1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Target/NVPTX/NVPTXInstrInfo.td
Artem Belevich 0226799a56 [NVPTX, CUDA] Add .and.popc variant of the b1 MMA instruction.
That should allow clang to compile mma.h from CUDA-11.3.

Differential Revision: https://reviews.llvm.org/D105384
2021-07-15 12:02:09 -07:00

3148 lines
134 KiB
TableGen

//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the PTX instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "NVPTXInstrFormats.td"
// A NOP instruction
let hasSideEffects = false in {
def NOP : NVPTXInst<(outs), (ins), "", []>;
}
let OperandType = "OPERAND_IMMEDIATE" in {
def f16imm : Operand<f16>;
}
// List of vector specific properties
def isVecLD : VecInstTypeEnum<1>;
def isVecST : VecInstTypeEnum<2>;
def isVecBuild : VecInstTypeEnum<3>;
def isVecShuffle : VecInstTypeEnum<4>;
def isVecExtract : VecInstTypeEnum<5>;
def isVecInsert : VecInstTypeEnum<6>;
def isVecDest : VecInstTypeEnum<7>;
def isVecOther : VecInstTypeEnum<15>;
//===----------------------------------------------------------------------===//
// NVPTX Operand Definitions.
//===----------------------------------------------------------------------===//
def brtarget : Operand<OtherVT>;
// CVT conversion modes
// These must match the enum in NVPTX.h
def CvtNONE : PatLeaf<(i32 0x0)>;
def CvtRNI : PatLeaf<(i32 0x1)>;
def CvtRZI : PatLeaf<(i32 0x2)>;
def CvtRMI : PatLeaf<(i32 0x3)>;
def CvtRPI : PatLeaf<(i32 0x4)>;
def CvtRN : PatLeaf<(i32 0x5)>;
def CvtRZ : PatLeaf<(i32 0x6)>;
def CvtRM : PatLeaf<(i32 0x7)>;
def CvtRP : PatLeaf<(i32 0x8)>;
def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
def CvtSAT : PatLeaf<(i32 0x20)>;
def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
def CvtMode : Operand<i32> {
let PrintMethod = "printCvtMode";
}
// Compare modes
// These must match the enum in NVPTX.h
def CmpEQ : PatLeaf<(i32 0)>;
def CmpNE : PatLeaf<(i32 1)>;
def CmpLT : PatLeaf<(i32 2)>;
def CmpLE : PatLeaf<(i32 3)>;
def CmpGT : PatLeaf<(i32 4)>;
def CmpGE : PatLeaf<(i32 5)>;
def CmpEQU : PatLeaf<(i32 10)>;
def CmpNEU : PatLeaf<(i32 11)>;
def CmpLTU : PatLeaf<(i32 12)>;
def CmpLEU : PatLeaf<(i32 13)>;
def CmpGTU : PatLeaf<(i32 14)>;
def CmpGEU : PatLeaf<(i32 15)>;
def CmpNUM : PatLeaf<(i32 16)>;
def CmpNAN : PatLeaf<(i32 17)>;
def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
def CmpMode : Operand<i32> {
let PrintMethod = "printCmpMode";
}
def VecElement : Operand<i32> {
let PrintMethod = "printVecElement";
}
//===----------------------------------------------------------------------===//
// NVPTX Instruction Predicate Definitions
//===----------------------------------------------------------------------===//
def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">;
def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">;
def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">;
def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">;
def hasVote : Predicate<"Subtarget->hasVote()">;
def hasDouble : Predicate<"Subtarget->hasDouble()">;
def hasLDG : Predicate<"Subtarget->hasLDG()">;
def hasLDU : Predicate<"Subtarget->hasLDU()">;
def doF32FTZ : Predicate<"useF32FTZ()">;
def doNoF32FTZ : Predicate<"!useF32FTZ()">;
def doMulWide : Predicate<"doMulWide">;
def allowFMA : Predicate<"allowFMA()">;
def noFMA : Predicate<"!allowFMA()">;
def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">;
def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
def True : Predicate<"true">;
def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">;
def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">;
def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">;
def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">;
def hasPTX64 : Predicate<"Subtarget->getPTXVersion() >= 64">;
def hasPTX65 : Predicate<"Subtarget->getPTXVersion() >= 65">;
def hasPTX70 : Predicate<"Subtarget->getPTXVersion() >= 70">;
def hasPTX71 : Predicate<"Subtarget->getPTXVersion() >= 71">;
def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">;
def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">;
def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">;
def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">;
def hasSM80 : Predicate<"Subtarget->getSmVersion() >= 80">;
// non-sync shfl instructions are not available on sm_70+ in PTX6.4+
def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70"
"&& Subtarget->getPTXVersion() >= 64)">;
def useShortPtr : Predicate<"useShortPointers()">;
def useFP16Math: Predicate<"Subtarget->allowFP16Math()">;
//===----------------------------------------------------------------------===//
// Some Common Instruction Class Templates
//===----------------------------------------------------------------------===//
// Template for instructions which take three int64, int32, or int16 args.
// The instructions are named "<OpcStr><Width>" (e.g. "add.s64").
multiclass I3<string OpcStr, SDNode OpNode> {
def i64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
def i64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
def i16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
def i16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
}
// Template for instructions which take 3 int32 args. The instructions are
// named "<OpcStr>.s32" (e.g. "addc.cc.s32").
multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
}
// Template for instructions which take three fp64 or fp32 args. The
// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64").
//
// Also defines ftz (flush subnormal inputs and results to sign-preserving
// zero) variants for fp32 functions.
//
// This multiclass should be used for nodes that cannot be folded into FMAs.
// For nodes that can be folded into FMAs (i.e. adds and muls), use
// F3_fma_component.
multiclass F3<string OpcStr, SDNode OpNode> {
def f64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>;
def f64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>;
def f32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[doF32FTZ]>;
def f32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[doF32FTZ]>;
def f32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>;
def f32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>;
}
// Template for instructions which take three FP args. The
// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64").
//
// Also defines ftz (flush subnormal inputs and results to sign-preserving
// zero) variants for fp32/fp16 functions.
//
// This multiclass should be used for nodes that can be folded to make fma ops.
