mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
34412b317e
Summary: This is done by first adding two additional instructions to convert the alloca returned address to local and convert it back to generic. Then replace all uses of alloca instruction with the converted generic address. Then we can rely NVPTXFavorNonGenericAddrSpace pass to combine the generic addresscast and the corresponding Load, Store, Bitcast, GEP Instruction together. Patched by Xuetian Weng (xweng@google.com). Test Plan: test/CodeGen/NVPTX/lower-alloca.ll Reviewers: jholewinski, jingyue Reviewed By: jingyue Subscribers: meheff, broune, eliben, jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D10483 llvm-svn: 239964
288 lines
10 KiB
C++
288 lines
10 KiB
C++
//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Top-level implementation for the NVPTX target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXAllocaHoisting.h"
|
|
#include "NVPTXLowerAggrCopies.h"
|
|
#include "NVPTXTargetObjectFile.h"
|
|
#include "NVPTXTargetTransformInfo.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
void initializeNVVMReflectPass(PassRegistry&);
|
|
void initializeGenericToNVVMPass(PassRegistry&);
|
|
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
|
|
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
|
|
void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
|
|
void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
|
|
void initializeNVPTXLowerAllocaPass(PassRegistry &);
|
|
}
|
|
|
|
extern "C" void LLVMInitializeNVPTXTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
|
|
RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
|
|
|
|
// FIXME: This pass is really intended to be invoked during IR optimization,
|
|
// but it's very NVPTX-specific.
|
|
initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
|
|
initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
|
|
initializeNVPTXAllocaHoistingPass(*PassRegistry::getPassRegistry());
|
|
initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
|
|
initializeNVPTXFavorNonGenericAddrSpacesPass(
|
|
*PassRegistry::getPassRegistry());
|
|
initializeNVPTXLowerKernelArgsPass(*PassRegistry::getPassRegistry());
|
|
initializeNVPTXLowerAllocaPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
static std::string computeDataLayout(bool is64Bit) {
|
|
std::string Ret = "e";
|
|
|
|
if (!is64Bit)
|
|
Ret += "-p:32:32";
|
|
|
|
Ret += "-i64:64-v16:16-v32:32-n16:32:64";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Reloc::Model RM, CodeModel::Model CM,
|
|
CodeGenOpt::Level OL, bool is64bit)
|
|
: LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM,
|
|
CM, OL),
|
|
is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()),
|
|
Subtarget(TT, CPU, FS, *this) {
|
|
if (TT.getOS() == Triple::NVCL)
|
|
drvInterface = NVPTX::NVCL;
|
|
else
|
|
drvInterface = NVPTX::CUDA;
|
|
initAsmInfo();
|
|
}
|
|
|
|
NVPTXTargetMachine::~NVPTXTargetMachine() {}
|
|
|
|
void NVPTXTargetMachine32::anchor() {}
|
|
|
|
NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Reloc::Model RM, CodeModel::Model CM,
|
|
CodeGenOpt::Level OL)
|
|
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
|
|
|
|
void NVPTXTargetMachine64::anchor() {}
|
|
|
|
NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Reloc::Model RM, CodeModel::Model CM,
|
|
CodeGenOpt::Level OL)
|
|
: NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
|
|
|
|
namespace {
|
|
class NVPTXPassConfig : public TargetPassConfig {
|
|
public:
|
|
NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
NVPTXTargetMachine &getNVPTXTargetMachine() const {
|
|
return getTM<NVPTXTargetMachine>();
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
void addPostRegAlloc() override;
|
|
void addMachineSSAOptimization() override;
|
|
|
|
FunctionPass *createTargetRegisterAllocator(bool) override;
|
|
void addFastRegAlloc(FunctionPass *RegAllocPass) override;
|
|
void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
|
|
return PassConfig;
|
|
}
|
|
|
|
TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
|
|
return TargetIRAnalysis(
|
|
[this](Function &) { return TargetTransformInfo(NVPTXTTIImpl(this)); });
|
|
}
|
|
|
|
void NVPTXPassConfig::addIRPasses() {
|
|
// The following passes are known to not play well with virtual regs hanging
|
|
// around after register allocation (which in our case, is *all* registers).
|
|
// We explicitly disable them here. We do, however, need some functionality
|
|
// of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
|
|
// NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
|
|
disablePass(&PrologEpilogCodeInserterID);
|
|
disablePass(&MachineCopyPropagationID);
|
|
disablePass(&BranchFolderPassID);
|
|
disablePass(&TailDuplicateID);
|
|
|
|
addPass(createNVPTXImageOptimizerPass());
|
|
TargetPassConfig::addIRPasses();
|
|
addPass(createNVPTXAssignValidGlobalNamesPass());
|
|
addPass(createGenericToNVVMPass());
|
|
addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
|
|
// NVPTXLowerKernelArgs emits alloca for byval parameters which can often
|
|
// be eliminated by SROA.
