register pressure impacted by this register class.
/// Returns a -1 terminated array of pressure set IDs.
virtual const int *getRegClassPressureSets(
const TargetRegisterClass *RC) const = 0;
/// Get the dimensions of register pressure impacted by this register unit.
/// Returns a -1 terminated array of pressure set IDs.
virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
/// Get a list of 'hint' registers that the register allocator should try
/// first when allocating a physical register for the virtual register
/// VirtReg. These registers are effectively moved to the front of the
/// allocation order. If true is returned, regalloc will try to only use
/// hints to the greatest extent possible even if it means spilling.
///
/// The Order argument is the allocation order for VirtReg's register class
/// as returned from RegisterClassInfo::getOrder(). The hint registers must
/// come from Order, and they must not be reserved.
///
/// The default implementation of this function will only add target
/// independent register allocation hints. Targets that override this
/// function should typically call this default implementation as well and
/// expect to see generic copy hints added.
virtual bool getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM = nullptr,
const LiveRegMatrix *Matrix = nullptr)
const;
/// A callback to allow target a chance to update register allocation hints
/// when a register is "changed" (e.g. coalesced) to another register.
/// e.g. On ARM, some virtual registers should target register pairs,
/// if one of pair is coalesced to another register, the allocation hint of
/// the other half of the pair should be changed to point to the new register.
virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
// Do nothing.
}
/// The creation of multiple copy hints have been implemented in
/// weightCalcHelper(), but since this affects so many tests for many
/// targets, this is temporarily disabled per default. THIS SHOULD BE
/// "GENERAL GOODNESS" and hopefully all targets will update their tests
/// and enable this soon. This hook should then be removed.
virtual bool enableMultipleCopyHints() const { return false; }
/// Allow the target to reverse allocation order of local live ranges. This
/// will generally allocate shorter local live ranges first. For targets with
/// many registers, this could reduce regalloc compile time by a large
/// factor. It is disabled by default for three reasons:
/// (1) Top-down allocation is simpler and easier to debug for targets that
/// don't benefit from reversing the order.
/// (2) Bottom-up allocation could result in poor evicition decisions on some
/// targets affecting the performance of compiled code.
/// (3) Bottom-up allocation is no longer guaranteed to optimally color.
virtual bool reverseLocalAssignment() const { return false; }
/// Allow the target to override the cost of using a callee-saved register for
/// the first time. Default value of 0 means we will use a callee-saved
/// register if it is available.
virtual unsigned getCSRFirstUseCost() const { return 0; }
/// Returns true if the target requires (and can make use of) the register
/// scavenger.
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
return false;
}
/// Returns true if the target wants to use frame pointer based accesses to
/// spill to the scavenger emergency spill slot.
virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
return true;
}
/// Returns true if the target requires post PEI scavenging of registers for
/// materializing frame index constants.
virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
return false;
}
/// Returns true if the target requires using the RegScavenger directly for
/// frame elimination despite using requiresFrameIndexScavenging.
virtual bool requiresFrameIndexReplacementScavenging(
const MachineFunction &MF) const {
return false;
}
/// Returns true if the target wants the LocalStackAllocation pass to be run
/// and virtual base registers used for more efficient stack access.
virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
return false;
}
/// Return true if target has reserved a spill slot in the stack frame of
/// the given function for the specified register. e.g. On x86, if the frame
/// register is required, the first fixed stack object is reserved as its
/// spill slot. This tells PEI not to create a new stack frame
/// object for the given register. It should be called only after
/// determineCalleeSaves().
virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
int &FrameIdx) const {
return false;
}
/// Returns true if the live-ins should be tracked after register allocation.
virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
return false;
}
/// True if the stack can be realigned for the target.
virtual bool canRealignStack(const MachineFunction &MF) const;
/// True if storage within the function requires the stack pointer to be
/// aligned more than the normal calling convention calls for.