// In this case, we use the ".rn" variant when FMA is disabled, as this behaves
// just like the non ".rn" op, but prevents ptxas from creating FMAs.
multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
def f64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
Requires<[allowFMA]>;
def f64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
Requires<[allowFMA]>;
def f32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[allowFMA, doF32FTZ]>;
def f32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[allowFMA, doF32FTZ]>;
def f32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[allowFMA]>;
def f32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[allowFMA]>;
def f16rr_ftz :
NVPTXInst<(outs Float16Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
!strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"),
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, allowFMA, doF32FTZ]>;
def f16rr :
NVPTXInst<(outs Float16Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
!strconcat(OpcStr, ".f16 \t$dst, $a, $b;"),
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, allowFMA]>;
def f16x2rr_ftz :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, allowFMA, doF32FTZ]>;
def f16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, allowFMA]>;
// These have strange names so we don't perturb existing mir tests.
def _rnf64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
Requires<[noFMA]>;
def _rnf64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
Requires<[noFMA]>;
def _rnf32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[noFMA, doF32FTZ]>;
def _rnf32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[noFMA, doF32FTZ]>;
def _rnf32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[noFMA]>;
def _rnf32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[noFMA]>;
def _rnf16rr_ftz :
NVPTXInst<(outs Float16Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
!strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"),
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, noFMA, doF32FTZ]>;
def _rnf16rr :
NVPTXInst<(outs Float16Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
!strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"),
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, noFMA]>;
def _rnf16x2rr_ftz :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, noFMA, doF32FTZ]>;
def _rnf16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, noFMA]>;
}
// Template for operations which take two f32 or f64 operands. Provides three
// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush
// subnormal inputs and results to zero).
multiclass F2<string OpcStr, SDNode OpNode> {
def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
!strconcat(OpcStr, ".f64 \t$dst, $a;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
Requires<[doF32FTZ]>;
def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
!strconcat(OpcStr, ".f32 \t$dst, $a;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
}
//===----------------------------------------------------------------------===//
// NVPTX Instructions.
//===----------------------------------------------------------------------===//
//-----------------------------------
// Type Conversion
//-----------------------------------
let hasSideEffects = false in {
// Generate a cvt to the given type from all possible types. Each instance
// takes a CvtMode immediate that defines the conversion mode to use. It can
// be CvtNONE to omit a conversion mode.
multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
def _s8 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s8 \t$dst, $src;"), []>;
def _u8 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u8 \t$dst, $src;"), []>;
def _s16 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s16 \t$dst, $src;"), []>;
def _u16 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u16 \t$dst, $src;"), []>;
def _s32 :
NVPTXInst<(outs RC:$dst),
(ins Int32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s32 \t$dst, $src;"), []>;
def _u32 :
NVPTXInst<(outs RC:$dst),
(ins Int32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u32 \t$dst, $src;"), []>;
def _s64 :
NVPTXInst<(outs RC:$dst),
(ins Int64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s64 \t$dst, $src;"), []>;
def _u64 :
NVPTXInst<(outs RC:$dst),
(ins Int64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u64 \t$dst, $src;"), []>;
def _f16 :
NVPTXInst<(outs RC:$dst),
(ins Float16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f16 \t$dst, $src;"), []>;
def _f32 :
NVPTXInst<(outs RC:$dst),
(ins Float32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f32 \t$dst, $src;"), []>;
def _f64 :
NVPTXInst<(outs RC:$dst),
(ins Float64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f64 \t$dst, $src;"), []>;
}
// Generate cvts from all types to all types.
defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>;
defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>;
defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>;
defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
// These cvts are different from those above: The source and dest registers
// are of the same type.
def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"cvt.s16.s8 \t$dst, $src;", []>;
def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"cvt.s32.s8 \t$dst, $src;", []>;
def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"cvt.s32.s16 \t$dst, $src;", []>;
def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s8 \t$dst, $src;", []>;
def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s16 \t$dst, $src;", []>;
def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s32 \t$dst, $src;", []>;
}
//-----------------------------------
// Integer Arithmetic
//-----------------------------------
// Template for xor masquerading as int1 arithmetic.
multiclass ADD_SUB_i1<SDNode OpNode> {
def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
"xor.pred \t$dst, $a, $b;",
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
"xor.pred \t$dst, $a, $b;",
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
}
// int1 addition and subtraction are both just xor.
defm ADD_i1 : ADD_SUB_i1<add>;
defm SUB_i1 : ADD_SUB_i1<sub>;
// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we
// also use these for unsigned arithmetic.
defm ADD : I3<"add.s", add>;
defm SUB : I3<"sub.s", sub>;
// int32 addition and subtraction with carry-out.
// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?).
defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
// int32 addition and subtraction with carry-in and carry-out.
defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
defm MULT : I3<"mul.lo.s", mul>;
defm MULTHS : I3<"mul.hi.s", mulhs>;
defm MULTHU : I3<"mul.hi.u", mulhu>;
defm SDIV : I3<"div.s", sdiv>;
defm UDIV : I3<"div.u", udiv>;
// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM
// will lower it.
defm SREM : I3<"rem.s", srem>;
defm UREM : I3<"rem.u", urem>;
// Integer absolute value. NumBits should be one minus the bit width of RC.
// This idiom implements the algorithm at
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs.
multiclass ABS<RegisterClass RC, string SizeName> {
def : NVPTXInst<(outs RC:$dst), (ins RC:$a),
!strconcat("abs", SizeName, " \t$dst, $a;"),
[(set RC:$dst, (abs RC:$a))]>;
}
defm ABS_16 : ABS<Int16Regs, ".s16">;
defm ABS_32 : ABS<Int32Regs, ".s32">;
defm ABS_64 : ABS<Int64Regs, ".s64">;
// Integer min/max.
defm SMAX : I3<"max.s", smax>;
defm UMAX : I3<"max.u", umax>;
defm SMIN : I3<"min.s", smin>;
defm UMIN : I3<"min.u", umin>;
//
// Wide multiplication
//
def MULWIDES64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDES64Imm :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDES64Imm64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDEU64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDEU64Imm :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDEU64Imm64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDES32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDES32Imm :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDES32Imm32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDEU32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def MULWIDEU32Imm :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def MULWIDEU32Imm32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
// Matchers for signed, unsigned mul.wide ISD nodes.
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
(MULWIDES32Imm Int16Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
(MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
(MULWIDES64Imm Int32Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
(MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
// Predicates used for converting some patterns to mul.wide.
def SInt32Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isSignedIntN(32);
}]>;
def UInt32Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isIntN(32);
}]>;
def SInt16Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isSignedIntN(16);
}]>;
def UInt16Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isIntN(16);
}]>;
def Int5Const : PatLeaf<(imm), [{
// Check if 0 <= v < 32; only then will the result of (x << v) be an int32.
const APInt &v = N->getAPIntValue();
return v.sge(0) && v.slt(32);
}]>;
def Int4Const : PatLeaf<(imm), [{
// Check if 0 <= v < 16; only then will the result of (x << v) be an int16.
const APInt &v = N->getAPIntValue();
return v.sge(0) && v.slt(16);
}]>;
def SHL2MUL32 : SDNodeXForm<imm, [{
const APInt &v = N->getAPIntValue();
APInt temp(32, 1);
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32);
}]>;
def SHL2MUL16 : SDNodeXForm<imm, [{
const APInt &v = N->getAPIntValue();
APInt temp(16, 1);
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16);
}]>;
// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide.
def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
(MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
(MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
(MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
(MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
Requires<[doMulWide]>;
// Convert "sign/zero-extend then multiply" to mul.wide.
def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
(MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
(MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
(MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
(MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
Requires<[doMulWide]>;
//
// Integer multiply-add
//
def SDTIMAD :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>,
SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
def MAD16rrr :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
def MAD16rri :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
def MAD16rir :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
def MAD16rii :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, i16imm:$b, i16imm:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>;
def MAD32rrr :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
def MAD32rri :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
def MAD32rir :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
def MAD32rii :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, i32imm:$b, i32imm:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>;
def MAD64rrr :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
def MAD64rri :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
def MAD64rir :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
def MAD64rii :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, i64imm:$b, i64imm:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>;
def INEG16 :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"neg.s16 \t$dst, $src;",
[(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
def INEG32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"neg.s32 \t$dst, $src;",
[(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
def INEG64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"neg.s64 \t$dst, $src;",
[(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
//-----------------------------------
// Floating Point Arithmetic
//-----------------------------------
// Constant 1.0f
def FloatConst1 : PatLeaf<(fpimm), [{
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() &&
N->getValueAPF().convertToFloat() == 1.0f;
}]>;
// Constant 1.0 (double)
def DoubleConst1 : PatLeaf<(fpimm), [{
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() &&
N->getValueAPF().convertToDouble() == 1.0;
}]>;
// Loads FP16 constant into a register.