|
|
addPass(createSROAPass());
|
|
addPass(createNVPTXLowerAllocaPass());
|
|
addPass(createNVPTXFavorNonGenericAddrSpacesPass());
|
|
// FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
|
|
// them unused. We could remove dead code in an ad-hoc manner, but that
|
|
// requires manual work and might be error-prone.
|
|
addPass(createDeadCodeEliminationPass());
|
|
addPass(createSeparateConstOffsetFromGEPPass());
|
|
// ReassociateGEPs exposes more opportunites for SLSR. See
|
|
// the example in reassociate-geps-and-slsr.ll.
|
|
addPass(createStraightLineStrengthReducePass());
|
|
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
|
|
// EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
|
|
// for some of our benchmarks.
|
|
if (getOptLevel() == CodeGenOpt::Aggressive)
|
|
addPass(createGVNPass());
|
|
else
|
|
addPass(createEarlyCSEPass());
|
|
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
|
|
addPass(createNaryReassociatePass());
|
|
// NaryReassociate on GEPs creates redundant common expressions, so run
|
|
// EarlyCSE after it.
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
bool NVPTXPassConfig::addInstSelector() {
|
|
const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
|
|
|
|
addPass(createLowerAggrCopies());
|
|
addPass(createAllocaHoisting());
|
|
addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
|
|
|
|
if (!ST.hasImageHandles())
|
|
addPass(createNVPTXReplaceImageHandlesPass());
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXPassConfig::addPostRegAlloc() {
|
|
addPass(createNVPTXPrologEpilogPass(), false);
|
|
}
|
|
|
|
FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
|
|
return nullptr; // No reg alloc
|
|
}
|
|
|
|
void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
|
|
assert(!RegAllocPass && "NVPTX uses no regalloc!");
|
|
addPass(&PHIEliminationID);
|
|
addPass(&TwoAddressInstructionPassID);
|
|
}
|
|
|
|
void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
|
|
assert(!RegAllocPass && "NVPTX uses no regalloc!");
|
|
|
|
addPass(&ProcessImplicitDefsID);
|
|
addPass(&LiveVariablesID);
|
|
addPass(&MachineLoopInfoID);
|
|
addPass(&PHIEliminationID);
|
|
|
|
addPass(&TwoAddressInstructionPassID);
|
|
addPass(&RegisterCoalescerID);
|
|
|
|
// PreRA instruction scheduling.
|
|
if (addPass(&MachineSchedulerID))
|
|
printAndVerify("After Machine Scheduling");
|
|
|
|
|
|
addPass(&StackSlotColoringID);
|
|
|
|
// FIXME: Needs physical registers
|
|
//addPass(&PostRAMachineLICMID);
|
|
|
|
printAndVerify("After StackSlotColoring");
|
|
}
|
|
|
|
void NVPTXPassConfig::addMachineSSAOptimization() {
|
|
// Pre-ra tail duplication.
|
|
if (addPass(&EarlyTailDuplicateID))
|
|
printAndVerify("After Pre-RegAlloc TailDuplicate");
|
|
|
|
// Optimize PHIs before DCE: removing dead PHI cycles may make more
|
|
// instructions dead.
|
|
addPass(&OptimizePHIsID);
|
|
|
|
// This pass merges large allocas. StackSlotColoring is a different pass
|
|
// which merges spill slots.
|
|
addPass(&StackColoringID);
|
|
|
|
// If the target requests it, assign local variables to stack slots relative
|
|
// to one another and simplify frame index references where possible.
|
|
addPass(&LocalStackSlotAllocationID);
|
|
|
|
// With optimization, dead code should already be eliminated. However
|
|
// there is one known exception: lowered code for arguments that are only
|
|
// used by tail calls, where the tail calls reuse the incoming stack
|
|
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
|
|
addPass(&DeadMachineInstructionElimID);
|
|
printAndVerify("After codegen DCE pass");
|
|
|
|
// Allow targets to insert passes that improve instruction level parallelism,
|
|
// like if-conversion. Such passes will typically need dominator trees and
|
|
// loop info, just like LICM and CSE below.
|
|
if (addILPOpts())
|
|
printAndVerify("After ILP optimizations");
|
|
|
|
addPass(&MachineLICMID);
|
|
addPass(&MachineCSEID);
|
|
|
|
addPass(&MachineSinkingID);
|
|
printAndVerify("After Machine LICM, CSE and Sinking passes");
|
|
|
|
addPass(&PeepholeOptimizerID);
|
|
printAndVerify("After codegen peephole optimization pass");
|
|
}
|