/// This cannot be overriden by the target, but canRealignStack can be
/// overridden.
bool needsStackRealignment(const MachineFunction &MF) const;
/// Get the offset from the referenced frame index in the instruction,
/// if there is one.
virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
return 0;
}
/// Returns true if the instruction's frame index reference would be better
/// served by a base register other than FP or SP.
/// Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
return false;
}
/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
/// before insertion point I.
virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg, int FrameIdx,
int64_t Offset) const {
llvm_unreachable("materializeFrameBaseRegister does not exist on this "
"target");
}
/// Resolve a frame index operand of an instruction
/// to reference the indicated base register plus offset instead.
virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
int64_t Offset) const {
llvm_unreachable("resolveFrameIndex does not exist on this target");
}
/// Determine whether a given base register plus offset immediate is
/// encodable to resolve a frame index.
virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
int64_t Offset) const {
llvm_unreachable("isFrameOffsetLegal does not exist on this target");
}
/// Spill the register so it can be used by the register scavenger.
/// Return true if the register was spilled, false otherwise.
/// If this function does not spill the register, the scavenger
/// will instead spill it to the emergency spill slot.
virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator &UseMI,
const TargetRegisterClass *RC,
unsigned Reg) const {
return false;
}
/// This method must be overriden to eliminate abstract frame indices from
/// instructions which may use them. The instruction referenced by the
/// iterator contains an MO_FrameIndex operand which must be eliminated by
/// this method. This method may modify or replace the specified instruction,
/// as long as it keeps the iterator pointing at the finished product.
/// SPAdj is the SP adjustment due to call frame setup instruction.
/// FIOperandNum is the FI operand number.
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS = nullptr) const = 0;
/// Return the assembly name for \p Reg.
virtual StringRef getRegAsmName(unsigned Reg) const {
// FIXME: We are assuming that the assembly name is equal to the TableGen
// name converted to lower case
//
// The TableGen name is the name of the definition for this register in the
// target's tablegen files. For example, the TableGen name of
// def EAX : Register <...>; is "EAX"
return StringRef(getName(Reg));
}
//===--------------------------------------------------------------------===//
/// Subtarget Hooks
/// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
virtual bool shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC,
unsigned SubReg,
const TargetRegisterClass *DstRC,
unsigned DstSubReg,
const TargetRegisterClass *NewRC,
LiveIntervals &LIS) const
{ return true; }
//===--------------------------------------------------------------------===//
/// Debug information queries.
/// getFrameRegister - This method should return the register used as a base
/// for values allocated in the current stack frame.
virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
/// Mark a register and all its aliases as reserved in the given set.
void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
/// Returns true if for every register in the set all super registers are part
/// of the set as well.
bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
};
//===----------------------------------------------------------------------===//
// SuperRegClassIterator
//===----------------------------------------------------------------------===//
//
// Iterate over the possible super-registers for a given register class. The
// iterator will visit a list of pairs (Idx, Mask) corresponding to the
// possible classes of super-registers.
//
// Each bit mask will have at least one set bit, and each set bit in Mask
// corresponds to a SuperRC such that:
//
// For all Reg in SuperRC: Reg:Idx is in RC.
//
// The iterator can include (O, RC->getSubClassMask()) as the first entry which
// also satisfies the above requirement, assuming Reg:0 == Reg.
//
class SuperRegClassIterator {
const unsigned RCMaskWords;
unsigned SubReg = 0;
const uint16_t *Idx;
const uint32_t *Mask;
public:
/// Create a SuperRegClassIterator that visits all the super-register classes
/// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
SuperRegClassIterator(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
bool IncludeSelf = false)
: RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
if (!IncludeSelf)
++*this;
}
/// Returns true if this iterator is still pointing at a valid entry.
bool isValid() const { return Idx; }
/// Returns the current sub-register index.
unsigned getSubReg() const { return SubReg; }
/// Returns the bit mask of register classes that getSubReg() projects into
/// RC.