//
// ptxas does not have hex representation for fp16, so we can't use
// fp16 immediate values in .f16 instructions. Instead we have to load
// the constant into a register using mov.b16.
def LOAD_CONST_F16 :
NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a),
"mov.b16 \t$dst, $a;", []>;
defm FADD : F3_fma_component<"add", fadd>;
defm FSUB : F3_fma_component<"sub", fsub>;
defm FMUL : F3_fma_component<"mul", fmul>;
defm FMIN : F3<"min", fminnum>;
defm FMAX : F3<"max", fmaxnum>;
defm FABS : F2<"abs", fabs>;
defm FNEG : F2<"neg", fneg>;
defm FSQRT : F2<"sqrt.rn", fsqrt>;
//
// F64 division
//
def FDIV641r :
NVPTXInst<(outs Float64Regs:$dst),
(ins f64imm:$a, Float64Regs:$b),
"rcp.rn.f64 \t$dst, $b;",
[(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
def FDIV64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
"div.rn.f64 \t$dst, $a, $b;",
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>;
def FDIV64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
"div.rn.f64 \t$dst, $a, $b;",
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>;
//
// F32 Approximate reciprocal
//
def FDIV321r_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV321r :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX]>;
//
// F32 Approximate division
//
def FDIV32approxrr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.approx.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV32approxri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.approx.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV32approxrr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.approx.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX]>;
def FDIV32approxri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.approx.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_APPROX]>;
//
// F32 Semi-accurate reciprocal
//
// rcp.approx gives the same result as div.full(1.0f, a) and is faster.
//
def FDIV321r_approx_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV321r_approx :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL]>;
//
// F32 Semi-accurate division
//
def FDIV32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.full.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.full.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.full.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL]>;
def FDIV32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.full.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_FULL]>;
//
// F32 Accurate reciprocal
//
def FDIV321r_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.rn.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[doF32FTZ]>;
def FDIV321r_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.rn.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>;
//
// F32 Accurate division
//
def FDIV32rr_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.rn.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[doF32FTZ]>;
def FDIV32ri_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.rn.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[doF32FTZ]>;
def FDIV32rr_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.rn.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>;
def FDIV32ri_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.rn.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>;
//
// FMA
//
multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
Requires<[Pred]>;
def rri : NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, ImmCls:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>,
Requires<[Pred]>;
def rir : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>,
Requires<[Pred]>;
def rii : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, ImmCls:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>,
Requires<[Pred]>;
}
multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> {
def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
Requires<[useFP16Math, Pred]>;
}
defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>;
defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, True>;
defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>;
defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, True>;
defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, True>;
defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, True>;
// sin/cos
def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"sin.approx.f32 \t$dst, $src;",
[(set Float32Regs:$dst, (fsin Float32Regs:$src))]>,
Requires<[allowUnsafeFPMath]>;
def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"cos.approx.f32 \t$dst, $src;",
[(set Float32Regs:$dst, (fcos Float32Regs:$src))]>,
Requires<[allowUnsafeFPMath]>;
// Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)),
// i.e. "poor man's fmod()"
// frem - f32 FTZ
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
(FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRZI_FTZ),
Float32Regs:$y))>,
Requires<[doF32FTZ]>;
def : Pat<(frem Float32Regs:$x, fpimm:$y),
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
(FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRZI_FTZ),
fpimm:$y))>,
Requires<[doF32FTZ]>;
// frem - f32
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
(FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
(FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRZI),
Float32Regs:$y))>;
def : Pat<(frem Float32Regs:$x, fpimm:$y),
(FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
(FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRZI),
fpimm:$y))>;
// frem - f64
def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
(FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
(FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRZI),
Float64Regs:$y))>;
def : Pat<(frem Float64Regs:$x, fpimm:$y),
(FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
(FDIV64ri Float64Regs:$x, fpimm:$y), CvtRZI),
fpimm:$y))>;
//-----------------------------------
// Bitwise operations
//-----------------------------------
// Template for three-arg bitwise operations. Takes three args, Creates .b16,
// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr.
multiclass BITWISE<string OpcStr, SDNode OpNode> {
def b1rr :
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
def b1ri :
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
def b16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
def b16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
def b32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def b32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
def b64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
def b64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
}
defm OR : BITWISE<"or", or>;
defm AND : BITWISE<"and", and>;
defm XOR : BITWISE<"xor", xor>;
def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
"not.pred \t$dst, $src;",
[(set Int1Regs:$dst, (not Int1Regs:$src))]>;
def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"not.b16 \t$dst, $src;",
[(set Int16Regs:$dst, (not Int16Regs:$src))]>;
def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"not.b32 \t$dst, $src;",
[(set Int32Regs:$dst, (not Int32Regs:$src))]>;
def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"not.b64 \t$dst, $src;",
[(set Int64Regs:$dst, (not Int64Regs:$src))]>;
// Template for left/right shifts. Takes three operands,
// [dest (reg), src (reg), shift (reg or imm)].
// dest and src may be int64, int32, or int16, but shift is always int32.
//
// This template also defines a 32-bit shift (imm, imm) instruction.
multiclass SHIFT<string OpcStr, SDNode OpNode> {
def i64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>;
def i64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>;
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>;
def i32ii :
NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>;
def i16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>;
def i16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>;
}
defm SHL : SHIFT<"shl.b", shl>;
defm SRA : SHIFT<"shr.s", sra>;
defm SRL : SHIFT<"shr.u", srl>;
// Bit-reverse
def BREV32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a),
"brev.b32 \t$dst, $a;",
[(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>;
def BREV64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a),
"brev.b64 \t$dst, $a;",
[(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>;
//
// Rotate: Use ptx shf instruction if available.
//
// 32 bit r2 = rotl r1, n
// =>
// r2 = shf.l r1, r1, n
def ROTL32imm_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
Requires<[hasHWROT32]>;
def ROTL32reg_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[hasHWROT32]>;
// 32 bit r2 = rotr r1, n
// =>
// r2 = shf.r r1, r1, n
def ROTR32imm_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
Requires<[hasHWROT32]>;
def ROTR32reg_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[hasHWROT32]>;
// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1.
def ROT32imm_sw :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
"shl.b32 \t%lhs, $src, $amt1;\n\t"
"shr.b32 \t%rhs, $src, $amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[]>;
def SUB_FRM_32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
(ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
Requires<[noHWROT32]>;
def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
(ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
Requires<[noHWROT32]>;
// 32-bit software rotate left by register.
def ROTL32reg_sw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
".reg .b32 %amt2;\n\t"
"shl.b32 \t%lhs, $src, $amt;\n\t"
"sub.s32 \t%amt2, 32, $amt;\n\t"
"shr.b32 \t%rhs, $src, %amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[noHWROT32]>;
// 32-bit software rotate right by register.
def ROTR32reg_sw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
".reg .b32 %amt2;\n\t"
"shr.b32 \t%lhs, $src, $amt;\n\t"
"sub.s32 \t%amt2, 32, $amt;\n\t"
"shl.b32 \t%rhs, $src, %amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[noHWROT32]>;
// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1.
def ROT64imm_sw :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
"shl.b64 \t%lhs, $src, $amt1;\n\t"
"shr.b64 \t%rhs, $src, $amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[]>;
def SUB_FRM_64 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
(ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
(ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
// 64-bit software rotate left by register.
def ROTL64reg_sw :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
".reg .u32 %amt2;\n\t"
"shl.b64 \t%lhs, $src, $amt;\n\t"
"sub.u32 \t%amt2, 64, $amt;\n\t"
"shr.b64 \t%rhs, $src, %amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
def ROTR64reg_sw :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
".reg .u32 %amt2;\n\t"
"shr.b64 \t%lhs, $src, $amt;\n\t"
"sub.u32 \t%amt2, 64, $amt;\n\t"
"shl.b64 \t%rhs, $src, %amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
//
// Funnnel shift in clamp mode
//
// Create SDNodes so they can be used in the DAG code, e.g.
// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
def FUNSHFLCLAMP :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
"shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
[(set Int32Regs:$dst,
(FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
def FUNSHFRCLAMP :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
"shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
[(set Int32Regs:$dst,
(FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
//
// BFE - bit-field extract
//
// Template for BFE instructions. Takes four args,
// [dest (reg), src (reg), start (reg or imm), end (reg or imm)].
// Start may be an imm only if end is also an imm. FIXME: Is this a
// restriction in PTX?
//
// dest and src may be int32 or int64, but start and end are always int32.
multiclass BFE<string TyStr, RegisterClass RC> {
def rrr
: NVPTXInst<(outs RC:$d),
(ins RC:$a, Int32Regs:$b, Int32Regs:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
def rri
: NVPTXInst<(outs RC:$d),
(ins RC:$a, Int32Regs:$b, i32imm:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
def rii
: NVPTXInst<(outs RC:$d),
(ins RC:$a, i32imm:$b, i32imm:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
}
let hasSideEffects = false in {
defm BFE_S32 : BFE<"s32", Int32Regs>;
defm BFE_U32 : BFE<"u32", Int32Regs>;
defm BFE_S64 : BFE<"s64", Int64Regs>;
defm BFE_U64 : BFE<"u64", Int64Regs>;
}
//-----------------------------------
// Comparison instructions (setp, set)
//-----------------------------------
// FIXME: This doesn't cover versions of set and setp that combine with a
// boolean predicate, e.g. setp.eq.and.b16.
let hasSideEffects = false in {
multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr :
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
" \t$dst, $a, $b;"), []>;
def ri :
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
" \t$dst, $a, $b;"), []>;
def ir :
NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
" \t$dst, $a, $b;"), []>;
}
}
defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
def SETP_f16rr :
NVPTXInst<(outs Int1Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp),
"setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;",
[]>, Requires<[useFP16Math]>;
def SETP_f16x2rr :
NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q),
(ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp),
"setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;",
[]>,
Requires<[useFP16Math]>;
// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
// reg, either u32, s32, or f32. Anyway these aren't used at the moment.
let hasSideEffects = false in {
multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr : NVPTXInst<(outs Int32Regs:$dst),
(ins RC:$a, RC:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
def ri : NVPTXInst<(outs Int32Regs:$dst),
(ins RC:$a, ImmCls:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
def ir : NVPTXInst<(outs Int32Regs:$dst),
(ins ImmCls:$a, RC:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
}
}
defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
defm SET_f16 : SET<"f16", Float16Regs, f16imm>;
defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
//-----------------------------------
// Selection instructions (selp)
//-----------------------------------
// FIXME: Missing slct
// selp instructions that don't have any pattern matches; we explicitly use
// them within this file.
let hasSideEffects = false in {
multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr : NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
def ri : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
def ir : NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
def ii : NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
}
multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
SDNode ImmNode> {
def rr :
NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
def ri :
NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
def ir :
NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
def ii :
NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
}
}
// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as
// good.
defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>;
defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
def SELP_f16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p),
"selp.b32 \t$dst, $a, $b, $p;",
[(set Float16x2Regs:$dst,
(select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>;
//-----------------------------------
// Data Movement (Load / Store, Move)
//-----------------------------------
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
[SDNPWantRoot]>;
def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
[SDNPWantRoot]>;
def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>;
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops Int32Regs, i32imm);
}
def MEMri64 : Operand<i64> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops Int64Regs, i64imm);
}
def imem : Operand<iPTR> {
let PrintMethod = "printOperand";
}
def imemAny : Operand<iPTRAny> {
let PrintMethod = "printOperand";
}
def LdStCode : Operand<i32> {
let PrintMethod = "printLdStCode";
}
def MmaCode : Operand<i32> {
let PrintMethod = "printMmaCode";
}
def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
// Load a memory address into a u32 or u64 register.
def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
"mov.u32 \t$dst, $a;",
[(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
"mov.u64 \t$dst, $a;",
[(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
// Get pointer to local stack.
let hasSideEffects = false in {
def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
"mov.u32 \t$d, __local_depot$num;", []>;
def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
"mov.u64 \t$d, __local_depot$num;", []>;
}
// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
let IsSimpleMove=1, hasSideEffects=0 in {
def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
"mov.pred \t$dst, $sss;", []>;
def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
"mov.u16 \t$dst, $sss;", []>;
def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
"mov.u32 \t$dst, $sss;", []>;
def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
"mov.u64 \t$dst, $sss;", []>;
def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src),
// We have to use .b16 here as there's no mov.f16.