/// See TargetRegisterClass::getSubClassMask() for how to use it.
const uint32_t *getMask() const { return Mask; }
/// Advance iterator to the next entry.
void operator++() {
assert(isValid() && "Cannot move iterator past end.");
Mask += RCMaskWords;
SubReg = *Idx++;
if (!SubReg)
Idx = nullptr;
}
};
//===----------------------------------------------------------------------===//
// BitMaskClassIterator
//===----------------------------------------------------------------------===//
/// This class encapuslates the logic to iterate over bitmask returned by
/// the various RegClass related APIs.
/// E.g., this class can be used to iterate over the subclasses provided by
/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
class BitMaskClassIterator {
/// Total number of register classes.
const unsigned NumRegClasses;
/// Base index of CurrentChunk.
/// In other words, the number of bit we read to get at the
/// beginning of that chunck.
unsigned Base = 0;
/// Adjust base index of CurrentChunk.
/// Base index + how many bit we read within CurrentChunk.
unsigned Idx = 0;
/// Current register class ID.
unsigned ID = 0;
/// Mask we are iterating over.
const uint32_t *Mask;
/// Current chunk of the Mask we are traversing.
uint32_t CurrentChunk;
/// Move ID to the next set bit.
void moveToNextID() {
// If the current chunk of memory is empty, move to the next one,
// while making sure we do not go pass the number of register
// classes.
while (!CurrentChunk) {
// Move to the next chunk.
Base += 32;
if (Base >= NumRegClasses) {
ID = NumRegClasses;
return;
}
CurrentChunk = *++Mask;
Idx = Base;
}
// Otherwise look for the first bit set from the right
// (representation of the class ID is big endian).
// See getSubClassMask for more details on the representation.
unsigned Offset = countTrailingZeros(CurrentChunk);
// Add the Offset to the adjusted base number of this chunk: Idx.
// This is the ID of the register class.
ID = Idx + Offset;
// Consume the zeros, if any, and the bit we just read
// so that we are at the right spot for the next call.
// Do not do Offset + 1 because Offset may be 31 and 32
// will be UB for the shift, though in that case we could
// have make the chunk being equal to 0, but that would
// have introduced a if statement.
moveNBits(Offset);
moveNBits(1);
}
/// Move \p NumBits Bits forward in CurrentChunk.
void moveNBits(unsigned NumBits) {
assert(NumBits < 32 && "Undefined behavior spotted!");
// Consume the bit we read for the next call.
CurrentChunk >>= NumBits;
// Adjust the base for the chunk.
Idx += NumBits;
}
public:
/// Create a BitMaskClassIterator that visits all the register classes
/// represented by \p Mask.
///
/// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
: NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
// Move to the first ID.
moveToNextID();
}
/// Returns true if this iterator is still pointing at a valid entry.
bool isValid() const { return getID() != NumRegClasses; }
/// Returns the current register class ID.
unsigned getID() const { return ID; }
/// Advance iterator to the next entry.
void operator++() {
assert(isValid() && "Cannot move iterator past end.");
moveToNextID();
}
};
// This is useful when building IndexedMaps keyed on virtual registers
struct VirtReg2IndexFunctor {
using argument_type = unsigned;
unsigned operator()(unsigned Reg) const {
return TargetRegisterInfo::virtReg2Index(Reg);
}
};
/// Prints virtual and physical registers with or without a TRI instance.
///
/// The format is:
/// %noreg - NoRegister
/// %5 - a virtual register.
/// %5:sub_8bit - a virtual register with sub-register index (with TRI).
/// %eax - a physical register
/// %physreg17 - a physical register when no TRI instance given.
///
/// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
unsigned SubRegIdx = 0);
/// Create Printable object to print register units on a \ref raw_ostream.
///
/// Register units are named after their root registers:
///
/// al - Single root.
/// fp0~st7 - Dual roots.
///
/// Usage: OS << printRegUnit(Unit, TRI) << '\n';
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
/// \brief Create Printable object to print virtual registers and physical
/// registers on a \ref raw_ostream.
Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
/// \brief Create Printable object to print register classes or register banks
/// on a \ref raw_ostream.
Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI);
} // end namespace llvm
#endif // LLVM_CODEGEN_TARGETREGISTERINFO_H