"mov.b16 \t$dst, $src;", []>;
def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"mov.f32 \t$dst, $src;", []>;
def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
"mov.f64 \t$dst, $src;", []>;
}
def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
"mov.pred \t$dst, $src;",
[(set Int1Regs:$dst, imm:$src)]>;
def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
"mov.u16 \t$dst, $src;",
[(set Int16Regs:$dst, imm:$src)]>;
def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
"mov.u32 \t$dst, $src;",
[(set Int32Regs:$dst, imm:$src)]>;
def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
"mov.u64 \t$dst, $src;",
[(set Int64Regs:$dst, imm:$src)]>;
def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
"mov.f32 \t$dst, $src;",
[(set Float32Regs:$dst, fpimm:$src)]>;
def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
"mov.f64 \t$dst, $src;",
[(set Float64Regs:$dst, fpimm:$src)]>;
def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
//---- Copy Frame Index ----
def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
"add.u32 \t$dst, ${addr:add};",
[(set Int32Regs:$dst, ADDRri:$addr)]>;
def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
"add.u64 \t$dst, ${addr:add};",
[(set Int64Regs:$dst, ADDRri64:$addr)]>;
//-----------------------------------
// Comparison and Selection
//-----------------------------------
multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
Instruction setp_16rr,
Instruction setp_16ri,
Instruction setp_16ir,
Instruction setp_32rr,
Instruction setp_32ri,
Instruction setp_32ir,
Instruction setp_64rr,
Instruction setp_64ri,
Instruction setp_64ir,
Instruction set_16rr,
Instruction set_16ri,
Instruction set_16ir,
Instruction set_32rr,
Instruction set_32ri,
Instruction set_32ir,
Instruction set_64rr,
Instruction set_64ri,
Instruction set_64ir> {
// i16 -> pred
def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
(setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
(setp_16ri Int16Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
(setp_16ir imm:$a, Int16Regs:$b, Mode)>;
// i32 -> pred
def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
(setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
(setp_32ri Int32Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
(setp_32ir imm:$a, Int32Regs:$b, Mode)>;
// i64 -> pred
def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
(setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
(setp_64ri Int64Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
(setp_64ir imm:$a, Int64Regs:$b, Mode)>;
// i16 -> i32
def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
(set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
(set_16ri Int16Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
(set_16ir imm:$a, Int16Regs:$b, Mode)>;
// i32 -> i32
def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
(set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
(set_32ri Int32Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
(set_32ir imm:$a, Int32Regs:$b, Mode)>;
// i64 -> i32
def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
(set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
(set_64ri Int64Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
(set_64ir imm:$a, Int64Regs:$b, Mode)>;
}
multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
: ISET_FORMAT<OpNode, Mode,
SETP_s16rr, SETP_s16ri, SETP_s16ir,
SETP_s32rr, SETP_s32ri, SETP_s32ir,
SETP_s64rr, SETP_s64ri, SETP_s64ir,
SET_s16rr, SET_s16ri, SET_s16ir,
SET_s32rr, SET_s32ri, SET_s32ir,
SET_s64rr, SET_s64ri, SET_s64ir> {
// TableGen doesn't like empty multiclasses.
def : PatLeaf<(i32 0)>;
}
multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
: ISET_FORMAT<OpNode, Mode,
SETP_u16rr, SETP_u16ri, SETP_u16ir,
SETP_u32rr, SETP_u32ri, SETP_u32ir,
SETP_u64rr, SETP_u64ri, SETP_u64ir,
SET_u16rr, SET_u16ri, SET_u16ir,
SET_u32rr, SET_u32ri, SET_u32ir,
SET_u64rr, SET_u64ri, SET_u64ir> {
// TableGen doesn't like empty multiclasses.
def : PatLeaf<(i32 0)>;
}
defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
// i1 compares
def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
// i1 compare -> i32
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
(SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
(SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
// f16 -> pred
def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
(SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
Requires<[useFP16Math,doF32FTZ]>;
def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
(SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
Requires<[useFP16Math]>;
def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
(SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
Requires<[useFP16Math,doF32FTZ]>;
def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
(SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
Requires<[useFP16Math]>;
def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
(SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
Requires<[useFP16Math,doF32FTZ]>;
def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
(SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
Requires<[useFP16Math]>;
// f32 -> pred
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
(SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
(SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
(SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
(SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
// f64 -> pred
def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
(SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
(SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
(SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
// f16 -> i32
def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
(SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
Requires<[useFP16Math, doF32FTZ]>;
def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
(SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
Requires<[useFP16Math]>;
def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
(SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
Requires<[useFP16Math, doF32FTZ]>;
def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
(SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
Requires<[useFP16Math]>;
def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
(SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
Requires<[useFP16Math, doF32FTZ]>;
def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
(SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
Requires<[useFP16Math]>;
// f32 -> i32
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
(SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
(SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
(SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
(SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
// f64 -> i32
def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
(SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
(SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
(SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
}
defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>;
defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>;
defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>;
defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>;
defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>;
defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>;
defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
// FIXME: What is this doing here? Can it be deleted?
// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def SDTDeclareParamProfile :
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def SDTDeclareScalarParamProfile :
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
def SDTCallValProfile : SDTypeProfile<1, 0, []>;
def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
def SDTProxyRegProfile : SDTypeProfile<1, 1, []>;
def DeclareParam :
SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareScalarParam :
SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareRetParam :
SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareRet :
SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def LoadParam :
SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def LoadParamV2 :
SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def LoadParamV4 :
SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def PrintCall :
SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintConvergentCall :
SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintCallUni :
SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintConvergentCallUni :
SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParam :
SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamV2 :
SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamV4 :
SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamU32 :
SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamS32 :
SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArgBegin :
SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArg :
SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def LastCallArg :
SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArgEnd :
SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallVoid :
SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def Prototype :
SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallVal :
SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def MoveParam :
SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>;
def StoreRetval :
SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
[SDNPHasChain, SDNPSideEffect]>;
def StoreRetvalV2 :
SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
[SDNPHasChain, SDNPSideEffect]>;
def StoreRetvalV4 :
SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
[SDNPHasChain, SDNPSideEffect]>;
def PseudoUseParam :
SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def RETURNNode :
SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
[SDNPHasChain, SDNPSideEffect]>;
def ProxyReg :
SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
let mayLoad = true in {
class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
!strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"),
[]>;
class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
!strconcat("ld.param.v2", opstr,
" \t{{$dst, $dst2}}, [retval0+$b];"), []>;
class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
regclass:$dst4),
(ins i32imm:$b),
!strconcat("ld.param.v4", opstr,
" \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"),
[]>;
}
class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
!strconcat("mov", opstr, " \t$dst, retval$b;"),
[(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
let mayStore = true in {
class StoreParamInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
!strconcat("st.param", opstr, " \t[param$a+$b], $val;"),
[]>;
class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
i32imm:$a, i32imm:$b),
!strconcat("st.param.v2", opstr,
" \t[param$a+$b], {{$val, $val2}};"),
[]>;
class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3,
regclass:$val4, i32imm:$a,
i32imm:$b),
!strconcat("st.param.v4", opstr,
" \t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
[]>;
class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
!strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"),
[]>;
class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
!strconcat("st.param.v2", opstr,
" \t[func_retval0+$a], {{$val, $val2}};"),
[]>;
class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs),
(ins regclass:$val, regclass:$val2, regclass:$val3,
regclass:$val4, i32imm:$a),
!strconcat("st.param.v4", opstr,
" \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
[]>;
}
let isCall=1 in {
multiclass CALL<string OpcStr, SDNode OpNode> {
def PrintCallNoRetInst : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " "), [(OpNode (i32 0))]>;
def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>;
def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>;
def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>;
def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "),
[(OpNode (i32 4))]>;
def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "),
[(OpNode (i32 5))]>;
def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5), "),
[(OpNode (i32 6))]>;
def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5, retval6), "),
[(OpNode (i32 7))]>;
def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5, retval6, retval7), "),
[(OpNode (i32 8))]>;
}
}
defm Call : CALL<"call", PrintCall>;
defm CallUni : CALL<"call.uni", PrintCallUni>;
// Convergent call instructions. These are identical to regular calls, except
// they have the isConvergent bit set.
let isConvergent=1 in {
defm ConvergentCall : CALL<"call", PrintConvergentCall>;
defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>;
}
def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">;
def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">;
def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">;
def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">;
def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">;
def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">;
def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">;
def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">;
def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">;
def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">;
def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">;
def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">;
def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">;
def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">;
def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">;
def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">;
def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">;
def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">;
def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">;
def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">;
def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
class CallArgInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$a), "$a, ",
[(CallArg (i32 0), regclass:$a)]>;
class LastCallArgInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$a), "$a",
[(LastCallArg (i32 0), regclass:$a)]>;
def CallArgI64 : CallArgInst<Int64Regs>;
def CallArgI32 : CallArgInst<Int32Regs>;
def CallArgI16 : CallArgInst<Int16Regs>;
def CallArgF64 : CallArgInst<Float64Regs>;
def CallArgF32 : CallArgInst<Float32Regs>;
def LastCallArgI64 : LastCallArgInst<Int64Regs>;
def LastCallArgI32 : LastCallArgInst<Int32Regs>;
def LastCallArgI16 : LastCallArgInst<Int16Regs>;
def LastCallArgF64 : LastCallArgInst<Float64Regs>;
def LastCallArgF32 : LastCallArgInst<Float32Regs>;
def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
[(CallArg (i32 0), (i32 imm:$a))]>;
def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
[(LastCallArg (i32 0), (i32 imm:$a))]>;
def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
[(CallArg (i32 1), (i32 imm:$a))]>;
def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
[(LastCallArg (i32 1), (i32 imm:$a))]>;
def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ",
[(CallVoid (Wrapper tglobaladdr:$addr))]>;
def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ",
[(CallVoid Int32Regs:$addr)]>;
def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ",
[(CallVoid Int64Regs:$addr)]>;
def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;",
[(Prototype (i32 imm:$val))]>;
def DeclareRetMemInst :
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num),
".param .align $align .b8 retval$num[$size];",
[(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareRetScalarInst :
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
".param .b$size retval$num;",
[(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareRetRegInst :
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
".reg .b$size retval$num;",
[(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareParamInst :
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size),
".param .align $align .b8 param$a[$size];",
[(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
def DeclareScalarParamInst :
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
".param .b$size param$a;",
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
def DeclareScalarRegInst :
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
".reg .b$size param$a;",
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
!strconcat("mov", asmstr, " \t$dst, $src;"),
[(set regclass:$dst, (MoveParam regclass:$src))]>;
def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
def MoveParamI16 :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"cvt.u16.u32 \t$dst, $src;",
[(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">;
class PseudoUseParamInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$src),
"// Pseudo use of $src",
[(PseudoUseParam regclass:$src)]>;
def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
class ProxyRegInst<string SzStr, NVPTXRegClass regclass> :
NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
!strconcat("mov.", SzStr, " \t$dst, $src;"),
[(set regclass:$dst, (ProxyReg regclass:$src))]>;
let isCodeGenOnly=1, isPseudo=1 in {
def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>;
def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>;
def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>;
def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>;
def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>;
def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>;
def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>;
def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>;
}
//
// Load / Store Handling
//
multiclass LD<NVPTXRegClass regclass> {
def _avar : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _areg : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _areg_64 : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _ari : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
def _ari_64 : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
def _asi : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
}
let mayLoad=1, hasSideEffects=0 in {
defm LD_i8 : LD<Int16Regs>;
defm LD_i16 : LD<Int16Regs>;
defm LD_i32 : LD<Int32Regs>;
defm LD_i64 : LD<Int64Regs>;
defm LD_f16 : LD<Float16Regs>;
defm LD_f16x2 : LD<Float16x2Regs>;
defm LD_f32 : LD<Float32Regs>;
defm LD_f64 : LD<Float64Regs>;
}
multiclass ST<NVPTXRegClass regclass> {
def _avar : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _areg : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _areg_64 : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _ari : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
def _ari_64 : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
def _asi : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
}
let mayStore=1, hasSideEffects=0 in {
defm ST_i8 : ST<Int16Regs>;
defm ST_i16 : ST<Int16Regs>;
defm ST_i32 : ST<Int32Regs>;
defm ST_i64 : ST<Int64Regs>;
defm ST_f16 : ST<Float16Regs>;
defm ST_f16x2 : ST<Float16x2Regs>;
defm ST_f32 : ST<Float32Regs>;
defm ST_f64 : ST<Float64Regs>;
}
// The following is used only in and after vector elementizations. Vector
// elementization happens at the machine instruction level, so the following
// instructions never appear in the DAG.
multiclass LD_VEC<NVPTXRegClass regclass> {
def _v2_avar : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_areg : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_areg_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_ari : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v2_ari_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v2_asi : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v4_avar : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_areg : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_areg_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_ari : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
def _v4_ari_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
def _v4_asi : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
}
let mayLoad=1, hasSideEffects=0 in {
defm LDV_i8 : LD_VEC<Int16Regs>;
defm LDV_i16 : LD_VEC<Int16Regs>;
defm LDV_i32 : LD_VEC<Int32Regs>;
defm LDV_i64 : LD_VEC<Int64Regs>;
defm LDV_f16 : LD_VEC<Float16Regs>;
defm LDV_f16x2 : LD_VEC<Float16x2Regs>;
defm LDV_f32 : LD_VEC<Float32Regs>;
defm LDV_f64 : LD_VEC<Float64Regs>;
}
multiclass ST_VEC<NVPTXRegClass regclass> {
def _v2_avar : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_areg : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_areg_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_ari : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v2_ari_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v2_asi : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v4_avar : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_areg : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_areg_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_ari : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_ari_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_asi : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}"
"$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
}
let mayStore=1, hasSideEffects=0 in {
defm STV_i8 : ST_VEC<Int16Regs>;
defm STV_i16 : ST_VEC<Int16Regs>;
defm STV_i32 : ST_VEC<Int32Regs>;
defm STV_i64 : ST_VEC<Int64Regs>;
defm STV_f16 : ST_VEC<Float16Regs>;
defm STV_f16x2 : ST_VEC<Float16x2Regs>;
defm STV_f32 : ST_VEC<Float32Regs>;
defm STV_f64 : ST_VEC<Float64Regs>;
}
//---- Conversion ----
class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
NVPTXRegClass regclassOut> :
NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
!strconcat("mov.b", SzStr, " \t$d, $a;"),
[(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>;
def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>;
def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>;
def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>;
// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
// we cannot specify floating-point literals in isel patterns. Therefore, we
// use an integer selp to select either 1 or 0 and then cvt to floating-point.
// sint -> f16
def : Pat<(f16 (sint_to_fp Int1Regs:$a)),
(CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f16 (sint_to_fp Int16Regs:$a)),
(CVT_f16_s16 Int16Regs:$a, CvtRN)>;
def : Pat<(f16 (sint_to_fp Int32Regs:$a)),
(CVT_f16_s32 Int32Regs:$a, CvtRN)>;
def : Pat<(f16 (sint_to_fp Int64Regs:$a)),
(CVT_f16_s64 Int64Regs:$a, CvtRN)>;
// uint -> f16
def : Pat<(f16 (uint_to_fp Int1Regs:$a)),
(CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f16 (uint_to_fp Int16Regs:$a)),
(CVT_f16_u16 Int16Regs:$a, CvtRN)>;
def : Pat<(f16 (uint_to_fp Int32Regs:$a)),
(CVT_f16_u32 Int32Regs:$a, CvtRN)>;
def : Pat<(f16 (uint_to_fp Int64Regs:$a)),
(CVT_f16_u64 Int64Regs:$a, CvtRN)>;
// sint -> f32
def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
(CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
(CVT_f32_s16 Int16Regs:$a, CvtRN)>;
def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
(CVT_f32_s32 Int32Regs:$a, CvtRN)>;
def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
(CVT_f32_s64 Int64Regs:$a, CvtRN)>;
// uint -> f32
def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
(CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
(CVT_f32_u16 Int16Regs:$a, CvtRN)>;
def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
(CVT_f32_u32 Int32Regs:$a, CvtRN)>;
def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
(CVT_f32_u64 Int64Regs:$a, CvtRN)>;
// sint -> f64
def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
(CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
(CVT_f64_s16 Int16Regs:$a, CvtRN)>;
def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
(CVT_f64_s32 Int32Regs:$a, CvtRN)>;
def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
(CVT_f64_s64 Int64Regs:$a, CvtRN)>;
// uint -> f64
def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
(CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
(CVT_f64_u16 Int16Regs:$a, CvtRN)>;
def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
(CVT_f64_u32 Int32Regs:$a, CvtRN)>;
def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
(CVT_f64_u64 Int64Regs:$a, CvtRN)>;
// f16 -> sint
def : Pat<(i1 (fp_to_sint Float16Regs:$a)),
(SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_sint Float16Regs:$a)),
(CVT_s16_f16 Float16Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_sint Float16Regs:$a)),
(CVT_s32_f16 Float16Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_sint Float16Regs:$a)),
(CVT_s64_f16 Float16Regs:$a, CvtRZI)>;
// f16 -> uint
def : Pat<(i1 (fp_to_uint Float16Regs:$a)),
(SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_uint Float16Regs:$a)),
(CVT_u16_f16 Float16Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_uint Float16Regs:$a)),
(CVT_u32_f16 Float16Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_uint Float16Regs:$a)),
(CVT_u64_f16 Float16Regs:$a, CvtRZI)>;
// f32 -> sint
def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
(CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
(CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
(CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
(CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
(CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
(CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
// f32 -> uint
def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
(CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
(CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
(CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
(CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
(CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
(CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
// f64 -> sint
def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
(CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
(CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
(CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
// f64 -> uint
def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
(CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
(CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
(CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
// sext i1
def : Pat<(i16 (sext Int1Regs:$a)),
(SELP_s16ii -1, 0, Int1Regs:$a)>;
def : Pat<(i32 (sext Int1Regs:$a)),
(SELP_s32ii -1, 0, Int1Regs:$a)>;
def : Pat<(i64 (sext Int1Regs:$a)),
(SELP_s64ii -1, 0, Int1Regs:$a)>;
// zext i1
def : Pat<(i16 (zext Int1Regs:$a)),
(SELP_u16ii 1, 0, Int1Regs:$a)>;
def : Pat<(i32 (zext Int1Regs:$a)),
(SELP_u32ii 1, 0, Int1Regs:$a)>;
def : Pat<(i64 (zext Int1Regs:$a)),
(SELP_u64ii 1, 0, Int1Regs:$a)>;
// anyext i1
def : Pat<(i16 (anyext Int1Regs:$a)),
(SELP_u16ii -1, 0, Int1Regs:$a)>;
def : Pat<(i32 (anyext Int1Regs:$a)),
(SELP_u32ii -1, 0, Int1Regs:$a)>;
def : Pat<(i64 (anyext Int1Regs:$a)),
(SELP_u64ii -1, 0, Int1Regs:$a)>;
// sext i16
def : Pat<(i32 (sext Int16Regs:$a)),
(CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (sext Int16Regs:$a)),
(CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
// zext i16
def : Pat<(i32 (zext Int16Regs:$a)),
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (zext Int16Regs:$a)),
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
// anyext i16
def : Pat<(i32 (anyext Int16Regs:$a)),
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (anyext Int16Regs:$a)),
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
// sext i32
def : Pat<(i64 (sext Int32Regs:$a)),
(CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
// zext i32
def : Pat<(i64 (zext Int32Regs:$a)),
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
// anyext i32
def : Pat<(i64 (anyext Int32Regs:$a)),
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
// truncate i64
def : Pat<(i32 (trunc Int64Regs:$a)),
(CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
def : Pat<(i16 (trunc Int64Regs:$a)),
(CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
def : Pat<(i1 (trunc Int64Regs:$a)),
(SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
// truncate i32
def : Pat<(i16 (trunc Int32Regs:$a)),
(CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
def : Pat<(i1 (trunc Int32Regs:$a)),
(SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
// truncate i16
def : Pat<(i1 (trunc Int16Regs:$a)),
(SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
// sext_inreg
def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
// Select instructions with 32-bit predicates
def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
(SELP_b16rr Int16Regs:$a, Int16Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
(SELP_b32rr Int32Regs:$a, Int32Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
(SELP_b64rr Int64Regs:$a, Int64Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b),
(SELP_f16rr Float16Regs:$a, Float16Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
(SELP_f32rr Float32Regs:$a, Float32Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
(SELP_f64rr Float64Regs:$a, Float64Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
let hasSideEffects = false in {
// pack a set of smaller int registers to a larger int register
def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
(ins Int16Regs:$s1, Int16Regs:$s2,
Int16Regs:$s3, Int16Regs:$s4),
"mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>;
def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
(ins Int16Regs:$s1, Int16Regs:$s2),
"mov.b32 \t$d, {{$s1, $s2}};", []>;
def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
(ins Int32Regs:$s1, Int32Regs:$s2),
"mov.b64 \t$d, {{$s1, $s2}};", []>;
def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
(ins Float32Regs:$s1, Float32Regs:$s2),
"mov.b64 \t$d, {{$s1, $s2}};", []>;
// unpack a larger int register to a set of smaller int registers
def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
Int16Regs:$d3, Int16Regs:$d4),
(ins Int64Regs:$s),
"mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>;
def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
(ins Int32Regs:$s),
"mov.b32 \t{{$d1, $d2}}, $s;", []>;
def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
(ins Int64Regs:$s),
"mov.b64 \t{{$d1, $d2}}, $s;", []>;
def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
(ins Float64Regs:$s),
"mov.b64 \t{{$d1, $d2}}, $s;", []>;
}
let hasSideEffects = false in {
// Extract element of f16x2 register. PTX does not provide any way
// to access elements of f16x2 vector directly, so we need to
// extract it using a temporary register.
def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst),
(ins Float16x2Regs:$src),
"{{ .reg .b16 \t%tmp_hi;\n\t"
" mov.b32 \t{$dst, %tmp_hi}, $src; }}",
[(set Float16Regs:$dst,
(extractelt (v2f16 Float16x2Regs:$src), 0))]>;
def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst),
(ins Float16x2Regs:$src),
"{{ .reg .b16 \t%tmp_lo;\n\t"
" mov.b32 \t{%tmp_lo, $dst}, $src; }}",
[(set Float16Regs:$dst,
(extractelt (v2f16 Float16x2Regs:$src), 1))]>;
// Coalesce two f16 registers into f16x2
def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
"mov.b32 \t$dst, {{$a, $b}};",
[(set Float16x2Regs:$dst,
(build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>;
// Directly initializing underlying the b32 register is one less SASS
// instruction than than vector-packing move.
def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src),
"mov.b32 \t$dst, $src;",
[]>;
// Split f16x2 into two f16 registers.
def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
(ins Float16x2Regs:$src),
"mov.b32 \t{{$lo, $hi}}, $src;",
[]>;
// Split an i32 into two f16
def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
(ins Int32Regs:$src),
"mov.b32 \t{{$lo, $hi}}, $src;",
[]>;
}
// Count leading zeros
let hasSideEffects = false in {
def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
"clz.b32 \t$d, $a;", []>;
def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
"clz.b64 \t$d, $a;", []>;
}
// 32-bit has a direct PTX instruction
def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
// The return type of the ctlz ISD node is the same as its input, but the PTX
// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the
// ptx value to 64 bits to match the ISD node's semantics, unless we know we're
// truncating back down to 32 bits.
def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>;
// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the
// result back to 16-bits if necessary. We also need to subtract 16 because
// the high-order 16 zeros were counted.
//
// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could
// use to save one SASS instruction (on sm_35 anyway):
//
// mov.b32 $tmp, {0xffff, $a}
// ctlz.b32 $result, $tmp
//
// That is, instead of zero-extending the input to 32 bits, we'd "one-extend"
// and then ctlz that value. This way we don't have to subtract 16 from the
// result. Unfortunately today we don't have a way to generate
// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization.
def : Pat<(i16 (ctlz Int16Regs:$a)),
(SUBi16ri (CVT_u16_u32
(CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>;
def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))),
(SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>;
// Population count
let hasSideEffects = false in {
def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
"popc.b32 \t$d, $a;", []>;
def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
"popc.b64 \t$d, $a;", []>;
}
// 32-bit has a direct PTX instruction
def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>;
// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit
// to match the LLVM semantics. Just as with ctlz.i64, we provide a second
// pattern that avoids the type conversion if we're truncating the result to
// i32 anyway.
def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>;
// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits.
// If we know that we're storing into an i32, we can avoid the final trunc.
def : Pat<(ctpop Int16Regs:$a),
(CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>;
def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))),
(POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>;
// fpround f32 -> f16
def : Pat<(f16 (fpround Float32Regs:$a)),
(CVT_f16_f32 Float32Regs:$a, CvtRN)>;
// fpround f64 -> f16
def : Pat<(f16 (fpround Float64Regs:$a)),
(CVT_f16_f64 Float64Regs:$a, CvtRN)>;
// fpround f64 -> f32
def : Pat<(f32 (fpround Float64Regs:$a)),
(CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(f32 (fpround Float64Regs:$a)),
(CVT_f32_f64 Float64Regs:$a, CvtRN)>;
// fpextend f16 -> f32
def : Pat<(f32 (fpextend Float16Regs:$a)),
(CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(f32 (fpextend Float16Regs:$a)),
(CVT_f32_f16 Float16Regs:$a, CvtNONE)>;
// fpextend f16 -> f64
def : Pat<(f64 (fpextend Float16Regs:$a)),
(CVT_f64_f16 Float16Regs:$a, CvtNONE)>;
// fpextend f32 -> f64
def : Pat<(f64 (fpextend Float32Regs:$a)),
(CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(f64 (fpextend Float32Regs:$a)),
(CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
// fceil, ffloor, fround, ftrunc.
def : Pat<(fceil Float16Regs:$a),
(CVT_f16_f16 Float16Regs:$a, CvtRPI)>;
def : Pat<(fceil Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(fceil Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>;
def : Pat<(fceil Float64Regs:$a),
(CVT_f64_f64 Float64Regs:$a, CvtRPI)>;
def : Pat<(ffloor Float16Regs:$a),
(CVT_f16_f16 Float16Regs:$a, CvtRMI)>;
def : Pat<(ffloor Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(ffloor Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>;
def : Pat<(ffloor Float64Regs:$a),
(CVT_f64_f64 Float64Regs:$a, CvtRMI)>;
def : Pat<(ftrunc Float16Regs:$a),
(CVT_f16_f16 Float16Regs:$a, CvtRZI)>;
def : Pat<(ftrunc Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(ftrunc Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>;
def : Pat<(ftrunc Float64Regs:$a),
(CVT_f64_f64 Float64Regs:$a, CvtRZI)>;
// nearbyint and rint are implemented as rounding to nearest even. This isn't
// strictly correct, because it causes us to ignore the rounding mode. But it
// matches what CUDA's "libm" does.
def : Pat<(fnearbyint Float16Regs:$a),
(CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
def : Pat<(fnearbyint Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(fnearbyint Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
def : Pat<(fnearbyint Float64Regs:$a),
(CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
def : Pat<(frint Float16Regs:$a),
(CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
def : Pat<(frint Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(frint Float32Regs:$a),
(CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
def : Pat<(frint Float64Regs:$a),
(CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
//-----------------------------------
// Control-flow
//-----------------------------------
let isTerminator=1 in {
let isReturn=1, isBarrier=1 in
def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
let isBranch=1 in
def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
"@$a bra \t$target;",
[(brcond Int1Regs:$a, bb:$target)]>;
let isBranch=1 in
def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
"@!$a bra \t$target;", []>;
let isBranch=1, isBarrier=1 in
def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
"bra.uni \t$target;", [(br bb:$target)]>;
}
def : Pat<(brcond Int32Regs:$a, bb:$target),
(CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
// conditional branch if the target block is the next block so that the code
// can fall through to the target block. The invertion is done by 'xor
// condition, 1', which will be translated to (setne condition, -1). Since ptx
// supports '@!pred bra target', we should use it.
def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
(CBranchOther Int1Regs:$a, bb:$target)>;
// Call
def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
[SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPSideEffect]>;
def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def calltarget : Operand<i32>;
let isCall=1 in {
def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>;
}
def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>;
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: NVPTXInst<outs, ins, asmstr, pattern>;
def Callseq_Start :
NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"\\{ // callseq $amt1, $amt2\n"
"\t.reg .b32 temp_param_reg;",
[(callseq_start timm:$amt1, timm:$amt2)]>;
def Callseq_End :
NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"\\} // callseq $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
// trap instruction
def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>;
// Call prototype wrapper
def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def CallPrototype :
SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def ProtoIdent : Operand<i32> {
let PrintMethod = "printProtoIdent";
}
def CALL_PROTOTYPE :
NVPTXInst<(outs), (ins ProtoIdent:$ident),
"$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
include "NVPTXIntrinsics.td"
//-----------------------------------
// Notes
//-----------------------------------
// BSWAP is currently expanded. The following is a more efficient
// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
// - for sm_20, use pmpt (use vector scalar mov to get the pack and
// unpack). sm_20 supports native 32-bit register, but not native 16-bit
// register.